
ESE 471 – Energy Storage Systems

SECTION 4: 
ULTRACAPACITORS
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Ultracapacitors

 Capacitors are electrical energy storage devices
 Energy is stored in an electric field

 Advantages of capacitors for energy storage
 High specific power
 High efficiency
 Equal charge and discharge rates
 Long lifetime

 Disadvantages of capacitors for energy storage
 Low specific energy 

 Ultracapacitors (or supercapacitors) are variations of 
traditional capacitors with significantly improved specific 
energy
 Useful in high-power energy-storage applications
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Ultracapacitors – Ragone Plot
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Ultracapacitors - Applications

 Ultracapacitors are useful in relatively high-power, low-energy applications
 They occupy a similar region in the Ragone plane as flywheels

 Energy recovery and regenerative braking applications
 Cars

 EV, HEV, ICE (e.g. Mazda 6 i-ELOOP)
 Buses
 Trains
 Cranes
 Elevators

 Uninterruptible power supply (UPS) applications
 Fast-responding, short-term power until generators take over

 Wind turbine pitch control
 Put turbine blades in safe position during loss of power
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Fluid Capacitor

 Modulus of elasticity, 𝜆𝜆
 Area, 𝐴𝐴

 Incompressible fluid
 External pumps set 

pressure or flow rate at 
each port

 Consider the following device:
 Two rigid hemispherical shells
 Separated by an impermeable 

elastic membrane

 Total volume inside shell is 
constant

 Volume on either side of the 
membrane may vary

7
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Fluid Capacitor – Equilibrium 

 Equal pressures
Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 = 0

 No fluid flow
𝑄𝑄1 = 𝑄𝑄2 = 0

 Membrane does not 
deform

 Equal volume on 
each side

𝑉𝑉1 = 𝑉𝑉2 =
𝑉𝑉
2

8
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Fluid Capacitor – 𝑃𝑃1 > 𝑃𝑃2
 Pressure differential

Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 > 0

 Membrane deforms

 Volume differential

Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 > 0

 Transient flow as 
membrane stretches, 
but...

 No steady-state flow
 As 𝑡𝑡 → ∞

𝑄𝑄1 = 𝑄𝑄2 = 0

9
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Fluid Capacitor – 𝑃𝑃1 < 𝑃𝑃2
 Pressure differential

Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 < 0

 Volume differential

Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 < 0

 Δ𝑉𝑉 proportional to:
 Pressure differential
 Physical properties, 𝜆𝜆, 𝐴𝐴

 Total volume remains constant

𝑉𝑉1 + 𝑉𝑉2 = 𝑉𝑉

 Again, no steady-state flow

10
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Fluid Capacitor – Constant Flow Rate

 Constant flow rate forced into port 1

𝑄𝑄1 ≠ 0

 Incompressible, so flows are equal and 
opposite

𝑄𝑄1 = 𝑄𝑄2

 Volume on each side 
proportional to time

𝑉𝑉1 =
𝑉𝑉
2 + 𝑄𝑄1 ⋅ 𝑡𝑡

𝑉𝑉2 =
𝑉𝑉
2 − 𝑄𝑄2 ⋅ 𝑡𝑡 =

𝑉𝑉
2 − 𝑄𝑄1 ⋅ 𝑡𝑡

 Volume differential proportional to time

Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 = 2𝑄𝑄1 ⋅ 𝑡𝑡

11
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Fluid Capacitor – Capacitance

 Define a relationship between 
differential volume and pressure

 Capacitance

𝐶𝐶 =
Δ𝑉𝑉
Δ𝑃𝑃

 Intrinsic device 
property

 Determined by physical 
parameters:

 Membrane area, 𝐴𝐴

 Modulus of elasticity, 𝜆𝜆

12
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Fluid Capacitor – DC vs. AC

 In steady-state (DC), no fluid flows
𝑄𝑄1 = 𝑄𝑄2 = 0

 Consider sinusoidal Δ𝑃𝑃 (AC):
Δ𝑃𝑃 = 𝑃𝑃 sin 𝜔𝜔𝑡𝑡

 Resulting flow rate is 
proportional to:
 Rate of change of 

differential pressure
 Capacitance

𝑄𝑄1 = 𝑄𝑄2 = 𝐶𝐶
𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡 = 𝜔𝜔𝐶𝐶𝑃𝑃 cos 𝜔𝜔𝑡𝑡

13
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Fluid Capacitor – Time-Varying Δ𝑃𝑃

