## SECTION 2: ENERGY STORAGE FUNDAMENTALS

ESE 471 – Energy Storage Systems



### **Energy Storage Performance Characteristics**

- Defining performance characteristics of energy storage mechanisms
  - Capacity
  - **D** Power
  - Efficiency

### Capacity

#### **Capacity**

The amount of energy that a device can store

#### Total energy capacity, E<sub>t</sub>

Total energy stored in a device when fully charged

#### Usable energy capacity, $E_u$

The total energy that can be extracted from a device for use

- Difference between stored energy at maximum state of charge (SoC) and minimum SoC
- In general, storage devices are not fully discharged, so typically

$$E_u < E_t$$



### Capacity

- Units of capacity:
  - Watt-hours (Wh)
  - (Ampere-hours, Ah, for batteries)

#### State of charge (SoC)

- The amount of energy stored in a device as a percentage of its total energy capacity
  - Fully discharged: SoC = 0%
  - Fully charged: SoC = 100%

#### Depth of discharge (DoD)

The amount of energy that has been removed from a device as a percentage of the total energy capacity



### Capacity

 We can also characterize storage devices in terms of size or mass required for a given capacity

#### Specific energy

Usable energy capacity per unit mass

Units: Wh/kg

$$e_m = \frac{E_u}{m}$$

#### Energy density

Usable energy capacity per unit *volume*

■ Units: Wh/m<sup>3</sup> or Wh/L

$$e_v = \frac{E_u}{V}$$

□ These are very often used (incorrectly) interchangeably

### Power

- **Power** is an important metric for a storage system
  - Rate at which energy can be stored or extracted for use
    - Charge/discharge rate
  - Limited by loss mechanisms

#### Specific power

Power available from a storage device per unit mass
 Units: W/kg

$$p_m = \frac{P}{m}$$

#### Power density

Power available from a storage device per unit volume
 Units: W/m<sup>3</sup> or W/L

$$p_v = \frac{P}{V}$$

### Power vs. Energy

- 8
- Capacity and the rate at which energy can be stored or extracted are different characteristics

Applications determine which is most important



### Efficiency

- Another important performance characteristic is efficiency
  - The percentage of energy put into storage that can later be extracted for use
- All storage systems suffer from losses
  - Losses as energy flows into storage
  - Losses as energy is extracted from storage



### Round-Trip Efficiency



#### Round-trip efficiency

Energy extracted from a storage system as a percentage of the energy put into the system

$$\eta_{rt} = \frac{E_{out}}{E_{in}}$$

$$\eta_{rt} = \frac{E_{in} - E_{loss,in} - E_{loss,out}}{E_{in}}$$

### **Round-Trip Efficiency**

#### We can define a *charging efficiency*

Amount of energy stored as a percentage of the energy input

$$\eta_{in} = \frac{E_s}{E_{in}} = \frac{E_{in} - E_{loss,in}}{E_{in}}$$



#### And a *discharging efficiency*

Amount of energy output as a percentage of the energy stored

$$\eta_{out} = \frac{E_{out}}{E_s} = \frac{E_s - E_{loss,out}}{E_s}$$
$$\eta_{out} = \frac{E_{in} - E_{loss,in} - E_{loss,out}}{E_{in} - E_{loss,in}}$$

### Round-Trip Efficiency





The round trip for energy in a storage system is a cascade of the *charge* and *discharge* processes

**•** Round trip efficiency given by:

 $\eta_{rt} = \eta_{in} \cdot \eta_{out}$ 

- □ In general, efficiency is a function of:
  - Charging/discharging power,  $P_{in}$  and  $P_{out}$
  - State of charge

### **Charging Time**

 Typically, what is needed is a certain power for a certain time

#### Charging time

- The time it takes to go from minimum SoC to maximum SoC at a given power input
- The time it takes to store the usable energy, E<sub>u</sub>

$$t_c = \frac{E_u}{P_c}$$

where  $P_c$  is the rate of energy storage

 Note that, due to losses, the rate of energy storage, P<sub>c</sub>, is less than the input power, P<sub>in</sub>



### **Charging Time**

- The power we have direct control over is the input power, P<sub>in</sub>
  - The charging time in terms of input power is



$$t_c = \frac{E_u}{P_{in} - P_{loss,in}} = \frac{E_u}{P_{in} \cdot \eta_{in}}$$

### **Discharge** Time

#### Discharge time

- The time required to go from maximum SoC to minimum SoC at a given output power
- Due to losses, the rate of discharge, P<sub>d</sub>, is greater than the output power, P<sub>out</sub>

$$t_d = \frac{E_u}{P_d}$$

Again, the power of interest is the power we have direct control over, the output power, P<sub>out</sub>, so

$$t_{d} = \frac{E_{u}}{P_{out} + P_{loss,out}} = \frac{E_{u}}{P_{out}/\eta_{out}} = \frac{E_{u}}{P_{out}} \cdot \eta_{out}$$

## 16 Ragone Plots

### **Ragone Plots**

- Two primary figures of merit for energy storage systems:
  - Specific energy
  - Specific power
- Often a tradeoff between the two
  - Different storage technologies best suited to different applications depending on power/energy requirements
- Storage technologies can be compared graphically on a *Ragone plot*
  - **D** Specific energy vs. specific power
  - Specific storage devices plotted as points on the plot, or
  - Categories of devices plotted as regions in the Ragone plane

