SECTION 9: ELECTRICAL POWER DISTRIBUTION
Introduction
The Electrical Grid

- Three main components to the electrical grid
 - Generation
 - ESE 450
 - Transmission
 - Transmission
 - Subtransmission
 - Distribution
 - Primary distribution
 - Secondary distribution
- Different voltage levels at each
 - Connected by transformers
Transmission Network

- Provides **bulk power** from generators to the grid
- Interconnection point between separate utilities or separate generators
 - Power bought and sold at this level
- **High voltage** for low loss, long-distance transmission
 - 230...765 kV
 - Generator step up transformers at power plant
- **High power**
 - 400...4000 MVA per three-phase circuit
- Transmission network terminates at **bulk-power** or **transmission substations**
Subtransmission Network

- Voltage stepped down at bulk-power substations
 - Typically 69 kV, but also 115 kV and 138 kV
- Large industrial customers may connect directly to the subtransmission network
 - Voltage stepped down at customer’s substation
- Subtransmission network terminates at *distribution substations*
Primary Distribution

- Voltage stepped down at *distribution substations*
 - 2.2 kV ... 46 kV
 - 4 MVA ... 30 MVA

- *Feeders* leave substations and run along streets

- *Laterals* tap off of feeders and run along streets

- Primary distribution network terminates at *distribution transformers*
Secondary Distribution

- **Distribution transformers** step voltage down to customer utilization level
 - Single-phase 120 V ... three-phase 480 V
- Secondary distribution is the connection to the customer
- May connect to a *secondary main*
 - Serves several customers
- Or, one distribution transformer may serve a single customer
Primary Distribution
Distribution Substations

- Primary distribution network is fed from **distribution substations**:
 - Step-down transformer
 - 2.2 kV ... 46 kV
 - Typically 15 kV class: 12.47 kV, 13.2 kV, or 13.8 kV
 - Circuit protection
 - Surge arresters
 - Circuit breakers
 - **Substation bus** feeds the primary distribution network

- **Feeders** leave the substation to distribute power into the service area in one of three topologies
 - Primary **radial** system
 - Primary **loop** system
 - Primary **network** system
Primary Radial System

- Multiple radial feeders may leave a single substation
- Each load in the service area served by a single feeder
- Feeders run along streets
 - Overhead or underground
- Laterals tap off of feeders
 - Overhead or underground

source: Glover, Sarma, Overbye
Primary Loop System

- **Primary loop systems** provide a reliability improvement over radial systems.

- Two feeders loop from the distribution substation through service area:
 - Normally-open tie switch completes the loop.

- Reclosers around the loop isolate faults.

- Tie switch closes to provide service downstream of isolated section.

Source: Glover, Sarma, Overbye
Primary Network System

- **Primary network system** provides further reliability improvement
- Service area supplied by a grid of interconnected feeders
 - Feeders originate from multiple substations
- Used in densely-populated urban centers

source: Glover, Sarma, Overbye
Secondary Distribution
The secondary distribution network connects customers to the primary distribution network. Distribution transformers step voltages down to customer utilization levels. Common secondary distribution voltages include:

- Single-phase 120/240 V
 - Three wire
 - Residential
Common secondary distribution voltages (cont’d):

- Three-phase/single-phase 208Y/120 V
 - Four wire
 - Dense residential/commercial

- Three-phase/single-phase 480Y/277 V
 - Four wire
 - Commercial/industrial/high rise
 - Single-phase 277 V for fluorescent lighting
 - Three-phase 480 V for motors
 - Transformers provide single-phase 120 V for outlets
Distribution Transformers

- Distribution transformers step voltages down to customer levels
 - Pole-mount
 - Pad-mount
 - Vault

- Two possible configurations:
 - One transformer per customer
 - Common secondary main
Distribution Transformers

- One distribution transformer per customer
 - Rural areas
 - Large loads

- Common secondary main
 - One transformer serves several customers
 - Densely-populated areas
 - Multiple transformers may connect in parallel to the secondary main – banked secondary

![Diagram of distribution transformer system]
Ancillary Services
Ancillary Services

- Primary function of the electrical power system is to supply the exact amount of power required to satisfy demand
 - Constantly fluctuating load
 - Adequate power quality and reliability must be maintained

- **Ancillary services**: all of the secondary functions of the electric utilities necessary to ensure power quality and reliability
 - Some provided at the generation level
 - Some at the transmission and distribution networks
Ancillary Services

- FERC regulations specify ancillary service requirements for utilities
 - Capability to inject power – real and reactive – onto the grid as needed
 - Services differ in the time frame corresponding to the required power

- Ancillary Services:
 - Load following
 - Frequency regulation
 - Voltage regulation
 - Spinning reserve
 - Supplemental reserve
 - Replacement reserve
Ancillary Services

- **Load following**
 - Variation of generated power to track the daily load profile
 - Response time: minutes to hours
 - Location: generation

- **Frequency regulation**
 - Tracking of short-term load variations to ensure that grid frequency remains at 60 Hz
 - Response time: seconds to minutes
 - Location: typically at the generator
Ancillary Services

- **Voltage regulation**
 - Maintaining line voltage levels near nominal values
 - Injection or absorption of reactive power
 - Adjusting transformer tap settings
 - Response time: seconds
 - Location: generation, transmission, distribution

- **Spinning reserve**
 - Online generation with spare capacity
 - Able to respond quickly to compensate for generation outages
 - Response time: seconds to minutes
 - Location: generation
Ancillary Services

- **Supplemental reserve**
 - Online or offline spare generation capacity
 - Response time: minutes
 - Location: generation