 Equal and opposite flow at both ports

𝑄𝑄1 = 𝑄𝑄2

 Not the same fluid flowing at both ports
 Fluid cannot permeate the membrane

 Fluid appears to flow through 
the device
 Due to the displacement of the 

membrane
 A displacement flow

 The faster Δ𝑃𝑃 changes, the higher the flow rate

𝑄𝑄 ∝ 𝜔𝜔

 The larger the capacitance, the higher the flow rate

𝑄𝑄 ∝ 𝐶𝐶

14



K. Webb ESE 471

Fluid Capacitor – Changing Δ𝑃𝑃

 A given Δ𝑃𝑃 corresponds to a particular membrane 
displacement

 Step change in 
displacement/pressure is 
impossible
 Would require an infinite 

flow rate

 Pressure across a fluid capacitor cannot 
change instantaneously

 Forces must balance

 Membrane cannot instantaneously 
jump from one displacement to 
another

15
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Fluid Capacitor – Energy Storage

 Stretched membrane stores energy
 Potential energy

 Energy released as 
membrane returns
 𝑃𝑃 and 𝑄𝑄 are supplied

 Not a real device, but analogous to 
other potential energy storage methods
 PHES
 CAES
 Electrical capacitors

 Stored energy proportional to:
 Δ𝑃𝑃
 Δ𝑉𝑉

16
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Electrical Capacitor

 In the electrical domain, our “working fluid” is 
positive electrical charge

 In either domain, we have a potential-driven flow

Fluid Domain Electrical Domain

Pressure – P Voltage – V

Volumetric flow rate – Q Current – I

Volume – V Charge – Q 
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Electrical Capacitor

 Parallel-plate capacitor
 Parallel metal plates
 Separated by an insulator

 Applied voltage creates 
charge differential
 Equal and opposite charge

𝑄𝑄1 = −𝑄𝑄2
 Zero net charge

 Equal current
𝐼𝐼1 = 𝐼𝐼2

 What flows in one side 
flows out the other  Schematic symbol:

 Units: Farads (F)
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Electrical Capacitor – Electric Field

 Charge differential results 
in an electric field, 𝑬𝑬,  in 
the dielectric
 Units: 𝑉𝑉/𝑚𝑚

 |𝑬𝑬| is inversely proportional 
to dielectric thickness, 𝑑𝑑

 Above some maximum 
electric field strength, 
dielectric will break down
 Conducts electrical current
 Maximum capacitor voltage 

rating
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Electrical Capacitor - Capacitance

 Capacitance
 Ratio of charge to 

voltage

𝐶𝐶 =
𝑄𝑄
𝑉𝑉

 Intrinsic device property 
 Proportional to physical 

parameters:
 Dielectric thickness, 𝑑𝑑
 Dielectric constant, 𝜀𝜀
 Area of electrodes, 𝐴𝐴
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Parallel-Plate Capacitor

 Capacitance

𝐶𝐶 =
𝜀𝜀𝐴𝐴
𝑑𝑑

 𝜀𝜀:  dielectric permittivity
 𝐴𝐴:  area of the plates
 𝑑𝑑: dielectric thickness

 Capacitance is maximized 
by using: 
 High-dielectric-constant 

materials
 Thin dielectric
 Large-surface-area plates
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Capacitors – Voltage and Current

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 Voltage across capacitor results from an accumulation 
of charge differential
 Capacitor integrates current

𝑑𝑑 𝑡𝑡 =
1
𝐶𝐶
∫ 𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡

 Current through a capacitor is 
proportional to
 Capacitance
 Rate of change of the voltage
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Voltage Change Across a Capacitor

 For a step change in voltage,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= ∞

 The corresponding current would be infinite

 Voltage across a capacitor cannot change 
instantaneously

 Current can change instantaneously, but voltage is the 
integral of current

lim
Δt→0

ΔV = lim
Δt→0

�
𝑡𝑡0

𝑡𝑡0+Δ𝑡𝑡
𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0
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Capacitors – Open Circuits at DC

 Current through a capacitor is proportional to the 
time rate of change of the voltage across the 
capacitor

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 A DC voltage does not change with time, so
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 0 and    𝑖𝑖 𝑡𝑡 = 0

 A capacitor is an open circuit at DC
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Capacitors in Parallel

 Total charge on two parallel 
capacitors is

𝑄𝑄 = 𝑄𝑄1 + 𝑄𝑄2
𝑄𝑄 = 𝐶𝐶1𝑉𝑉 + 𝐶𝐶2𝑉𝑉
𝑄𝑄 = 𝐶𝐶1 + 𝐶𝐶2 𝑉𝑉

𝑄𝑄 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑉𝑉

 Capacitances in parallel add

𝐶𝐶𝑒𝑒𝑒𝑒 = 𝐶𝐶1 + 𝐶𝐶2
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Capacitors in Series

