SECTION 9: ELECTRICAL POWER DISTRIBUTION

ESE 470 – Energy Distribution Systems

The Electrical Grid

- Three main components to the electrical grid
 - Generation
 - ESE 450
 - Transmission
 - Transmission
 - Subtransmission
 - Distribution
 - Primary distribution
 - Secondary distribution
- Different voltage levels at each
 Connected by transformers

Transmission Network

- 4
- Provides bulk power from generators to the grid
- Interconnection point between separate utilities or separate generators
 - Power bought and sold at this level
- □ *High voltage* for low loss, long-distance transmission
 - 230...765 kV
 - Generator step up transformers at power plant

High power

- 400...4000 MVA per three-phase circuit
- Transmission network terminates at *bulk-power* or *transmission substations*

Subtransmission Network

- 5
- Voltage stepped down at bulk-power substations
 Typically 69 kV, but also 115 kV and 138 kV
- Large industrial customers may connect directly to the subtransmission network
 - Voltage stepped down at customer's substation
- Subtransmission network terminates at *distribution* substations

Primary Distribution

- Voltage stepped down at *distribution substations* 2.2 kV ... 46 kV
 - 4 MVA ... 30 MVA
- Feeders leave substations and run along streets
- Laterals tap off of feeders and run along streets
- Primary distribution network terminates at distribution transformers

Secondary Distribution

- 7
- Distribution transformers step voltage down to customer utilization level
 - Single-phase 120 V ... three-phase 480 V
- Secondary distribution is the connection to the customer
- May connect to a *secondary main* Serves several customers
- Or, one distribution transformer may serve a single customer

8 Primary Distribution

Distribution Substations

Primary distribution network is fed from *distribution substations:*

- Step-down transformer
 - 2.2 kV ... 46 kV
 - Typically 15 kV class: 12.47 kV, 13.2 kV, or 13.8 kV
- Circuit protection
 - Surge arresters
 - Circuit breakers
- **Substation bus** feeds the primary distribution network
- Feeders leave the substation to distribute power into the service area in one of three topologies
 - Primary radial system
 - Primary *loop* system
 - Primary *network* system

Primary Radial System

- 10
- Multiple radial feeders may leave a single substation
- Each load in the service area served by a single feeder
- Feeders run along streets
 Overhead or underground
- Laterals tap off of feedersOverhead or underground

Primary Loop System

- Primary loop systems provide a reliability improvement over radial systems
- Two feeders loop from the distribution substation through service area
 - Normally-open tie switch completes the loop
- Reclosers around the loop isolate faults
- Tie switch closes to provide service downstream of isolated section

Primary Network System

- 12
- **Primary network system** provides further reliability improvement
- Service area supplied by a grid of interconnected feeders
 - Feeders originate from multiple substations
- Used in densely-populated urban centers

¹³ Secondary Distribution

Secondary Distribution

- The secondary distribution network connects customers to the primary distribution network
- Distribution transformers step voltages down to customer utilization levels
- Common secondary distribution voltages:
 - Single-phase 120/240 V
 - Three wire
 - Residential

Secondary Distribution

- Common secondary distribution voltages (cont'd):
 - Three-phase/single-phase 208Y/120 V
 - Four wire
 - Dense residential/commercial
 - Three-phase/single-phase 480Y/277 V
 - Four wire
 - Commercial/industrial/high rise
 - Single-phase 277 V for fluorescent lighting
 - Three-phase 480 V for motors
 - Transformers provide single-phase 120 V for outlets

Distribution Transformers

Distribution transformers step voltages down to customer levels

- Pole-mount
- Pad-mount
- Vault
- Two possible configurations:
 One transformer per customer
 Common secondary main

Distribution Transformers

- One distribution transformer per customer
 Rural areas
 Large loads
- Common secondary main
 - One transformer serves several customers
 - Densely-populated areas
 - Multiple transformers may connect in parallel to the secondary main – *banked secondary*

- Primary function of the electrical power system is to supply the exact amount of power required to satisfy demand
 - Constantly fluctuating load
 - Adequate power quality and reliability must be maintained
- Ancillary services: all of the secondary functions of the electric utilities necessary to ensure power quality and reliability
 - Some provided at the generation level
 - Some at the transmission and distribution networks

- FERC regulations specify ancillary service requirements for utilities
 - Capability to inject power real and reactive onto the grid as needed
 - Services differ in the time frame corresponding to the required power
- □ Ancillary Services:
 - Load following
 - Frequency regulation
 - Voltage regulation
 - Spinning reserve
 - Supplemental reserve
 - Replacement reserve

Load following

- Variation of generated power to track the daily load profile
- Response time: minutes to hours
- Location: generation

Frequency regulation

- Tracking of short-term load variations to ensure that grid frequency remains at 60 Hz
- Response time: seconds to minutes
- Location: typically at the generator

Voltage regulation

Maintaining line voltage levels near nominal values

- Injection or absorption of reactive power
- Adjusting transformer tap settings
- Response time: seconds
- Location: generation, transmission, distribution

Spinning reserve

- Online generation with spare capacity
 - Able to respond quickly to compensate for generation outages
- Response time: seconds to minutes
- Location: generation

Supplemental reserve

- Online or offline spare generation capacity
- Response time: minutes
- Location: generation

