
ESE 471 – Energy Storage Systems

SECTION 2: ENERGY 
STORAGE FUNDAMENTALS



K. Webb ESE 471

Performance Characteristics2



K. Webb ESE 471

3

Energy Storage Performance Characteristics

 Defining performance characteristics of energy 
storage mechanisms
 Capacity
 Power
 Efficiency
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Capacity

 Capacity
 The amount of energy that a device can store

 Total energy capacity, 𝐸𝐸𝑡𝑡
 Total energy stored in a device when fully charged

 Usable energy capacity, 𝐸𝐸𝑢𝑢
 The total energy that can be extracted from a device for use
 Difference between stored 

energy at maximum state of 
charge (SoC) and minimum 
SoC

 In general, storage devices 
are not fully discharged, so 
typically

𝐸𝐸𝑢𝑢 < 𝐸𝐸𝑡𝑡
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Capacity

 Units of capacity: 
 Watt-hours (Wh)
 (Ampere-hours, Ah, for batteries)

 State of charge (SoC)
 The amount of energy stored in a 

device as a percentage of its total 
energy capacity
 Fully discharged: SoC = 0%
 Fully charged: SoC = 100%

 Depth of discharge (DoD)
 The amount of energy that has 

been removed from a device as a 
percentage of the total energy 
capacity
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Capacity

 We can also characterize storage devices in terms of size or mass 
required for a given capacity

 Specific energy
 Usable energy capacity per unit mass
 Units: Wh/kg

𝑒𝑒𝑚𝑚 =
𝐸𝐸𝑢𝑢
𝑚𝑚

 Energy density
 Usable energy capacity per unit volume
 Units: Wh/m3 or Wh/L

𝑒𝑒𝑣𝑣 =
𝐸𝐸𝑢𝑢
𝑉𝑉

 These are very often used (incorrectly) interchangeably
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Power

 Power is an important metric for a storage system
 Rate at which energy can be stored or extracted for use
 Charge/discharge rate

 Limited by loss mechanisms
 Specific power

 Power available from a storage device per unit mass
 Units: W/kg

𝑝𝑝𝑚𝑚 =
𝑃𝑃
𝑚𝑚

 Power density
 Power available from a storage device per unit volume
 Units: W/m3 or W/L

𝑝𝑝𝑣𝑣 =
𝑃𝑃
𝑉𝑉
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Power vs. Energy

www.tecategroup.com

 High specific power
 Low specific energy

 Low specific power
 High specific energy

 Capacity and the rate at which energy can be stored or 
extracted are different characteristics
 Applications determine which is most important
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Efficiency

 Another important performance characteristic is efficiency
 The percentage of energy put into storage that can later be 

extracted for use
 All storage systems suffer from losses

 Losses as energy flows into storage
 Losses as energy is extracted from storage
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Round-Trip Efficiency

 Round-trip efficiency
 Energy extracted from a storage system as a percentage of the 

energy put into the system

𝜂𝜂𝑟𝑟𝑟𝑟 =
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝑖𝑖𝑖𝑖

𝜂𝜂𝑟𝑟𝑟𝑟 =
𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑖𝑖𝑖𝑖
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Round-Trip Efficiency

 We can define a charging efficiency
 Amount of energy stored as a 

percentage of the energy input

𝜂𝜂𝑖𝑖𝑖𝑖 =
𝐸𝐸𝑠𝑠
𝐸𝐸𝑖𝑖𝑖𝑖

=
𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖

𝐸𝐸𝑖𝑖𝑖𝑖

 And a discharging efficiency
 Amount of energy output as a percentage of the energy stored

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝑠𝑠

=
𝐸𝐸𝑠𝑠 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑠𝑠

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖
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Round-Trip Efficiency

 The round trip for energy in a storage system is a 
cascade of the charge and discharge processes
 Round trip efficiency given by:

𝜂𝜂𝑟𝑟𝑟𝑟 = 𝜂𝜂𝑖𝑖𝑖𝑖 ⋅ 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜
 In general, efficiency is a function of:

 Charging/discharging power, 𝑃𝑃𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
 State of charge
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Charging Time