 Total voltage across the series 
combination is

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2

𝑉𝑉 =
𝑄𝑄
𝐶𝐶1

+
𝑄𝑄
𝐶𝐶2

𝑉𝑉 = 𝑄𝑄
1
𝐶𝐶1

+
1
𝐶𝐶2

=
𝑄𝑄
𝐶𝐶𝑒𝑒𝑒𝑒

 The inverses of capacitors in series add

𝐶𝐶𝑒𝑒𝑒𝑒 =
1
𝐶𝐶1

+
1
𝐶𝐶2

−1

=
𝐶𝐶1𝐶𝐶2
𝐶𝐶1 + 𝐶𝐶2

26
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Constant Current Onto a Capacitor

 Capacitor voltage 
increases linearly for 
constant current

𝑑𝑑 𝑡𝑡 = 𝐼𝐼 𝑡𝑡−𝑡𝑡0
𝐶𝐶

,     𝑡𝑡 ≥ 𝑡𝑡0

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐼𝐼
𝐶𝐶
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Electrical Capacitor – Energy Storage

 Capacitors store 
electrical energy
 Energy stored in the 

electric field

 Stored energy is 
proportional to:
 Voltage
 Charge differential

𝐸𝐸 =
1
2
𝑄𝑄𝑉𝑉 =

1
2
𝐶𝐶𝑉𝑉2 =

1
2
𝑄𝑄2

𝐶𝐶

 Energy released as E-field 
collapses
 𝑉𝑉 and 𝐼𝐼 supplied
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Energy Storage – Example 

 A capacitor is charged to 100 V
 The stored energy will be used to lift a 1000 kg elevator car 10 stories (35 m)
 Determine the required capacitance

 The required energy is

𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚 = 1000 𝑘𝑘𝑚𝑚 ⋅ 9.81
𝑚𝑚
𝑠𝑠2
⋅ 35 𝑚𝑚

𝐸𝐸 = 343.4 𝑘𝑘𝑘𝑘

 Energy stored on the capacitor is

𝐸𝐸 =
1
2𝐶𝐶 100 𝑉𝑉 2

 The required capacitance is

𝐶𝐶 =
2 ⋅ 343.4 𝑘𝑘𝑘𝑘

100 𝑉𝑉 2 = 68.7 𝐹𝐹
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Ultracapacitors - Introduction

 Energy stored by a capacitor

𝐸𝐸 =
1
2
𝐶𝐶𝑉𝑉2

 Would like to maximize capacitance in order to maximize energy storage
 Recall the capacitance of a parallel-plate capacitor

𝐶𝐶 =
𝜀𝜀𝐴𝐴
𝑑𝑑

 To increase capacitance:
 Use a higher-permittivity dielectric
 Increase surface area of the plates
 Decrease dielectric thickness

 Traditional capacitors do all of these things
 𝜀𝜀 limited by available materials and dielectric strength
 𝐴𝐴 limited by practical overall device size
 𝑑𝑑 limited by dielectric breakdown field strength
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Traditional Capacitors – Construction

 Let’s take a look at the construction of two high-capacitance 
traditional capacitors
 Aluminum electrolytic
 Tantalum electrolytic

 Aluminum electrolytic capacitor:
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Traditional Capacitors – Construction

 Tantalum electrolytic capacitor:

 In both of these types of capacitors, efforts are made to 
maximize 𝐴𝐴 and minimize 𝑑𝑑

 But, a physical dielectric layer of non-zero thickness is used
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Ultracapacitors

 In a previous example, we found we needed a 
capacitance of 68.7 F
 Impractically large for a traditional capacitor
 Not so for an ultracapacitor

 Ultracapacitors or supercapacitors achieve very high 
capacitance values by eliminating the solid dielectric 
layer of traditional capacitors

 Energy is stored in an E-field
 Not in a dielectric layer
 In an electric double layer (Helmholtz double layer)
 Electric double-layer capacitors (EDLC)
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Ultracapacitors

 Electric double-layer capacitor
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Ultracapacitors

 Electrodes are rough and 
porous
 Surface area is increased
 Activated charcoal
 Aerogel

 No charge transfer between 
the electrolyte and the 
electrode

 Separator is permeable
 Mechanical separation 

preventing contact between 
electrodes

Source: Yves Brunet, Energy Storage

 Thickness of double layers is on the molecular scale
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Ultracapacitors

 Two double layers
 Two capacitors in series

 Capacitance values in the range of 1 … 1000s of farads are common

 Ultracapacitors are polarized
 Positive electrode must be kept at a higher potential

 Maximum voltage determined by the electrolyte dissociation voltage
 Typically ~2.5 V
 For higher-voltage operation, multiple ultracapacitors are connected in series
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Equivalent Circuit Model

 Ultracapacitor equivalent circuit model

 Rs:  equivalent series resistance (ESR)
 Primarily due to ionic conduction in the electrolyte

 C0:  primary capacitance of the ultracapacitor
 Cv:  voltage-dependent capacitance

