SECTION 1: GRID-CONNECTED ENERGY STORAGE

ESE 471 – Energy Storage Systems

Energy Storage

Our desire to store energy is largely a desire to store electrical energy

- Energy that was or will be consumed/transferred as electrical energy
- But, most energy is stored in forms other than electrical

Energy storage domains:

- Potential
- Kinetic
- Electrical
- Electrochemical
- Thermal
- Magnetic

Energy Storage Challenges

- 1
- Storage of energy is not as simple as storage of other commodities
- Technical challenges/considerations
 - Cost
 - Size
 - Capacity (energy)
 - Power
 - Efficiency
 - Safety
 - Lifetime

Categories of Energy Storage

- □ *Mobile* energy storage
 - EVs/HEVs
 - Phones/computers
 - Power tools
 - Portable lighting
- Fixed energy storage
 - Grid-connected
 - Utility-scale
 - Small-scale, e.g. Powerwall
 - Off-grid
 - Remote locations
 - UPS, e.g. data centers

Our focus in this course will be *fixed, grid-connected energy storage*

Types of Energy Storage

Potential energy storage

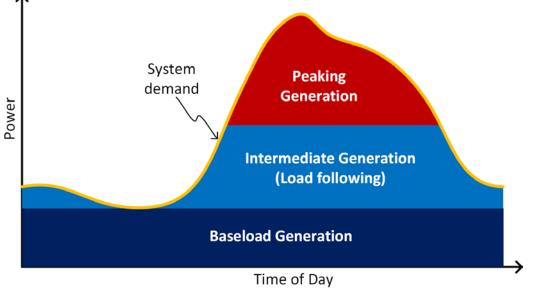
- Pumped hydro (PHES)
- Compressed air (CAES)
- Rail energy storage
- Kinetic energy storage
 Flywheels
- Electrical energy storage
 Ultracapacitors
- Magnetic energy storage
 - Superconducting magnetic energy storage (SMES)

Electrochemical energy storage

- Batteries
- Flow batteries
- Hydrogen
- Thermal energy storage (TES)
 - Molten salts
 - Phase-change materials (PCMs)
 - Water heaters

Course Overview

Section 1: Grid-Connected Energy Storage	Dr. Webb
Section 2: Energy Storage Fundamentals	
Section 3: Pumped Hydro	
Section 4: Ultracapacitors	
Section 5: Flow Batteries	
Section 6: Battery Storage for Off-Grid Applications	
Section 7: Batteries	
Section 8: Thermal Energy Storage	Dr. Kastantin
Section 9: Compressed Air Energy Storage	
Section 10: Fuel Cells	
Section 11: Flywheel Energy Storage	


Load Curves and Generation

- 9
- Electrical power demand varies daily, weekly, seasonally
- At any instant in time, generation must exactly match demand
- Categories of generation
 - **Baseload**:
 - Large coal and nuclear plants (or hydro)
 - Power output not easily/efficiently varied

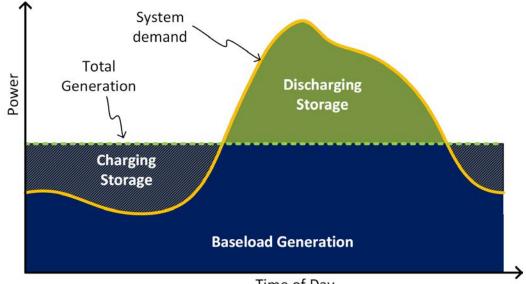
Intermediate:

- Combined-cycle gas-fired plants (or hydro)
- Follow load as it increases beyond baseload

Peaking:

- Simple-cycle gas turbines (or hydro)
- Supply power during times of peak demand

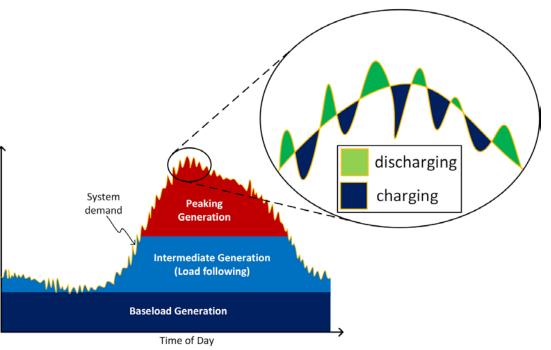
Load Leveling with Storage


10

Integral of the load is the total daily energy demand, E₂₄
 This amount of energy could be generated at a constant rate:

