SECTION 4: ULTRACAPACITORS

ESE 471 – Energy Storage Systems

- 3
- Capacitors are *electrical energy* storage devices
 Energy is stored in an *electric field*
- □ *Advantages* of capacitors for energy storage
 - **•** High specific power
 - High efficiency
 - Equal charge and discharge rates
 - Long lifetime
- Disadvantages of capacitors for energy storage

Low specific energy

- Ultracapacitors (or supercapacitors) are variations of traditional capacitors with significantly improved specific energy
 - Useful in high-power energy-storage applications

Ultracapacitors – Ragone Plot

4

Ultracapacitors - Applications

- 5
- Ultracapacitors are useful in relatively *high-power*, *low-energy* applications
 They occupy a similar region in the Ragone plane as flywheels

□ *Energy recovery* and *regenerative braking* applications

- Cars
 - EV, HEV, ICE (e.g. Mazda 6 i-ELOOP)
- Buses
- Trains
- Cranes
- Elevators

□ **Uninterruptible power supply (UPS)** applications

■ Fast-responding, short-term power until generators take over

Wind turbine pitch control

Put turbine blades in safe position during loss of power

Fluid Capacitor

- Consider the following device:
 - Two rigid hemispherical shells
 - Separated by an impermeable elastic membrane
 - Modulus of elasticity, λ
 - Area, A
 - Incompressible fluid
 - External pumps set pressure or flow rate at each port
 - Total volume inside shell is constant
 - Volume on either side of the membrane may vary

Fluid Capacitor – Equilibrium

Equal pressures

$$\Delta P = P_1 - P_2 = 0$$

No fluid flow

$$Q_1 = Q_2 = 0$$

- Membrane does not deform
- Equal volume on each side

$$V_1 = V_2 = \frac{V}{2}$$

Fluid Capacitor – $P_1 > P_2$

Pressure differential

 $\Delta P = P_1 - P_2 > 0$

- Membrane deforms
- Volume differential

 $\Delta V = V_1 - V_2 > 0$

- Transient flow as membrane stretches, but...
- □ No steady-state flow ■ As $t \to \infty$

$$Q_1 = Q_2 = 0$$

Fluid Capacitor – $P_1 < P_2$

Pressure differential

 $\Delta P = P_1 - P_2 < 0$

Volume differential

 $\Delta V = V_1 - V_2 < 0$

- ΔV proportional to:
 Pressure differential
 Physical properties, λ, A
- Total volume remains constant

$$V_1 + V_2 = V$$

□ Again, no steady-state flow

Fluid Capacitor – Constant Flow Rate

Constant flow rate forced into port 1

 $Q_1 \neq 0$

Incompressible, so flows are equal and opposite

$$Q_1 = Q_2$$

 Volume on each side proportional to time

$$V_{1} = \frac{V}{2} + Q_{1} \cdot t$$
$$V_{2} = \frac{V}{2} - Q_{2} \cdot t = \frac{V}{2} - Q_{1} \cdot t$$

- and $P_1 \rightarrow V_1$ $V_2 \rightarrow Q_2 \rightarrow P_2$
- Volume differential proportional to time

$$\Delta V = V_1 - V_2 = 2Q_1 \cdot t$$

Fluid Capacitor – Capacitance

- 12
- Define a relationship between differential volume and pressure
- Capacitance

$$C = \frac{\Delta V}{\Delta P}$$

- Intrinsic device property
- Determined by physical parameters:
 - Membrane area, A
 - Modulus of elasticity, λ

Fluid Capacitor – DC vs. AC

In steady-state (DC), no fluid flows

$$Q_1 = Q_2 = 0$$

 \Box Consider sinusoidal ΔP (AC):

 $\Delta P = P \sin(\omega t)$

- Resulting flow rate is proportional to:
 - Rate of change of differential pressure
 - Capacitance

$$Q_1 = Q_2 = C \frac{dP}{dt} = \omega CP \cos(\omega t)$$

Fluid Capacitor – Time-Varying ΔP

 P_1

Q₁

V1

 V_2

14

Equal and opposite flow at both ports

$$Q_1 = Q_2$$

- Not the same fluid flowing at both ports
 Fluid cannot permeate the membrane
- Fluid appears to flow through the device
 - Due to the displacement of the membrane
 - A displacement flow
- □ The faster ΔP changes, the higher the flow rate