 Associated with diffusion layers near the double layers
 Cv = k⋅v

 Rleak:  leakage resistance
 Typically specified as a leakage current at Vmax

 R1, C1, … Rn, Cn:  distributed resistance and capacitance of the porous electrodes
 Models multiple time constants
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Equivalent Circuit Model

 We will typically simplify this model significantly
 Account for only capacitance and ESR
 Typical ESR values:  0.5 mΩ … 500 mΩ

 Account for leakage resistance, Rleak, when appropriate
 Self-discharge
 Typical leakage resistance: 100 Ω … 100 kΩ
 Typical leakage currents: 10𝜇𝜇A … 10 mA
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Charging and Discharging

 The voltage seen across a capacitor is proportional to the 
stored charge differential

𝑉𝑉 =
𝑄𝑄
𝐶𝐶

 So, unlike batteries, capacitor voltage does not remain 
constant as a capacitor discharges

 Power electronic circuitry generally required to interface 
between ultracapacitors and load
 DC-DC converters
 Inverters – DC-AC and AC-DC converters

 Interface circuitry also provides charge/discharge control
 Current/power control
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Charging and Discharging

 Two primary modes of charging/discharging
 Constant current
 Constant power

 Unlike batteries, capacitors can be charged and 
discharged at the same rates

 Constant-current charging is simple
 Both in terms of circuitry and analysis/design

 Constant-power charging useful in many applications, 
such as regenerative braking
 Charging while drawing constant power from the vehicle
 Discharging while supplying constant power to the vehicle
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Constant-Current Charging

 Voltage drop across 
Rs during 
charge/discharge

 Constant rate of 
voltage change

 Power varies
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Constant-Power Charging

 Varying rate of voltage 
change

 Current varies depending 
on state of charge
 Higher current at lower 

state of charge
 Lower current near full 

charge



K. Webb ESE 471

Cell Balancing46



K. Webb ESE 471

47

Cell Balancing

 Typically, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 2.5 𝑉𝑉… 3.0 𝑉𝑉
 Series-connected cells provide higher voltages

 Consider a series connection of four cells
 Equal charge differential, ±𝑄𝑄, on each cell
 The voltage across each capacitor is

𝑉𝑉1 = 𝑄𝑄
𝐶𝐶1

,  𝑉𝑉2 = 𝑄𝑄
𝐶𝐶2

,  𝑉𝑉3 = 𝑄𝑄
𝐶𝐶3

,  𝑉𝑉4 = 𝑄𝑄
𝐶𝐶4

 Nominally, all capacitors are equal

𝐶𝐶1 = 𝐶𝐶2 = 𝐶𝐶3 = 𝐶𝐶4 = 𝐶𝐶

 Nominally, all voltages are equal

𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉3 = 𝑉𝑉4 =
𝑄𝑄
𝐶𝐶 = 2.5V

 But, capacitances may vary by as much as ±20%
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Cell Balancing

 Consider the following scenario:
 Total equivalent capacitance

𝐶𝐶𝑒𝑒𝑒𝑒 = 0.24𝐶𝐶

 Stored charge
𝑄𝑄 = 10 𝑉𝑉 ⋅ 0.24𝐶𝐶

 Now, cell voltages are imbalanced

𝑉𝑉1 = 𝑉𝑉2 =
𝑄𝑄

1.2𝐶𝐶 =
10 𝑉𝑉 ⋅ 0.24𝐶𝐶

1.2𝐶𝐶 = 2 𝑉𝑉

𝑉𝑉3 = 𝑉𝑉4 =
𝑄𝑄

0.8𝐶𝐶 =
10 𝑉𝑉 ⋅ 0.24𝐶𝐶

0.8𝐶𝐶 = 3 𝑉𝑉

 If 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 2.5 𝑉𝑉, then
 𝐶𝐶1 and 𝐶𝐶2 are underutilized
 𝐶𝐶3 and 𝐶𝐶4 are overstressed 
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Cell Balancing

 Cell balancing circuitry 
 Safely utilize each cell’s storage 

capacity

 Two balancing approaches:
 Resistive balancing
 Resistors placed in parallel with the cells
 Slow – not for high-duty-cycle 

applications

 Active balancing
 Cell voltages monitored and electronic 

switches balance voltages
 Fast – good for high-duty-cycle 

applications
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Ultracapacitors – Efficiency 

 Ultracapacitors have small, but non-zero, ESR
 They are lossy devices
 Not all input energy is available for use
 Efficiency is less than 100%

 We will define round-trip efficiency as the efficiency 
through an entire charge/discharge cycle
 Ratio of output energy to input energy

𝜂𝜂𝑟𝑟𝑡𝑡 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝑖𝑖𝑖𝑖

⋅ 100% (1)

 Efficiency depends on how a capacitor is used
 Rate of charge/discharge
 Depth of discharge
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Ultracapacitors – Efficiency 