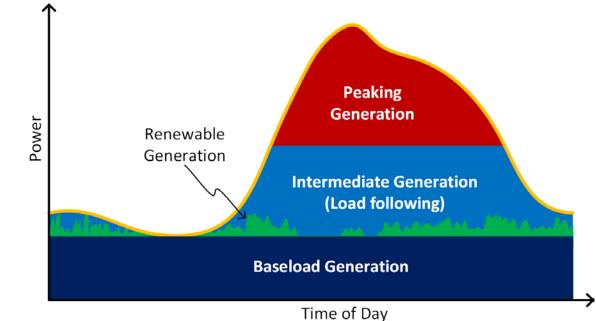
Load Leveling with Storage

- Since demand is not constant, constant generation would require storage
 - Generation exceeds demand:
 - Charge storage
 - Demand exceeds generation:
 - Discharge storage
- In theory, generation could be constant


Time of Day

Short-Term Variation

- Load following and peaking generation
 Meet demand variation over the course of hours
- Demand also varies minute-to-minute
 Utilities must track this rapid variation as well


Power

- Another potential storage application
 - **D** High power
 - Low energy
 - Rapid variation

Integration of Renewables

- Proliferation of renewable generation poses challenges for the grid
 - Variable generation sun/wind
 - Largely unpredictable
 - Peak generation and peak demand are uncorrelated
 - Difficult to absorb variability
 - Renewable generation often curtailed
- Storage can smooth the flow of power from renewable sources

Grid-Connected Energy Storage

- 14
- In this course, we will cover many different energystorage technologies
 - Mechanical
 - Thermal
 - Electrochemical
 - Electrical
- First, we'll take a closer look at how and why energy storage can be *integrated into the electrical grid Benefits and uses* of grid-connected storage
 Location of storage within the electrical grid

Uses of Grid-Connected Storage

- 15
- Services provided by grid-connected energy storage can be grouped into five categories:
 - Bulk energy services
 - Ancillary services
 - Transmission and distribution services
 - Integration of renewable generation
 - Customer energy management services

Location of Storage within the Grid

- Grid-connected storage can be placed at different locations throughout the grid:
 - Large baseload power plants
 - Renewable generation sites wind/solar farms
 - Transmission substations
 - Distribution substations
 - Customer sites
- The best location depends on the application
 - What portion of the grid will benefit from the storage?
 - When power flows to the grid from storage, power flow from somewhere else is reduced
- Next, we'll go through each of the potential services, noting typical locations for storage in each case

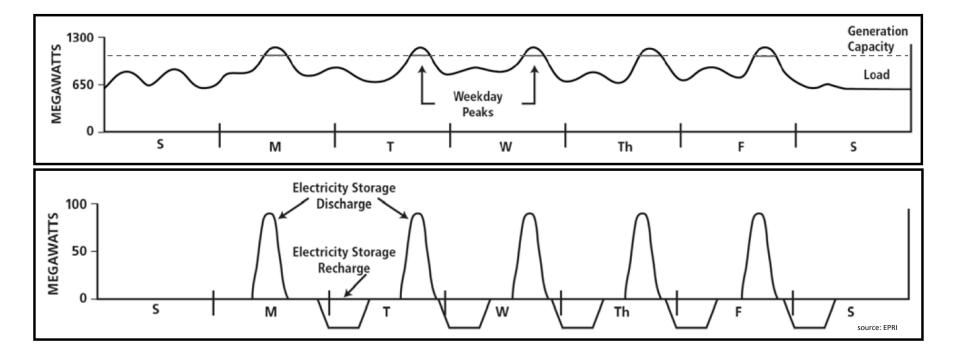
Bulk Energy Services

Bulk energy services

- Supplying large amounts of power to the grid for potentially long durations
- □ Three categories of bulk energy services:
 - Arbitrage
 - Load leveling
 - Generation capacity upgrade deferral
- Arbitrage involves electrical energy time shifting
 Utilities purchase electrical power at times of low demand/low cost, store it, and sell it at a profit at times of high cost/high demand

Bulk Energy Services – Load Leveling

- Load leveling involves the use of storage at a generation facility to smooth a daily demand curve
- Storage can fill the role of gas turbine peak generators
- Allows baseload plants to operate at relatively constant power
 - Power dumped into storage during off-peak hours
 - Stored energy discharged to the grid to satisfy peak loads