### **Ragone Plots**



### **Discharge** Time

Any given storage system will have a specific energy capacity and a specific power rating

**\square** A point in the Ragone plane,  $(p_m, e_m)$ 

 Discharge time at rated power for that point (neglecting losses):

$$t_d = \frac{e_m}{p_m}$$

- Constant discharge time maps to lines with unity slope on a Ragone plot
- Storage systems that lie on the same line have equal discharge times at rated power



### **Ragone Curves**

- Ragone plots we've seen so far plot a storage device at one operating point
   Maximum or rated power
- Can also depict a device's energy capacity over a range of power
   A Ragone curve
- Most curves share a similar characteristic shape
  - Available energy decreases at higher power
  - Fraction of energy lost as heat increases



### Thévenin Equivalent Model

- 21
- What is the reason for the characteristic shape of Ragone curves?
- Consider that we could model a storage device with as an electrical *Thévenin equivalent*

Need not be an electrical storage device

- Open-circuit voltage is some function of SoC
  - Possibly linear
  - May be highly nonlinear
  - Or, could be constant



### Thévenin Equivalent Model



Three power components associated with discharge

**D**  $P_d$ : discharge power

• The rate at which energy leaves storage:  $P_d = V_{oc}i_o$ 

#### ■ *P*<sub>loss</sub>: power lost during discharge

- Modeled as heat dissipation in the Thévenin resistance:  $P_{loss} = i_o^2 R_s$
- *P*<sub>out</sub>: output power flowing to the external system

$$P_{out} = v_o i_o = (V_{oc} - i_o R_s) i_o$$
$$P_{out} = V_{oc} i_o - i_o^2 R_s = P_d - P_{loss}$$

### Thévenin Equivalent Model



Discharge time:

$$t_d = \frac{E_u}{P_d}$$

Amount of energy extracted from the storage system:

$$E_{out} = P_{out} \cdot t_d = E_u \frac{P_{out}}{P_d}$$



Substituting in expressions for  $P_{out}$  and  $P_d$ , we have

$$E_{out} = E_u \left[ \frac{V_{oc} i_o - i_o^2 R_s}{V_{oc} i_o} \right]$$
$$E_{out} = E_u \left[ 1 - i_o \frac{R_s}{V_{oc}} \right]$$

### Available Energy vs. Output Power



$$E_{out} = E_u \left[ 1 - i_o \frac{R_s}{V_{oc}} \right]$$

- We can see that the available energy decreases as i<sub>o</sub> increases
  Available energy decreases as output power increases
  Illustrated by the characteristic shape of
  - Ragone plots

24



### Storage System Configurations

- Our focus is grid-connected energy storage
  - Energy stored in many different domains
  - Input and output energy is electrical
    - Three-phase AC power
- Conversion is required between the storage domain and the electrical domain
  - Transformer
  - Power conversion system (PCS)



#### Mechanical storage

- Pumped hydro, flywheels, compressed air
- PCS includes a *motor/generator* 
  - Possibly driven by a turbine
- Motor/generator may be connected directly to the grid
  - Synchronous with the grid
  - Runs at *fixed speed*



- Alternatively, motor/generator can be run at variable speed
  Maximize efficiency
  - Interface to grid through power electronic converter
- Two options for variable-speed operation:
  - Singly-fed motor/generator
  - Doubly-fed motor/generator



#### Singly-fed motor/generator

- **D** Synchronous machine
- Stator driven with variable-frequency AC from power electronic converter
- Field windings on rotor supplied with DC excitation voltage
  - Same as for fixed-speed synchronous machine



Converter must be rated for full motor/generator power

Large, expensive

#### 30

- Doubly-fed motor/generator
  - Doubly-fed asynchronous machine (DFAM)
  - Stator connected to grid-frequency AC
  - Field windings on rotor supplied with variable-frequency excitation voltage



- Converters need not be sized for rated motor/generator power
  - Only supply lower-power excitation to the rotor

### **Power Electronic Converters**

31

- Variable-speed motors/generators require a *static frequency converter* (SFC)
  - Both for singly- and doubly-fed configurations
  - Power electronic switching converter
  - Convert between grid-frequency to other frequencies
- Common SFC topologies
  - **Cycloconverter** (CCV)
    - AC-AC converter
  - Voltage-source converter (VSC)
    - AC-DC-AC converter

### Cycloconverter

# Cycloconverter AC-to-AC frequency converter



3-¢ AC 60 Hz DFAM Mechanical Storage Variable ccv frequency field excitation

- Direct conversion between grid and variable frequency AC
   No intermediate DC link
- Switching thyristor bridge circuits
  - Controllable connections between all input and output phases



### Voltage Source Converter

- Voltage source converter (VSC)
  - Back-to-back AC/DC converters
  - DC link between converters
  - Variable frequency AC on motor/generator side
- VSC topologies include:
  - Two-level PWM
  - Multi-level PWM
  - Multi-level modular converter (MMC)



VSC

Variable

frequency field excitation

### System Configurations – Electrical/Electrochemical

- Electrical and electrochemical storage
  - Ultracapacitors, batteries
- Output from storage device is already in the *electrical* domain, but it is *DC*
  - Need AC/DC conversion to interface with the grid



- AC/DC conversion
  - Charging: AC-to-DC *rectification*
  - Discharging: DC-to-AC *inversion*
- Voltage source converter is a common choice here
  Independent control of real and reactive power control
  Allows storage to provide black start capability