$Q \propto \omega$

The larger the capacitance, the higher the flow rate

 P_2

 Q_2

Fluid Capacitor – Changing ΔP

- 15
- \Box A given ΔP corresponds to a particular membrane displacement

Forces must balance

- Membrane cannot instantaneously jump from one displacement to another
- Step change in displacement/pressure is impossible
 - Would require an infinite flow rate
- Pressure across a fluid capacitor cannot change instantaneously

Fluid Capacitor – Energy Storage

٧

 Q_1

 V_2

- 16
- Stretched membrane stores energy
 Potential energy
- □ Stored energy proportional to:
 - $\Box \Delta P$
 - $\Box \Delta V$
- Energy released as membrane returns
 P and *Q* are supplied
- Not a real device, but analogous to other potential energy storage methods
 - PHES
 - CAES
 - Electrical capacitors

 Q_2

 P_2

Electrical Capacitor

In the electrical domain, our "working fluid" is positive electrical charge

□ In either domain, we have a *potential-driven flow*

Fluid Domain	Electrical Domain
Pressure – P	Voltage – V
Volumetric flow rate – Q	Current – I
Volume – V	Charge – Q

Electrical Capacitor

- Parallel-plate capacitor
 Parallel metal plates
 Separated by an insulator
- Applied voltage creates charge differential

Equal and opposite charge

$$Q_1 = -Q_2$$

Zero net charge

Equal current

$$I_1 = I_2$$

What flows in one side flows out the other

Electrical Capacitor – Electric Field

- 19
- Charge differential results in an *electric field*, *E*, in the dielectric
 Units: *V/m*
- |E| is inversely proportional to dielectric thickness, d
- Above some maximum electric field strength, dielectric will *break down*
 - Conducts electrical current
 - Maximum capacitor voltage rating

Electrical Capacitor - Capacitance

Capacitance

Ratio of charge to voltage

$$C = \frac{Q}{V}$$

- Intrinsic device property
- Proportional to physical parameters:
 - lacksquare Dielectric thickness, d
 - **Dielectric constant**, ε
 - Area of electrodes, A

Parallel-Plate Capacitor

Capacitance

$$C = \frac{\varepsilon A}{d}$$

- **\square** ε : dielectric permittivity
- A: area of the plates
- d: dielectric thickness
- Capacitance is maximized by using:
 - High-dielectric-constant materials
 - **D** Thin dielectric
 - Large-surface-area plates

Capacitors – Voltage and Current

- 22
- Current through a capacitor is proportional to
 - Capacitance
 - Rate of change of the voltage

$$i(t) = C \frac{d\nu}{dt}$$

- Voltage across capacitor results from an accumulation of charge differential
 - Capacitor integrates current

$$v(t) = \frac{1}{C} \int i(t) dt$$

Voltage Change Across a Capacitor

23

For a step change in voltage,

$$\frac{dv}{dt} = \infty$$

The corresponding current would be *infinite*

Voltage across a capacitor cannot change instantaneously

 Current can change instantaneously, but voltage is the integral of current

$$\lim_{\Delta t \to 0} \Delta V = \lim_{\Delta t \to 0} \int_{t_0}^{t_0 + \Delta t} i(t) dt = 0$$

Capacitors – Open Circuits at DC

- 24
- Current through a capacitor is proportional to the time rate of change of the voltage across the capacitor

$$i(t) = C \frac{dv}{dt}$$

A DC voltage does not change with time, so

$$\frac{dv}{dt} = 0$$
 and $i(t) = 0$

A capacitor is an open circuit at DC

Capacitors in Parallel

Total charge on two parallel capacitors is

 $Q = Q_1 + Q_2$ $Q = C_1 V + C_2 V$ $Q = (C_1 + C_2) V$ $Q = C_{eq} V$

Capacitances in parallel add

$$C_{eq} = C_1 + C_2$$

Capacitors in Series

 Total voltage across the series combination is

$$V = V_1 + V_2$$
$$V = \frac{Q}{C_1} + \frac{Q}{C_2}$$
$$V = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right) = \frac{Q}{C_{eq}}$$

The inverses of capacitors in series add

$$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} = \frac{C_1 C_2}{C_1 + C_2}$$