- **Replacement reserve**
 - Typically offline generation capacity
 - Takes over for spinning and supplemental reserves
 - Response time: tens of minutes
 - Location: generation
Ancillary Services – Response Time

source: Frequency Regulation Basics and Trends, Brendan J. Kirby, 2004
Regulation and Load Following

source: Frequency Regulation Basics and Trends, Brendan J. Kirby, 2004
Voltage Regulation

- Many of the required ancillary services are provided at the generation level
 - As storage technologies advance, some will be moved to the distribution network

- Voltage regulation occurs, in large part, in the transmission and distribution networks

- Two primary means of voltage regulation in the transmission/distribution networks:
 - Reactive power control
 - Varying transformer tap settings
Voltage Regulation – Reactive Power Control

- As reactive power at the load varies, line voltage varies
- Shunt compensation elements switched in and out with varying load

- Static var compensators (SVCs) at transmission substations
- Shunt capacitors located along primary feeders
 - Switched based on local measurements
 - Switched remotely from a control center

source: www.tdworld.com
Voltage Regulation – Load Tap Changers

- **Load Tap Changers (LTCs)**
 - Transformers with adjustable turns ratios
 - Located at distribution substations
 - Internal motors automatically adjust secondary-side tap settings

Source: Glover, Sarma, Overbye
Voltage Regulators

- Autotransformers with automatically-variable tap settings
- At distribution substations or along primary feeders
- Internal motors automatically adjust secondary-side tap settings
Distribution Reliability
Primary function of the electrical power system is to supply the required load *and* to do so *reliably*.

Several commonly-used distribution reliability metrics:
- Measures of the amount of service interruption over a period of time.

System Average Interruption Frequency Index (SAIFI)
- Average number of interruptions per customer per year:

 \[
 SAIFI = \frac{\# \text{ customer interruptions}}{\# \text{ customers served}}
 \]

 - N. American median \(\approx 1.1 \) interruptions.
Distribution Reliability

- **System Average Interruption Duration Index (SAIDI)**
 - Average outage time per customer per year

 \[
 SAIDI = \frac{\sum \text{customer interruption durations}}{\# \text{customers served}}
 \]

 - N. American median \(\approx 1.5\) hours

- **Customer Average Interruption Duration Index (CAIDI)**
 - Average interruption duration

 \[
 CAIDI = \frac{\sum \text{customer interruption durations}}{\# \text{customer interruptions}} = \frac{SAIDI}{SAIFI}
 \]

 - N. American median \(\approx 1.36\) hours

- Only interruptions exceeding 5 minutes are accounted for in these metrics
Smart Grid
The Existing Grid

- The existing electrical grid has evolved slowly over the past century

- Issues facing the current electrical grid include:
 - Generation and transmission/distribution capacity sized to serve peak loads
 - Underutilized most of the time
 - Proliferation of distributed generation from renewable resources will stress the grid
 - Erratic nature of generation
 - Lack of centralized control and monitoring
 - Growth in demand outpacing growth in capacity
 - Susceptible to widespread blackouts
 - Lack of demand-side control
 - Customers lack the ability to make informed energy-usage decisions
The Smart Grid

- The *smart grid* will be an evolution of the existing electrical grid

- Integration of technology for:
 - Measurement/monitoring
 - Communication
 - Control
 - Incorporation of renewables
 - Storage

- Much of this will occur in the *distribution network*
 - Vast majority of interruptions caused in the distribution network
Utilities do currently have some level of real-time visibility of and control over their transmission/distribution networks

- *Supervisory control and data acquisition (SCADA)*
- A precursor to what will become the *smart grid*

For example:
- Radio-controlled reclosers and sectionalizing switches

source: Glover, Sarma, Overbye
Features of the Smart Grid

- **Measurement**
 - Sensors throughout the transmission/distribution networks will monitor loads and voltages
 - Advanced metering infrastructure (AMI) will provide visibility into individual loads
 - Smart meters

- **Communication**
 - Two-way communication between customers and utilities
 - Customers provided with real-time pricing information allowing them to make informed usage decisions
Features of the Smart Grid

- **Control**
 - Utilities may have increased control over loads
 - E.g., water heaters, HVAC, etc.
 - Coordination of loads in an area without sacrificing customer requirements
 - Ability to more effectively re-route power flows
 - Increased reliability
 - Self-healing networks

- **Incorporation of renewables**
 - Proliferation of distributed, renewable generation will stress the grid
 - Smart grid will include technology for incorporating renewables into the grid
 - Without sacrificing stability or quality of power
 - Control over reactive power supplied by renewable sources – FACTS controllers
 - Use of *storage* to smooth variable generation
Features of the Smart Grid

- **Storage**
 - Energy storage will be an important component of the smart grid
 - Batteries – Li-ion, flow batteries
 - Compressed air (CAES)
 - Pumped hydro – likely little new development
 - Flywheel
 - Super capacitors
 - Superconducting magnetic energy storage (SMES)
 - Fixed energy storage
 - Near solar/wind farms
 - Distribution substations
 - Mobile energy storage
 - E.g., electric vehicles
 - Utilities may have some control over and access to the energy stored in electric vehicles attached to the grid.
Features of the Smart Grid

- **Microgrids**
 - Increased distributed generation and storage will enable the creation of *microgrids*
 - Local portions of the electrical grid, which are capable of disconnecting from the grid and operating autonomously
 - Distributed generation
 - Storage
 - Control of the local network and its connection to the grid
 - Improved reliability of the overall grid
 - The smart grid may be an *interconnection of microgrids*
Microgrids

Source: www.clean-coalition.org