 Energy stored by a capacitor is proportional to the capacitor 
voltage squared

𝐸𝐸𝑐𝑐 = 1
2
𝐶𝐶𝑉𝑉2 (2)

 Capacitor’s effectiveness at storing energy depends on its 
state of charge (SOC)
 Energy stored more quickly at high SOC
 Energy stored more slowly at low SOC

 Loss in ESR depends on the current

 Therefore, instantaneous efficiency, 𝜂𝜂 𝑡𝑡 , varies with SOC
 Total round-trip efficiency depends on depth of discharge
 Ultracapacitors are typically not discharged completely 
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Discharge Factor

 Discharge factor

𝑑𝑑 = 𝑉𝑉𝑚𝑚𝑖𝑖𝑖𝑖
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

(3)

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚:  voltage at the lowest allowable SOC
 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚:  maximum allowable (fully-charged) capacitor voltage

 We’ll now examine the round-trip efficiency for 
capacitors operated at constant current and at 
constant power
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Efficiency – Constant Current

 For a capacitor operating at a non-zero discharge factor, only some 
of the stored energy is usable

 Usable energy

𝐸𝐸𝑢𝑢 =
1
2
𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚2 −

1
2
𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚2

𝐸𝐸𝑢𝑢 =
1
2
𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚2 −

1
2
𝐶𝐶 𝑑𝑑𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 2

𝐸𝐸𝑢𝑢 = 1
2
𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚2 1 − 𝑑𝑑2 (4)

 Power dissipated in the ESR at constant current, 𝐼𝐼, is
𝑃𝑃𝑅𝑅 = 𝐼𝐼2𝑅𝑅𝑠𝑠

 Energy lost in the ESR is
𝐸𝐸𝑅𝑅 = 𝐼𝐼2𝑅𝑅𝑠𝑠 ⋅ 𝑡𝑡
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Charging efficiency – Constant Current

 During the charging cycle, the efficiency is

𝜂𝜂1 = 𝐸𝐸𝑜𝑜
𝐸𝐸𝑜𝑜+𝐸𝐸𝑅𝑅

=
1
2𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1−𝑑𝑑2
1
2𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1−𝑑𝑑2 +𝐼𝐼2𝑅𝑅𝑠𝑠⋅𝑡𝑡𝑐𝑐

where 𝑡𝑡𝑐𝑐 is the duration of the charging cycle

 We can solve for 𝑡𝑡𝑐𝑐 as follows

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐼𝐼⋅𝑡𝑡𝑐𝑐
𝐶𝐶

→ 𝑡𝑡𝑐𝑐 = 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑
𝐼𝐼

 The efficiency then becomes

𝜂𝜂1 =
1
2𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1−𝑑𝑑2
1
2𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1−𝑑𝑑2 +𝐼𝐼𝑅𝑅𝑠𝑠𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑

𝜂𝜂1 =
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑2

1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑2 +𝐼𝐼𝑅𝑅𝑠𝑠 1−𝑑𝑑

(5)
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Round-Trip Efficiency – Constant Current

 Similar loss is incurred in the ESR during discharge
 Energy output is the stored energy minus resistive loss

 Round-trip efficiency is 

𝜂𝜂𝑟𝑟𝑡𝑡 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝑖𝑖𝑖𝑖

= 𝐸𝐸𝑜𝑜−𝐸𝐸𝑅𝑅
𝐸𝐸𝑜𝑜+𝐸𝐸𝑅𝑅

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1−𝑑𝑑2 −𝐼𝐼𝑅𝑅𝑠𝑠𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑
1
2𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1−𝑑𝑑2 +𝐼𝐼𝑅𝑅𝑠𝑠𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑2 −𝐼𝐼𝑅𝑅𝑠𝑠 1−𝑑𝑑
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑2 +𝐼𝐼𝑅𝑅𝑠𝑠 1−𝑑𝑑

(6)
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Instantaneous Efficiency – Constant Current

 At lower SOC:
 Low rate of 

energy storage
 Low efficiency

 At higher SOC:
 Higher rate of 

energy storage
 Higher efficiency
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Efficiency vs. Current – Constant Current

 As current increases, loss in ESR increases
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Efficiency vs. Discharge Factor – Constant Current

 Greater depth-of-discharge corresponds to lower efficiency
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Efficiency – Constant Power

 For constant-power charging/discharging, we start with the same 
expression for efficiency

𝜂𝜂𝑟𝑟𝑡𝑡 =
𝐸𝐸𝑢𝑢 − 𝐸𝐸𝑅𝑅
𝐸𝐸𝐸𝐸 + 𝐸𝐸𝑅𝑅

 Usable energy is the same

𝐸𝐸𝑢𝑢 =
1
2
𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚2 1 − 𝑑𝑑2

 But, since current is now time varying, the energy lost in the 
resistance (in one direction) is