Constant Current Onto a Capacitor

27

 Capacitor voltage increases linearly for constant current

$$v(t) = \frac{I(t-t_0)}{C}, \quad t \ge t_0$$

Electrical Capacitor – Energy Storage

Positive

- Capacitors store
 electrical energy
 - Energy stored in the electric field
- Stored energy is proportional to:
 - Voltage
 - Charge differential

$$E = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

- Energy released as E-field collapses
 V and *I* supplied
- Negative charge charge $(Q_1 = +Q)$ $(Q_2 = -Q)$ I_1 12 Electric field

Dielectric

Energy Storage – Example

29

- A capacitor is charged to 100 V
 - The stored energy will be used to lift a 1000 kg elevator car 10 stories (35 m)
 - Determine the required capacitance
- □ The required energy is

$$E = mgh = 1000 \ kg \cdot 9.81 \frac{m}{s^2} \cdot 35 \ m$$

 $E = 343.4 \ kJ$

Energy stored on the capacitor is

$$E = \frac{1}{2} C (100 V)^2$$

□ The required capacitance is

$$C = \frac{2 \cdot 343.4 \, kJ}{(100 \, V)^2} = \underline{68.7 \, F}$$

³⁰ Ultracapacitors

Ultracapacitors - Introduction

31

Energy stored by a capacitor

$$E = \frac{1}{2}CV^2$$

- Would like to maximize capacitance in order to maximize energy storage
- Recall the capacitance of a parallel-plate capacitor

$$C = \frac{\varepsilon A}{d}$$

- To increase capacitance:
 - Use a higher-permittivity dielectric
 - Increase surface area of the plates
 - Decrease dielectric thickness
- Traditional capacitors do all of these things
 - \bullet *c* limited by available materials and dielectric strength
 - *A* limited by practical overall device size
 - *d* limited by dielectric breakdown field strength

Traditional Capacitors – Construction

- Let's take a look at the construction of two high-capacitance traditional capacitors
 - Aluminum electrolytic
 - Tantalum electrolytic

□ Aluminum electrolytic capacitor:

Traditional Capacitors – Construction

Tantalum electrolytic capacitor:

- In both of these types of capacitors, efforts are made to maximize A and minimize d
- But, a physical dielectric layer of non-zero thickness is used

- 34
- In a previous example, we found we needed a capacitance of 68.7 F
 - Impractically large for a traditional capacitor
 - Not so for an *ultracapacitor*
- Ultracapacitors or supercapacitors achieve very high capacitance values by eliminating the solid dielectric layer of traditional capacitors
- Energy is stored in an E-field
 - Not in a dielectric layer
 - In an electric double layer (Helmholtz double layer)
 - **□** Electric double-layer capacitors (EDLC)

Electric double-layer capacitor

- Electrodes are rough and porous
 - Surface area is increased
 - Activated charcoal
 - Aerogel
- No charge transfer between the electrolyte and the electrode
- Separator is permeable
 - Mechanical separation preventing contact between electrodes
- Thickness of double layers is on the molecular scale

Ultracapacitors

Two double layers
 Two capacitors in series

- Capacitance values in the range of 1 ... 1000s of farads are common
- Ultracapacitors are *polarized*
 - Positive electrode must be kept at a higher potential
- Maximum voltage determined by the electrolyte dissociation voltage
 - Typically ~2.5 V
 - **•** For higher-voltage operation, multiple ultracapacitors are connected in series

Equivalent Circuit Model

Ultracapacitor equivalent circuit model

- R_s: equivalent series resistance (ESR)
 - Primarily due to ionic conduction in the electrolyte
- C₀: primary capacitance of the ultracapacitor
- **\Box** C_v: voltage-dependent capacitance
 - Associated with diffusion layers near the double layers
 - $C_v = k \cdot v$
- R_{leak}: leakage resistance
 - Typically specified as a leakage current at V_{max}
- **\square** R₁, C₁, ... R_n, C_n: distributed resistance and capacitance of the porous electrodes
 - Models multiple time constants

Equivalent Circuit Model

- 40
- We will typically simplify this model significantly
 Account for only capacitance and ESR
 Typical ESR values: 0.5 mΩ ... 500 mΩ