Bulk Energy Services – Capacity Upgrade Deferral

- Power plants must be sized to meet peak demand
 - As demand grows to exceed generation capacity, more capacity must be added
- Generation capacity upgrade deferral
 - The use of storage for *peak shaving* to *delay the need to* add additional generation capacity
- Functionally similar to load leveling, but with a different goal
 - Investment deferral instead of efficiency/economy

Shifts the generation capacity requirement from power to energy

Bulk Energy Services

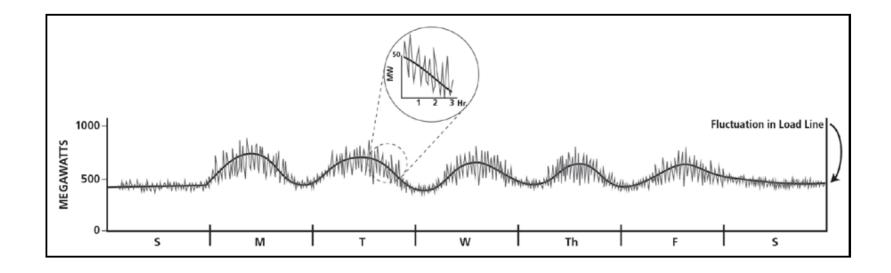
Storage used for load leveling or upgrade deferral:

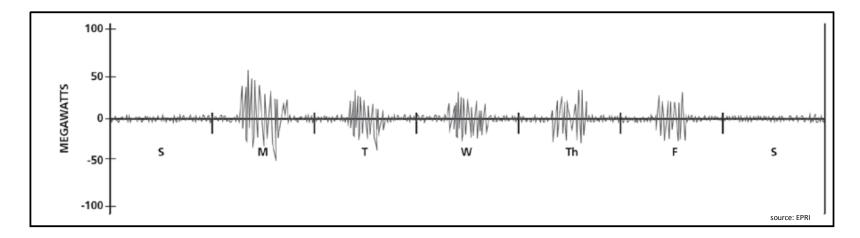
Bulk Energy Services – Storage Requirements

Bulk energy services storage requirements

- Power: 100 1000 MW
- Discharge time: 1 12 hours
- □ Cycles: ~1/day
- Typical location: power plant
- Suitable technologies: PHES, CAES

Ancillary Services


Ancillary services


- All of the secondary functions of the electrical utilities (other than providing bulk power) necessary to ensure power quality and reliability
- Mandated by FERC
- Ancillary services include:
 - Frequency regulation
 - Load following
 - Voltage support
 - Black start capability
 - **D** Spinning, non-spinning, and supplemental reserve
- All involve injecting additional power (real or reactive) onto the grid as needed
 - Differ in terms of *time scale* and objective

Ancillary Services – Frequency Regulation

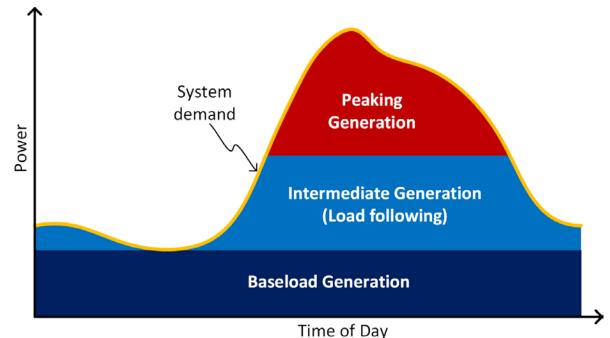
- 23
- As demand on the grid varies from moment to moment, generation must vary to match it
 - This precise balance is necessary for maintaining the frequency on the grid at 60 Hz (or 50 Hz)
- Baseload plants operating in *frequency regulation* mode must rapidly vary output to meet demand
 - Requires operation below capacity
 - Inefficient
 - Wear and tear on generation equipment
- Regulation involves satisfying demand fluctuations around (above and below) some base load
 - A zero-energy service
 - An ideal application for storage

Ancillary Services – Frequency Regulation

Ancillary Services – Frequency Regulation

Frequency regulation storage requirements

- Power: 1 200 MW
- Discharge time: 1 60 minutes
- Cycles: 20-40/day
- Typical location: power plant, T&D substations