𝐸𝐸𝑅𝑅 = �
0

𝑡𝑡𝑐𝑐
𝑖𝑖2 𝑡𝑡 𝑅𝑅𝑆𝑆 𝑑𝑑𝑡𝑡

 Things get a bit more complicated, as we now need to solve a 
differential equation to determine the capacitor voltage
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Efficiency – Constant Power

 The input to the capacitor is now constant power
 Write a power-balance equation

𝑃𝑃 − 𝑖𝑖2 𝑡𝑡 ⋅ 𝑅𝑅𝑠𝑠 − 𝑖𝑖 𝑡𝑡 𝑑𝑑𝑐𝑐 𝑡𝑡 = 0

 Current is given by

𝑖𝑖 𝑡𝑡 = 𝐶𝐶 𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

 The power balance becomes

𝑅𝑅𝑠𝑠𝐶𝐶2
𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

2
+ 𝐶𝐶 𝑑𝑑𝑑𝑑𝑐𝑐

𝑑𝑑𝑡𝑡
𝑑𝑑𝑐𝑐 𝑡𝑡 − 𝑃𝑃 = 0 (7)

 An ordinary differential equation in quadratic form

C

Rs

v

+

–

vc

+

–

i
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Efficiency – Constant Power

 Applying the quadratic formula to (7), we get

𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

=
−𝐶𝐶𝑑𝑑𝑐𝑐 𝑡𝑡 ± 𝐶𝐶2𝑑𝑑𝑐𝑐2 𝑡𝑡 +4𝑅𝑅𝑠𝑠𝐶𝐶2𝑃𝑃

2𝑅𝑅𝑠𝑠𝐶𝐶2

 Simplifying, and keeping only the valid ‘+’ solution

𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

=
−𝑑𝑑𝑐𝑐 𝑡𝑡 + 𝑑𝑑𝑐𝑐2 𝑡𝑡 +4𝑅𝑅𝑠𝑠𝑃𝑃

2𝑅𝑅𝑠𝑠𝐶𝐶
(8)

 For discharging this becomes
𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

=
−𝑑𝑑𝑐𝑐 𝑡𝑡 + 𝑑𝑑𝑐𝑐2 𝑡𝑡 −4𝑅𝑅𝑠𝑠𝑃𝑃

2𝑅𝑅𝑠𝑠𝐶𝐶
(9)

 We don’t have a nice closed-form solutions to (8) or (9), 
but we can solve them numerically
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Instantaneous Efficiency – Constant Power

 At lower SOC:
 High current
 High 𝐼𝐼2𝑅𝑅 loss
 Low efficiency

 At higher SOC:
 Lower current
 Lower 𝐼𝐼2𝑅𝑅 loss
 Higher efficiency



K. Webb ESE 471

64

Efficiency vs. Current – Constant Power

 As power increases, current increases and resistive loss 
increases
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Efficiency vs. Discharge Factor – Constant Power

 Greater depth-of-discharge corresponds to lower efficiency
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Approximate Efficiency – Constant Power

 Sometimes we may want a quick way to approximate efficiency for 
constant-power charging/discharging
 Calculate an average current
 Calculate efficiency as you would for constant-current charging/discharging

 Approximate average current as the average of the maximum and 
minimum currents

𝐼𝐼𝑚𝑚𝑑𝑑𝑎𝑎 ≈
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

2
where 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃
𝑉𝑉𝑚𝑚𝑖𝑖𝑖𝑖

and    𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

 Then, efficiency is approximately given by

𝜂𝜂𝑟𝑟𝑡𝑡 ≈
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑2 −𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎𝑅𝑅𝑠𝑠 1−𝑑𝑑
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1−𝑑𝑑2 +𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎𝑅𝑅𝑠𝑠 1−𝑑𝑑

(10)
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Series-Connected Capacitor Cells

 To achieve higher working voltages, multiple capacitor cells 
are connected in series

 How does this effect
 Energy storage?
 Efficiency?

 Consider a series connection of 𝑁𝑁 cells, each with a 
capacitance of 𝐶𝐶0 and a maximum voltage of 𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐
 Equivalent circuit model:
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Series-Connected Capacitor Cells

 Energy stored:

𝐸𝐸 =
1
2
𝐶𝐶0
𝑁𝑁 𝑁𝑁 ⋅ 𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 2

𝐸𝐸 = 𝑁𝑁 ⋅
1
2𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐

2

 As expected, this is 𝑁𝑁 times the energy stored in a single cell

 For a discharge factor of 𝑑𝑑, the usable stored energy is

𝐸𝐸𝑢𝑢 = 𝑁𝑁
1
2
𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐2 − 𝑁𝑁

1
2
𝐶𝐶0 𝑑𝑑𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 2

𝐸𝐸𝑢𝑢 = 𝑁𝑁 1
2
𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐2 1 − 𝑑𝑑2 (11)
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Cells in Series – Constant Current
 Energy lost in the resistance during charging (or discharging):