Account for leakage resistance, R_{leak}, when appropriate

- Self-discharge
- \blacksquare Typical leakage resistance: 100 Ω ... 100 k Ω
- **D** Typical leakage currents: 10μ A ... 10 mA

Charging and Discharging

- 42
- The voltage seen across a capacitor is proportional to the stored charge differential

$$V = \frac{Q}{C}$$

- So, unlike batteries, capacitor voltage does not remain constant as a capacitor discharges
- Power electronic circuitry generally required to interface between ultracapacitors and load
 - DC-DC converters
 - Inverters DC-AC and AC-DC converters
- Interface circuitry also provides charge/discharge control
 Current/power control

Charging and Discharging

- 43
- Two primary modes of charging/discharging
 Constant current
 - Constant power
- Unlike batteries, capacitors can be charged and discharged at the same rates
- Constant-current charging is simple
 Both in terms of circuitry and analysis/design
- Constant-power charging useful in many applications, such as *regenerative braking*
 - Charging while drawing constant power from the vehicle
 - Discharging while supplying constant power to the vehicle

Constant-Current Charging

44

Power varies

Constant-Power Charging

45

- Varying rate of voltage change
- Current varies depending on state of charge
 - Higher current at lower state of charge
 - Lower current near full charge

- Typically, V_{max} = 2.5 V ... 3.0 V
 Series-connected cells provide higher voltages
- Consider a series connection of four cells
- Equal charge differential, $\pm Q$, on each cell
- The voltage across each capacitor is

$$V_1 = \frac{Q}{C_1}, V_2 = \frac{Q}{C_2}, V_3 = \frac{Q}{C_3}, V_4 = \frac{Q}{C_4}$$

Nominally, all capacitors are equal

$$C_1 = C_2 = C_3 = C_4 = C$$

Nominally, all voltages are equal

$$V_1 = V_2 = V_3 = V_4 = \frac{Q}{C} = 2.5$$
V

 \square But, capacitances may vary by as much as $\pm 20\%$

- □ Consider the following scenario:
- Total equivalent capacitance

$$C_{eq} = 0.24C$$

Stored charge

$$Q = 10 V \cdot 0.24C$$

Now, cell voltages are imbalanced

$$V_1 = V_2 = \frac{Q}{1.2C} = \frac{10 V \cdot 0.24C}{1.2C} = 2 V$$
$$V_3 = V_4 = \frac{Q}{0.8C} = \frac{10 V \cdot 0.24C}{0.8C} = 3 V$$

□ If $V_{max} = 2.5 V$, then □ C_1 and C_2 are *underutilized* □ C_3 and C_4 are *overstressed*

- Cell balancing circuitry
 - Safely utilize each cell's storage capacity
- Two balancing approaches:

Resistive balancing

- Resistors placed in parallel with the cells
- Slow not for high-duty-cycle applications

Active balancing

- Cell voltages monitored and electronic switches balance voltages
- Fast good for high-duty-cycle applications

50 Efficiency

Ultracapacitors – Efficiency

- 51
- Ultracapacitors have small, but non-zero, ESR
 - They are lossy devices
 - Not all input energy is available for use
 - **D** Efficiency is less than 100%
- We will define *round-trip efficiency* as the efficiency through an entire charge/discharge cycle
 Ratio of output energy to input energy
 - Ratio of output energy to input energy

$$\eta_{rt} = \frac{E_{out}}{E_{in}} \cdot 100\% \tag{1}$$

- Efficiency depends on how a capacitor is used
 - Rate of charge/discharge
 - Depth of discharge

Ultracapacitors – Efficiency

- 52
- Energy stored by a capacitor is proportional to the capacitor voltage squared

$$E_c = \frac{1}{2}CV^2 \tag{2}$$

- Capacitor's effectiveness at storing energy depends on its state of charge (SOC)
 - Energy stored more quickly at high SOC
 - Energy stored more slowly at low SOC
- Loss in ESR depends on the current
- Therefore, *instantaneous efficiency*, η(t), varies with SOC
 Total round-trip efficiency depends on depth of discharge
 Ultracapacitors are typically not discharged completely

Discharge Factor

Discharge factor

$$d = \frac{V_{min}}{V_{max}} \tag{3}$$

 \Box V_{min} : voltage at the lowest allowable SOC

■ *V_{max}*: maximum allowable (fully-charged) capacitor voltage

 We'll now examine the round-trip efficiency for capacitors operated at constant current and at constant power