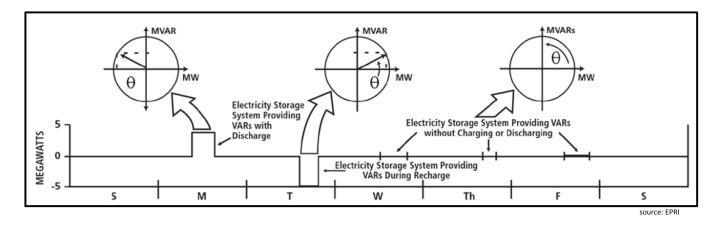

Stephentown, NY flywheel storage plant: ± 20 MW for frequency regulation

 Suitable technologies: flywheels, batteries, flow batteries, ultracapacitors

Ancillary Services – Load Following

- Similar to regulation, *load following* involves providing variable supply to meet varying demand
 - Longer time scale
 - Following the daily variation of the load

26

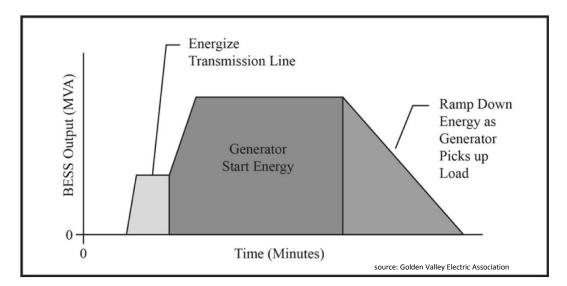

Ancillary Services – Load Following

Load following storage requirements

- Power: 1 2000 MW
- Discharge time: 15 min 1 day
- Cycles: 1-29/day
- Typical location: power plant
- Suitable technologies: PHES, CAES

Ancillary Services – Voltage Support

- 28
- Grid operators are required to maintain voltage levels on the grid within a specified range
 - Varying reactive loads can cause deviations from nominal voltage levels
- Voltage regulation involves injecting (or absorbing) reactive power onto (or from) the grid
 - Storage, along with power electronics, makes this possible


Ancillary Services – Voltage Support

Voltage regulation storage requirements

- Power: 1 40 MW
- Discharge time: 1 60 sec
- **Cycles:** 10-100/day
- Typical location: power plant, T&D substations
- Suitable technologies: batteries, flow batteries, flywheels, ultracapacitors

Ancillary Services – Black Start

- In the event of a wide-area catastrophic failure of the grid, power is required to
 - Reenergize the affected portions of the grid
 - Bring power generation plants back online
- Storage can provide the required power
- Need not be the only job of this storage
 - May also regularly provide many of the other services described here

Ancillary Services – Black Start

Black start storage requirements

- Power: 100 kW 400 MW
- Discharge time: 1 4 hours
- **C**ycles: < 1/year
- **Typical location:** at or well-connected to power plant
- Suitable technologies: PHES, CAES, batteries, flow batteries

Ancillary Services – Reserve Capacity

- 32
- FERC requires that utilities have backup generation capacity that can be brought online in varying amounts of time in the event of a loss of generation

Spinning reserve

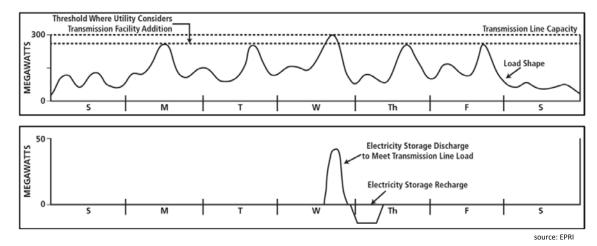
- Online, but unloaded, generation capacity
- Response time: < 15 min</p>
- May also serve double duty providing frequency regulation
 - Frequency responsive spinning reserve

Non-spinning reserve

- Same function as spinning reserve, but need not be online and synchronized to the grid
- Response time: < 30 min</p>

Ancillary Services – Reserve Capacity

Supplemental reserve


- Backup for spinning and non-spinning reserve
- Response time: < 1 hour</p>

Spinning, non-spinning, and supplemental reserve storage requirements

- Power: 10 2000 MW
- Discharge time: 15 min 2 hours
- **Cycles:** < 1/day
- Typical location: power plant, T&D substations
- Suitable technologies: PHES, CAES, batteries, flow batteries