𝐸𝐸𝑅𝑅 = 𝐼𝐼2𝑁𝑁𝑅𝑅0𝑡𝑡𝑐𝑐

 For constant-current operation

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑑𝑑 = 𝑁𝑁𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑

𝑁𝑁𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑 =
𝐼𝐼 𝑡𝑡𝑐𝑐
𝐶𝐶

=
𝐼𝐼 𝑡𝑡𝑐𝑐
𝐶𝐶0/𝑁𝑁

 The charging (or discharging) time is

𝑡𝑡𝑐𝑐 =
𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑

𝐼𝐼

 So, losses during charging (or discharging) are

𝐸𝐸𝑅𝑅 = 𝐼𝐼2𝑁𝑁𝑅𝑅0
𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑

𝐼𝐼

𝐸𝐸𝑅𝑅 = 𝑁𝑁𝐼𝐼𝑅𝑅0𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑 (12)
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Cells in Series – Constant Current

 Round-trip efficiency is

𝜂𝜂𝑟𝑟𝑡𝑡 =
𝐸𝐸𝑢𝑢 − 𝐸𝐸𝑅𝑅
𝐸𝐸𝑢𝑢 + 𝐸𝐸𝑅𝑅

 Using (11) and (12), we get

𝜂𝜂𝑟𝑟𝑡𝑡 =
𝑁𝑁 1

2𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐
2 1 − 𝑑𝑑2 − 𝑁𝑁𝐼𝐼𝑅𝑅0𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑

𝑁𝑁 1
2𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐

2 1 − 𝑑𝑑2 + 𝑁𝑁𝐼𝐼𝑅𝑅0𝐶𝐶0𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅0 1 − 𝑑𝑑
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅0 1 − 𝑑𝑑

 This is, of course, the same as for a single cell, but
 Current can be reduced at a higher maximum voltage

 Efficiency will improve
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Cells in Series – Constant Power

 For constant-power
operation, we’ll again 
investigate numerically

 Round-trip efficiency vs. 
# of series-connected 
cells:
 Assuming:

 𝐸𝐸 = 100 𝑘𝑘𝑘𝑘
 𝑃𝑃 = 200 𝑊𝑊
 R0 = 3 mΩ
 𝑑𝑑 = 0.25
 𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 = 2.5 𝑉𝑉
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Ultracapacitor Sizing

 Sizing a capacitor bank involves determining the following parameters
 Stored energy: 𝐸𝐸
 Available power: 𝑃𝑃
 Maximum voltage: 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
 Minimum voltage: 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
 Discharge factor: 𝑑𝑑
 # of cells in series and/or parallel: 𝑁𝑁𝑠𝑠,𝑁𝑁𝑝𝑝
 Total capacitance: 𝐶𝐶
 Cell capacitance: 𝐶𝐶0
 Efficiency: 𝜂𝜂

 Sizing procedure depends on which of these parameters are specified

 We’ll outline a procedure assuming the specified requirements are:
 Energy storage
 Power
 Voltage range
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Ultracapacitor Sizing Procedure
1. Discharge factor

𝑑𝑑 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2. Number of series-connected cells

𝑁𝑁𝑠𝑠 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐
3. Total required capacitance

𝐸𝐸 =
1
2
𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2 1 − 𝑑𝑑2 → 𝐶𝐶 =
2𝐸𝐸

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
2 1 − 𝑑𝑑2

4. Cell capacitance
𝐶𝐶0 = 𝑁𝑁𝑠𝑠 ⋅ 𝐶𝐶

5. Determine the resulting efficiency using the required power
 Evaluate numerically or approximate

6. Iterate if necessary
 Adjust N as needed
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Ultracapacitor Sizing – Example  
 Size a capacitor bank for an energy recovery system for a tower crane with the 

following specifications
 Height: 𝑚 = 50 𝑚𝑚
 Capacity: 𝑚𝑚 = 5,000 𝑘𝑘𝑚𝑚
 Time to lift max load: 𝑡𝑡𝑑𝑑 = 30 𝑠𝑠

 Let’s assume we have a power conversion system that can operate over the range 
of 60 𝑉𝑉𝐷𝐷𝐶𝐶 … 150 𝑉𝑉𝐷𝐷𝐶𝐶 at an efficiency of 𝜂𝜂𝑝𝑝𝑐𝑐𝑠𝑠 = 97%