Efficiency – Constant Current

- 54
- For a capacitor operating at a non-zero discharge factor, only some of the stored energy is usable
- Usable energy

$$E_{u} = \frac{1}{2} C V_{max}^{2} - \frac{1}{2} C V_{min}^{2}$$

$$E_{u} = \frac{1}{2} C V_{max}^{2} - \frac{1}{2} C (d V_{max})^{2}$$

$$E_{u} = \frac{1}{2} C V_{max}^{2} (1 - d^{2})$$
(4)

□ Power dissipated in the ESR at *constant current*, *I*, is

$$P_R = I^2 R_s$$

□ Energy lost in the ESR is

$$E_R = I^2 R_s \cdot t$$

Charging efficiency – Constant Current

55

During the charging cycle, the efficiency is

$$\eta_1 = \frac{E_u}{E_u + E_R} = \frac{\frac{1}{2}CV_{max}^2(1 - d^2)}{\frac{1}{2}CV_{max}^2(1 - d^2) + I^2R_s \cdot t_c}$$

where t_c is the duration of the charging cycle

 \Box We can solve for t_c as follows

$$V_{max} - V_{min} = \frac{I \cdot t_c}{C} \rightarrow t_c = \frac{CV_{max}(1-d)}{I}$$

The efficiency then becomes

$$\eta_{1} = \frac{\frac{1}{2}CV_{max}^{2}(1-d^{2})}{\frac{1}{2}CV_{max}^{2}(1-d^{2}) + IR_{s}CV_{max}(1-d^{2})}$$
$$\eta_{1} = \frac{\frac{1}{2}V_{max}(1-d^{2})}{\frac{1}{2}V_{max}(1-d^{2}) + IR_{s}(1-d)}$$

(5)

Round-Trip Efficiency – Constant Current

56

Similar loss is incurred in the ESR during discharge
 Energy output is the stored energy minus resistive loss
 Round-trip efficiency is

 $\eta_{rt} = \frac{E_{out}}{E_{in}} = \frac{E_u - E_R}{E_u + E_R}$ $\eta_{rt} = \frac{\frac{1}{2}CV_{max}^2(1 - d^2) - IR_s CV_{max}(1 - d)}{\frac{1}{2}CV_{max}^2(1 - d^2) + IR_s CV_{max}(1 - d)}$

$$\eta_{rt} = \frac{\frac{1}{2}V_{max}(1-d^2) - IR_s(1-d)}{\frac{1}{2}V_{max}(1-d^2) + IR_s(1-d)}$$

(6)

Instantaneous Efficiency – Constant Current

- At lower SOC:
 Low rate of energy storage
 Low efficiency
- At higher SOC:
 Higher rate of energy storage
 Higher efficiency

57

Efficiency vs. Current – Constant Current

As current increases, loss in ESR increases

Efficiency vs. Discharge Factor – Constant Current

Greater depth-of-discharge corresponds to lower efficiency

K. Webb

Efficiency – Constant Power

60

For constant-power charging/discharging, we start with the same expression for efficiency

$$\eta_{rt} = \frac{E_u - E_R}{Eu + E_R}$$

Usable energy is the same

$$E_u = \frac{1}{2} C V_{max}^2 (1 - d^2)$$

 But, since current is now time varying, the energy lost in the resistance (in one direction) is

$$E_R = \int_0^{t_c} i^2(t) R_S \, dt$$

Things get a bit more complicated, as we now need to solve a differential equation to determine the capacitor voltage

Efficiency – Constant Power

61

The input to the capacitor is now constant power
 Write a power-balance equation

$$P - i^2(t) \cdot R_s - i(t)v_c(t) = 0$$

Current is given by

$$i(t) = C \frac{dv_c}{dt}$$

The power balance becomes

$$R_s C^2 \left(\frac{dv_c}{dt}\right)^2 + C \frac{dv_c}{dt} v_c(t) - P = 0 \tag{7}$$

An ordinary differential equation in *quadratic* form

Efficiency – Constant Power

62

Applying the quadratic formula to (7), we get

$$\frac{dv_c}{dt} = \frac{-Cv_c(t) \pm \sqrt{C^2 v_c^2(t) + 4R_s C^2 P}}{2R_s C^2}$$