T&D Infrastructure Services

- 34
- Transmission and distribution (T&D) networks must be sized to handle peak loads
- When demand exceeds T&D network capacity, network infrastructure must be upgraded
 - Potentially a huge investment
- Instead, install storage *downstream* from the bottleneck
 - Charge storage during off-peak times
 - Discharge at peak load to reduce upstream peak load

 Infrastructure investment can be delayed or perhaps avoided entirely

T&D Infrastructure Services

T&D services storage requirements

- Power: 1 500 MW
- Discharge time: 2 5 hours
- Cycles: ~1/day
- Typical location: T&D substations
- Suitable technologies: batteries, flow batteries

Integration of Renewables

- 36
- Renewable energy sources, such as wind and solar are inherently variable
 - Somewhat predictable (daily variation)
 - Largely unpredictable (minute-tominute variation)
- Increased renewable generation could threaten grid stability
- Storage can smooth out fluctuating generation

Integration of Renewables

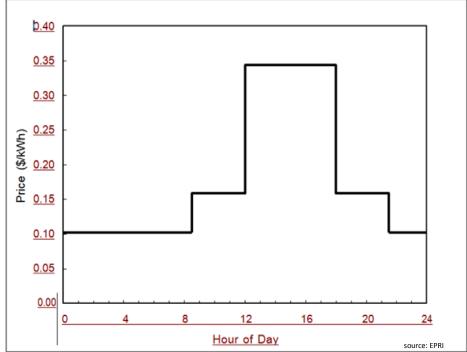
Integration of renewables storage requirements

- Power: 1 400 MW
- Discharge time: 1 min 1 day
- Cycles: 0.5 several/day
- Typical location: renewable generation sites, T&D substations
- Suitable technologies: batteries, flow batteries, PHES, CAES

- 38
- Smaller-scale energy storage systems may also be implemented at individual customer sites
 - Power quality/ reliability
 - Retail energy time shifting

source: Cisco

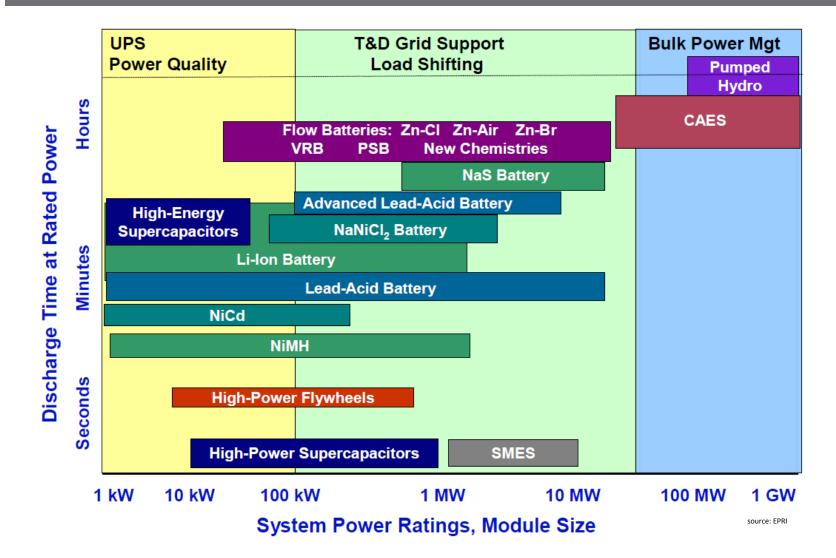
Power quality/reliability


- Customers that cannot afford power outages or drops may utilize on-site storage
- Uninterruptible power supply (UPS)
- Hospitals, data centers, wafer fabs, etc.
- Short-term power bridging the gap to diesel generator startup

Storage requirements

- Power: 1 kW 10s MW
- Discharge time: seconds minutes
- **Cycles:** < 1/day
- Typical location: customer site
- Suitable technologies: batteries, flywheels, ultracapacitors

Retail energy time shifting


- Commercial/industrial customers pay time-of-use (TOU) tariffs
- Retail cost per kWh is higher during times of peak demand
- Storage can be employed to shift load from peak pricing to off-peak pricing

Storage requirements

- Power: 1 kW 10s MW
- Discharge time: 1 6 hours (depends on TOU schedule)
- □ Cycles: ~1/day
- **Typical location:** customer site
- Suitable technologies: batteries, flow batteries

Uses of Grid-Connected Storage