 Typically, what is needed is a certain power for a certain 
time

 Charging time
 The time it takes to go from minimum SoC to maximum SoC at a 

given power input

 The time it takes to store the usable 
energy, 𝐸𝐸𝑢𝑢

𝑡𝑡𝑐𝑐 =
𝐸𝐸𝑢𝑢
𝑃𝑃𝑐𝑐

where 𝑃𝑃𝑐𝑐 is the rate of energy storage

 Note that, due to losses, the rate of energy storage, 𝑃𝑃𝑐𝑐, is 
less than the input power, 𝑃𝑃𝑖𝑖𝑖𝑖
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Charging Time

𝑡𝑡𝑐𝑐 =
𝐸𝐸𝑢𝑢

𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖
=

𝐸𝐸𝑢𝑢
𝑃𝑃𝑖𝑖𝑖𝑖 ⋅ 𝜂𝜂𝑖𝑖𝑖𝑖

 The power we have direct 
control over is the input 
power, 𝑃𝑃𝑖𝑖𝑖𝑖
 The charging time in terms 

of input power is
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Discharge Time

 Discharge time
 The time required to go from 

maximum SoC to minimum SoC at 
a given output power

 Due to losses, the rate of 
discharge, 𝑃𝑃𝑑𝑑, is greater than the 
output power, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡𝑑𝑑 =
𝐸𝐸𝑢𝑢
𝑃𝑃𝑑𝑑

 Again, the power of interest is the power we have 
direct control over, the output power, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜, so 

𝑡𝑡𝑑𝑑 =
𝐸𝐸𝑢𝑢

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜
=

𝐸𝐸𝑢𝑢
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜/𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜

=
𝐸𝐸𝑢𝑢
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜

⋅ 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜
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Ragone Plots

 Two primary figures of merit for energy storage 
systems:
 Specific energy
 Specific power

 Often a tradeoff between the two 
 Different storage technologies best suited to different 

applications depending on power/energy requirements

 Storage technologies can be compared graphically on a 
Ragone plot
 Specific energy vs. specific power
 Specific storage devices plotted as points on the plot, or
 Categories of devices plotted as regions in the Ragone plane
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Ragone Plots
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Discharge Time

 Any given storage system will have a specific energy capacity 
and a specific power rating
 A point in the Ragone plane, (𝑝𝑝𝑚𝑚,𝑒𝑒𝑚𝑚)

 Discharge time at rated power 
for that point (neglecting losses):

𝑡𝑡𝑑𝑑 =
𝑒𝑒𝑚𝑚
𝑝𝑝𝑚𝑚

 Constant discharge time maps to 
lines with unity slope on a 
Ragone plot

 Storage systems that lie on the 
same line have equal discharge 
times at rated power
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Ragone Curves

 Ragone plots we’ve seen so far plot a storage device 
at one operating point
 Maximum or rated power

 Can also depict a device’s 
energy capacity over a 
range of power
 A Ragone curve

 Most curves share a similar 
characteristic shape
 Available energy decreases 

at higher power
 Fraction of energy lost as 

heat increases



K. Webb ESE 471

21

Thévenin Equivalent Model

 What is the reason for the characteristic shape of 
Ragone curves? 

 Consider that we could model a storage device with as 
an electrical Thévenin equivalent 
 Need not be an electrical storage device

 Open-circuit voltage is some function of SoC
 Possibly linear
 May be highly nonlinear
 Or, could be constant
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Thévenin Equivalent Model

 Three power components associated with discharge
 𝑃𝑃𝑑𝑑:  discharge power 
 The rate at which energy leaves storage:  𝑃𝑃𝑑𝑑 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜

 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:  power lost during discharge 
 Modeled as heat dissipation in the Thévenin resistance: 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑖𝑖𝑜𝑜2𝑅𝑅𝑠𝑠

 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜:  output power flowing to the external system
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑜𝑜𝑖𝑖𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜 − 𝑖𝑖𝑜𝑜𝑅𝑅𝑠𝑠 𝑖𝑖𝑜𝑜
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜 − 𝑖𝑖𝑜𝑜2𝑅𝑅𝑠𝑠 = 𝑃𝑃𝑑𝑑 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
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Thévenin Equivalent Model