<u>Replacement reserve</u>

- Typically offline generation capacity
 - Takes over for spinning and supplemental reserves
- Response time: tens of minutes
- Location: generation

Ancillary Services – Response Time

source: Frequency Regulation Basics and Trends, Brendan J. Kirby, 2004

Regulation and Load Following

Voltage Regulation

- 26
- Many of the required ancillary services are provided at the generation level
 - As storage technologies advance, some will be moved to the distribution network
- Voltage regulation occurs, in large part, in the transmission and distribution networks
- Two primary means of voltage regulation in the transmission/distribution networks:
 - Reactive power control
 - Varying transformer tap settings

Voltage Regulation – Reactive Power Control

- As reactive power at the load varies, line voltage varies
- Shunt compensation elements switched in and out with varying load
 - Static var compensators (SVCs) at transmission substations
 - Shunt capacitors located along primary feeders
 - Switched based on local measurements
 - Switched remotely from a control center

Voltage Regulation – Load Tap Changers

Load Tap Changers (LTCs)

- Transformers with adjustable turns ratios
- Located at distribution substations
- Internal motors

 automatically adjust
 secondary-side tap
 settings

Voltage Regulation – Voltage Regulators

Voltage Regulators

- Autotransformers
 with automaticallyvariable tap settings
- At distribution substations or along primary feeders
- Internal motors automatically adjust secondary-side tap settings

³⁰ Distribution Reliability

Distribution Reliability

- Primary function of the electrical power system is to supply the required load *and* to do so *reliably*
- Several commonly-used distribution reliability metrics
 - Measures of the amount of service interruption over a period of time
- System Average Interruption Frequency Index (SAIFI)

Average number of interruptions per customer per year

 $SAIFI = rac{\# \ customer \ interruptions}{\# \ customers \ served}$

D N. American median \approx 1.1 interruptions

Distribution Reliability

System Average Interruption Duration Index (SAIDI)

Average outage time per customer per year

 $SAIDI = \frac{\sum customer\ interruption\ durations}{\#\ customers\ served}$

D N. American median \approx 1.5 hours

Customer Average Interruption Duration Index (CAIDI)

Average interruption duration

 $CAIDI = \frac{\sum customer\ interruption\ durations}{\#\ customer\ interruptions} = \frac{SAIDI}{SAIFI}$

D N. American median \approx 1.36 hours

Only interruptions exceeding 5 minutes are accounted for in these metrics

The Existing Grid

- The existing electrical grid has evolved slowly over the past century
- □ Issues facing the current electrical grid include:
 - Generation and transmission/distribution capacity sized to serve peak loads
 - Underutilized most of the time
 - Proliferation of distributed generation from renewable resources will stress the grid
 - Erratic nature of generation
 - Lack of centralized control and monitoring
 - **Growth in demand outpacing growth in capacity**
 - Susceptible to widespread blackouts
 - Lack of demand-side control
 - Customers lack the ability to make informed energy-usage decisions

The Smart Grid

- The smart grid will be an evolution of the existing electrical grid
- □ Integration of technology for:
 - Measurement/monitoring
 - Communication
 - Control
 - Incorporation of renewables
 - Storage
- Much of this will occur in the *distribution network*
 - Vast majority of interruptions caused in the distribution network

Control and Monitoring of the Current Grid

- Utilities do currently have some level of real-time visibility of and control over their transmission/distribution networks
 - Supervisory control and data acquisition (SCADA)
- A precursor to what will become the *smart grid*
- □ For example:
 - Radio-controlled reclosers and sectionalizing switches

Measurement

- Sensors throughout the transmission/distribution networks will monitor loads and voltages
- Advanced metering infrastructure (AMI) will provide visibility into individual loads
 - Smart meters

Communication

- Two-way communication between customers and utilities
 - Customers provided with real-time pricing information allowing them to make informed usage decisions

<u>Control</u>

Utilities may have increased control over loads

- E.g., water heaters, HVAC, etc.
- Coordination of loads in an area without sacrificing customer requirements
- Ability to more effectively re-route power flows
 - Increased reliability
 - Self-healing networks

Incorporation of renewables

- Proliferation of distributed, renewable generation will stress the grid
- Smart grid will include technology for incorporating renewables into the grid
 - Without sacrificing stability or quality of power
 - Control over reactive power supplied by renewable sources FACTS controllers
 - Use of storage to smooth variable generation

Storage

• Energy storage will be an important component of the smart grid

- Batteries Li-ion, flow batteries
- Compressed air (CAES)
- Pumped hydro likely little new development
- Flywheel
- Super capacitors
- Superconducting magnetic energy storage (SMES)
- Fixed energy storage
 - Near solar/wind farms
 - Distribution substations
- Mobile energy storage
 - E.g., electric vehicles
 - Utilities may have some control over and access to the energy stored in electric vehicles attached to the grid.

Microgrids

- Increased distributed generation and storage will enable the creation of *microgrids*
 - Local portions of the electrical grid, which are capable of disconnecting from the grid and operating autonomously
 - Distributed generation
 - Storage
 - Control of the local network and its connection the grid
- Improved reliability of the overall grid
- The smart grid may be an *interconnection of microgrids*

Microgrids

source: www.clean-coalition.org