Simplifying, and keeping only the valid '+' solution

$$\frac{dv_c}{dt} = \frac{-v_c(t) + \sqrt{v_c^2(t) + 4R_s P}}{2R_s C}$$
(8)

For *discharging* this becomes

$$\frac{dv_c}{dt} = \frac{-v_c(t) + \sqrt{v_c^2(t) - 4R_s P}}{2R_s C}$$
(9)

 We don't have a nice closed-form solutions to (8) or (9), but we can solve them numerically

Instantaneous Efficiency – Constant Power

- At lower SOC:
 High current
 High I²R loss
 Low efficiency
- At higher SOC:
 Lower current
 Lower I²R loss
 Higher efficiency

63

Efficiency vs. Current – Constant Power

- 64
- As power increases, current increases and resistive loss increases

Efficiency vs. Discharge Factor – Constant Power

65

Greater depth-of-discharge corresponds to lower efficiency

Approximate Efficiency – Constant Power

- 66
- Sometimes we may want a quick way to approximate efficiency for constant-power charging/discharging
 - Calculate an average current
 - Calculate efficiency as you would for constant-current charging/discharging
- Approximate average current as the average of the maximum and minimum currents

$$I_{avg} \approx \frac{I_{max} + I_{min}}{2}$$

where

$$I_{max} = rac{P}{V_{min}}$$
 and $I_{min} = rac{P}{V_{max}}$

Then, efficiency is approximately given by

$$\eta_{rt} \approx \frac{\frac{1}{2}V_{max}(1-d^2) - I_{avg}R_s(1-d)}{\frac{1}{2}V_{max}(1-d^2) + I_{avg}R_s(1-d)}$$
(10)

Series-Connected Capacitor Cells

- 58
- To achieve higher working voltages, multiple capacitor cells are connected in series
- How does this effect
 - Energy storage?
 - Efficiency?
- Consider a series connection of N cells, each with a capacitance of C_0 and a maximum voltage of V_{cell}

Equivalent circuit model:

Series-Connected Capacitor Cells

59

Energy stored:

$$E = \frac{1}{2} \frac{C_0}{N} (N \cdot V_{cell})^2$$
$$E = N \cdot \frac{1}{2} C_0 V_{cell}^2$$

 \Box As expected, this is N times the energy stored in a single cell

 \Box For a discharge factor of d, the usable stored energy is

$$E_{u} = N \frac{1}{2} C_{0} V_{cell}^{2} - N \frac{1}{2} C_{0} (dV_{cell})^{2}$$

$$E_{u} = N \frac{1}{2} C_{0} V_{cell}^{2} (1 - d^{2})$$
(11)

Cells in Series – Constant Current

Energy lost in the resistance during charging (or discharging):

$$E_R = I^2 N R_0 t_c$$

□ For *constant-current* operation

$$V_{max} - V_{min} = V_{max}(1 - d) = NV_{cell}(1 - d)$$
$$NV_{cell}(1 - d) = \frac{I t_c}{C} = \frac{I t_c}{C_0/N}$$

□ The charging (or discharging) time is

$$t_c = \frac{C_0 V_{cell} (1-d)}{I}$$

□ So, losses during charging (or discharging) are

$$E_R = I^2 N R_0 \frac{C_0 V_{cell} (1-d)}{I}$$

$$E_R = NIR_0 C_0 V_{cell} (1-d) \tag{12}$$

Cells in Series – Constant Current

Round-trip efficiency is

$$\eta_{rt} = \frac{E_u - E_R}{E_u + E_R}$$

□ Using (11) and (12), we get

$$\eta_{rt} = \frac{N\frac{1}{2}C_0V_{cell}^2(1-d^2) - NIR_0C_0V_{cell}(1-d)}{N\frac{1}{2}C_0V_{cell}^2(1-d^2) + NIR_0C_0V_{cell}(1-d)}$$
$$\eta_{rt} = \frac{\frac{1}{2}V_{cell}(1-d^2) - IR_0(1-d)}{\frac{1}{2}V_{cell}(1-d^2) + IR_0(1-d)}$$

This is, of course, the same as for a single cell, but
 Current can be reduced at a higher maximum voltage
 Efficiency will improve