 Discharge time:

𝑡𝑡𝑑𝑑 =
𝐸𝐸𝑢𝑢
𝑃𝑃𝑑𝑑

 Amount of energy extracted from the storage 
system:

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝑡𝑡𝑑𝑑 = 𝐸𝐸𝑢𝑢
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑑𝑑

 Substituting in expressions for 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑃𝑃𝑑𝑑, we 
have

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑢𝑢
𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜 − 𝑖𝑖𝑜𝑜2𝑅𝑅𝑠𝑠

𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑢𝑢 1 − 𝑖𝑖𝑜𝑜
𝑅𝑅𝑠𝑠
𝑉𝑉𝑜𝑜𝑜𝑜
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Available Energy vs. Output Power

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑢𝑢 1 − 𝑖𝑖𝑜𝑜
𝑅𝑅𝑠𝑠
𝑉𝑉𝑜𝑜𝑜𝑜

 We can see that the 
available energy decreases 
as 𝑖𝑖𝑜𝑜 increases
 Available energy decreases 

as output power increases
 Illustrated by the 

characteristic shape of 
Ragone plots
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Storage System Configurations25
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Storage System Configurations

 Our focus is grid-connected energy storage
 Energy stored in many different domains
 Input and output energy is electrical

 Three-phase AC power

 Conversion is required between the storage domain and the 
electrical domain
 Transformer
 Power conversion system (PCS)
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System Configurations – Mechanical 

 Mechanical storage
 Pumped hydro, flywheels, compressed air
 PCS includes a motor/generator
 Possibly driven by a turbine

 Motor/generator may be connected directly to the grid
 Synchronous with the grid
 Runs at fixed speed
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System Configurations – Mechanical 

 Alternatively, motor/generator can be run at variable speed
 Maximize efficiency
 Interface to grid through power electronic converter

 Two options for variable-speed operation:
 Singly-fed motor/generator
 Doubly-fed motor/generator
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System Configurations – Mechanical 

 Singly-fed motor/generator
 Synchronous machine
 Stator driven with variable-frequency AC from power electronic 

converter
 Field windings on rotor supplied with DC excitation voltage 
 Same as for fixed-speed synchronous machine 

 Converter must be rated for full motor/generator power
 Large, expensive
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System Configurations – Mechanical 

 Doubly-fed motor/generator
 Doubly-fed asynchronous machine (DFAM)
 Stator connected to grid-frequency AC
 Field windings on rotor supplied with variable-frequency 

excitation voltage 

 Converters need not be sized for rated motor/generator power
 Only supply lower-power excitation to the rotor
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Power Electronic Converters

 Variable-speed motors/generators require a static 
frequency converter (SFC)
 Both for singly- and doubly-fed configurations
 Power electronic switching converter
 Convert between grid-frequency to other frequencies

 Common SFC topologies
 Cycloconverter (CCV)
 AC-AC converter

 Voltage-source converter (VSC) 
 AC-DC-AC converter
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Cycloconverter

 Cycloconverter
 AC-to-AC frequency 

converter

 Direct conversion between grid 
and variable frequency AC
 No intermediate DC link

 Switching thyristor bridge circuits
 Controllable connections between 

all input and output phases
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Voltage Source Converter

 Voltage source converter (VSC)
 Back-to-back AC/DC converters
 DC link between converters
 Variable frequency AC on motor/generator side

 VSC topologies 
include:
 Two-level PWM
 Multi-level PWM
 Multi-level 

modular converter 
(MMC)
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System Configurations – Electrical/Electrochemical

 Electrical and electrochemical storage
 Ultracapacitors, batteries

 Output from storage device is already in the electrical
domain, but it is DC 
 Need AC/DC conversion to interface with the grid

 AC/DC conversion
 Charging:  AC-to-DC – rectification
 Discharging:  DC-to-AC – inversion

 Voltage source converter is a common choice here
 Independent control of real and reactive power control
 Allows storage to provide black start capability
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