Cells in Series – Constant Power

72

- For constant-power operation, we'll again investigate numerically
- Round-trip efficiency vs.
 # of series-connected cells:
 - Assuming:
 - $\bullet E = 100 \, kJ$
 - P = 200 W
 - $\blacksquare R_0 = 3 \text{ m}\Omega$
 - d = 0.25
 - $V_{cell} = 2.5 V$

73 Capacitor Bank Sizing

Ultracapacitor Sizing

- Sizing a capacitor bank involves determining the following parameters
 - Stored energy: *E*
 - Available power: *P*
 - Maximum voltage: *V_{max}*
 - Minimum voltage: *V_{min}*
 - Discharge factor: *d*
 - **\square** # of cells in series and/or parallel: N_s , N_p
 - **•** Total capacitance: *C*
 - **\square** Cell capacitance: C_0
 - Efficiency: η
- Sizing procedure depends on which of these parameters are specified
- We'll outline a procedure assuming the specified requirements are:
 - Energy storage
 - Power
 - Voltage range

Ultracapacitor Sizing Procedure

75

1. Discharge factor

$$d = \frac{V_{min}}{V_{max}}$$

2. Number of series-connected cells

$$N_s = \frac{V_{max}}{V_{cell}}$$

3. Total required capacitance

$$E = \frac{1}{2}CV_{max}^{2}(1-d^{2}) \rightarrow C = \frac{2E}{V_{max}^{2}(1-d^{2})}$$

4. Cell capacitance

$$C_0 = N_s \cdot C$$

- 5. Determine the resulting efficiency using the required power
 - Evaluate numerically or approximate
- 6. Iterate if necessary
 - Adjust N as needed

- 76
- Size a capacitor bank for an energy recovery system for a tower crane with the following specifications
 - Height: h = 50 m
 - Capacity: $m = 5,000 \ kg$
 - **D** Time to lift max load: $t_d = 30 s$
- □ Let's assume we have a power conversion system that can operate over the range of 60 V_{DC} ... 150 V_{DC} at an efficiency of $\eta_{pcs} = 97\%$
- The required energy to lift the maximum load is

$$E = mgh \cdot \frac{1}{\eta_{pcs}} = 5000 \ kg \cdot 9.81 \frac{m}{s^2} \cdot 50 \ m \cdot \frac{1}{0.97}$$
$$E = 2.53 \ MJ$$

Performing that lift in 30 sec corresponds to a required power of

$$P = \frac{E}{t_d} = \frac{2.53 \ MJ}{30 \ s} = 84.3 \ kW$$

77

□ The discharge factor is

$$d = \frac{V_{min}}{V_{max}} = \frac{60 V}{150 V} = 0.4$$

□ The required number of cells in series is

$$N_s = \frac{V_{max}}{V_{cell}} = \frac{150 \, V}{2.5 \, V} = 60$$

□ The total required capacitance is

$$C = \frac{2E}{V_{max}^2(1-d^2)}$$
$$C = \frac{2 \cdot 2.53 MJ}{(150 V)^2(1-0.4^2)}$$
$$C = 267.6 F$$

78

□ The capacitance of each individual cell is

$$C_0 = N_s \cdot C = 60 \cdot 267.6 F$$

$$C_0 = 16.1 \, kF$$

- □ So, the capacitor bank would consist of sixty 16.1 *kF* capacitors connected in series
 - 16.1 kF is a large capacitance likely unavailable
 - Connect multiple capacitors in parallel
- Let's say we have access to individual capacitor cells with the following specifications
 - **c** $C_0 = 3400 F$
 - $\square R_0 = 0.28 m\Omega$
- Five capacitors in parallel will give

$$C_{0p} = N_p C_0 = 5C_0 = 17 \ kF$$
$$R_{0p} = \frac{R_0}{N_p} = \frac{R_0}{5} = \frac{0.28 \ m\Omega}{5} = 56 \ \mu\Omega$$

79

□ Placing 60 of the 5-capacitor groups in series, the total series resistance is

$$R_s = N_s \cdot R_{0p} = 60 \cdot 56 \,\mu\Omega = 3.36 \,m\Omega$$

- □ For constant-power charge/discharge, we can *approximate efficiency*
- The maximum current is

$$I_{max} = \frac{P}{V_{min}} = \frac{84.3 \ kW}{60 \ V} = 1.4 \ kA$$

The minimum current is

$$I_{min} = \frac{P}{V_{max}} = \frac{84.3 \ kW}{150 \ V} = 562 \ A$$

The approximate average current is

$$I_{avg} \approx \frac{I_{max} + I_{min}}{2} = 981 \, A$$

- 80
- Using the average current, we can approximate the round trip efficiency for the capacitor bank as

$$\eta_{rt} \approx \frac{\frac{1}{2} V_{cell} (1 - d^2) - I_{avg} R_{0p} (1 - d)}{\frac{1}{2} V_{cell} (1 - d^2) + I_{avg} R_{0p} (1 - d)}$$

$$\eta_{rt} \approx \frac{1.25\,V(1-0.4^2) - 981\,A\cdot 56\,\mu\Omega(1-0.4)}{1.25\,V(1-0.4^2) + 981\,A\cdot 56\,\mu\Omega(1-0.4)}$$

$$\eta_{rt} \approx 0.92 \quad \rightarrow \quad \eta_{rt} \approx 92\%$$

• Note that R_{0p} is used, because that is the resistance of each of the 60 seriesconnected parallel combinations

Total round-trip efficiency must include the power conversion system

$$\eta_{rt} = 0.97 \cdot 0.92 \cdot 0.97 = 0.87 \quad \rightarrow \quad \eta_{rt} = 87\%$$

Solving numerically, we find that the efficiency of the capacitor bank is a bit higher

 $\eta_{rt}=94.6\%$

- *I*_{avg} overestimates the time-average current
- Accounting for conversion losses, we have

$$\eta_{rt} = 89\%$$

81

⁸² Ultracapacitor Efficiency Summary

Efficiency Summary

Configuration | Round-trip efficiency

Single capacitor

$$\eta_{rt} = \frac{\frac{1}{2}V_{cell}(1-d^2) - IR_0(1-d)}{\frac{1}{2}V_{cell}(1-d^2) + IR_0(1-d)}$$

$$\eta_{rt} = \frac{\frac{1}{2}N_s V_{cell}(1-d^2) - IN_s R_0(1-d)}{\frac{1}{2}N_s V_{cell}(1-d^2) + IN_s R_0(1-d)}$$

$$N_s$$
 in series

$$\eta_{rt} = \frac{\frac{1}{2}V_{max}(1-d^2) - IR_s(1-d)}{\frac{1}{2}V_{max}(1-d^2) + IR_s(1-d)}$$

$$\eta_{rt} = \frac{\frac{1}{2}V_{cell}(1-d^2) - IR_0(1-d)}{\frac{1}{2}V_{cell}(1-d^2) + IR_0(1-d)}$$

Efficiency Summary

Configuration | Round-trip efficiency

$$\eta_{rt} = \frac{\frac{1}{2}V_{cell}(1-d^2) - I\frac{R_0}{N_p}(1-d)}{\frac{1}{2}V_{cell}(1-d^2) + I\frac{R_0}{N_p}(1-d)}$$

$$N_p$$
 in parallel

$$\eta_{rt} = \frac{\frac{1}{2}V_{cell}(1-d^2) - IR_{0p}(1-d)}{\frac{1}{2}V_{cell}(1-d^2) + IR_{0p}(1-d)}$$

Efficiency Summary

Configuration | Round-trip efficiency

$$\eta_{rt} = \frac{\frac{1}{2}N_s V_{cell}(1-d^2) - I\frac{N_s}{N_p}R_0(1-d)}{\frac{1}{2}N_s V_{cell}(1-d^2) + I\frac{N_s}{N_p}R_0(1-d)}$$

 N_s in series, N_p in parallel

$$\eta_{rt} = \frac{\frac{1}{2}V_{cell}(1-d^2) - IR_{0p}(1-d)}{\frac{1}{2}V_{cell}(1-d^2) + IR_{0p}(1-d)}$$

$$\eta_{rt} = \frac{\frac{1}{2}V_{max}(1-d^2) - IR_{eq}(1-d)}{\frac{1}{2}V_{max}(1-d^2) + IR_{eq}(1-d)}$$

- All of the expressions on this and the previous two pages are for *constant-current* charging/discharging
 - For constant power, use an approximate average current