 The required energy to lift the maximum load is

𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚 ⋅
1
𝜂𝜂𝑝𝑝𝑐𝑐𝑠𝑠

= 5000 𝑘𝑘𝑚𝑚 ⋅ 9.81
𝑚𝑚
𝑠𝑠2
⋅ 50 𝑚𝑚 ⋅

1
0.97

𝐸𝐸 = 2.53 𝑀𝑀𝑘𝑘

 Performing that lift in 30 𝑠𝑠𝑠𝑠𝑠𝑠 corresponds to a required power of

𝑃𝑃 =
𝐸𝐸
𝑡𝑡𝑑𝑑

=
2.53 𝑀𝑀𝑘𝑘

30 𝑠𝑠
= 84.3 𝑘𝑘𝑊𝑊
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Ultracapacitor Sizing – Example 

 The discharge factor is

𝑑𝑑 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

=
60 𝑉𝑉

150 𝑉𝑉
= 0.4

 The required number of cells in series is

𝑁𝑁𝑠𝑠 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐

=
150 𝑉𝑉
2.5 𝑉𝑉

= 60

 The total required capacitance is

𝐶𝐶 =
2𝐸𝐸

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚2 1 − 𝑑𝑑2

𝐶𝐶 =
2 ⋅ 2.53 𝑀𝑀𝑘𝑘

150 𝑉𝑉 2 1 − 0.42

𝐶𝐶 = 267.6 𝐹𝐹
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Ultracapacitor Sizing – Example 
 The capacitance of each individual cell is

𝐶𝐶0 = 𝑁𝑁𝑠𝑠 ⋅ 𝐶𝐶 = 60 ⋅ 267.6 𝐹𝐹

𝐶𝐶0 = 16.1 𝑘𝑘𝐹𝐹

 So, the capacitor bank would consist of sixty 16.1 𝑘𝑘𝐹𝐹 capacitors connected in series
 16.1 𝑘𝑘𝐹𝐹 is a large capacitance – likely unavailable
 Connect multiple capacitors in parallel

 Let’s say we have access to individual capacitor cells with the following 
specifications

 𝐶𝐶0 = 3400 𝐹𝐹
 𝑅𝑅0 = 0.28 𝑚𝑚Ω

 Five capacitors in parallel will give

𝐶𝐶0𝑝𝑝 = 𝑁𝑁𝑝𝑝𝐶𝐶0 = 5𝐶𝐶0 = 17 𝑘𝑘𝐹𝐹

𝑅𝑅0𝑝𝑝 =
𝑅𝑅0
𝑁𝑁𝑝𝑝

=
𝑅𝑅0
5

=
0.28 𝑚𝑚Ω

5
= 56 𝜇𝜇Ω
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Ultracapacitor Sizing – Example 

 Placing 60 of the 5-capacitor groups in series, the total series resistance is

𝑅𝑅𝑠𝑠 = 𝑁𝑁𝑠𝑠 ⋅ 𝑅𝑅0𝑝𝑝 = 60 ⋅ 56 𝜇𝜇Ω = 3.36 𝑚𝑚Ω

 For constant-power charge/discharge, we can approximate efficiency

 The maximum current is

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑃𝑃

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
=

84.3 𝑘𝑘𝑊𝑊
60 𝑉𝑉 = 1.4 𝑘𝑘𝐴𝐴

 The minimum current is

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑃𝑃

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
=

84.3 𝑘𝑘𝑊𝑊
150 𝑉𝑉 = 562 𝐴𝐴

 The approximate average current is

𝐼𝐼𝑚𝑚𝑑𝑑𝑎𝑎 ≈
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

2 = 981 𝐴𝐴
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Ultracapacitor Sizing – Example 

 Using the average current, we can approximate the round trip efficiency for 
the capacitor bank as

𝜂𝜂𝑟𝑟𝑡𝑡 ≈
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑚𝑚𝑑𝑑𝑎𝑎𝑅𝑅0𝑝𝑝 1 − 𝑑𝑑
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑚𝑚𝑑𝑑𝑎𝑎𝑅𝑅0𝑝𝑝 1 − 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 ≈
1.25 𝑉𝑉 1 − 0.42 − 981 𝐴𝐴 ⋅ 56 𝜇𝜇Ω 1 − 0.4
1.25 𝑉𝑉 1 − 0.42 + 981 𝐴𝐴 ⋅ 56 𝜇𝜇Ω 1 − 0.4

𝜂𝜂𝑟𝑟𝑡𝑡 ≈ 0.92 → 𝜂𝜂𝑟𝑟𝑡𝑡 ≈ 92%

 Note that 𝑅𝑅0𝑝𝑝 is used, because that is the resistance of each of the 60 series-
connected parallel combinations

 Total round-trip efficiency must include the power conversion system 

𝜂𝜂𝑟𝑟𝑡𝑡 = 0.97 ⋅ 0.92 ⋅ 0.97 = 0.87 → 𝜂𝜂𝑟𝑟𝑡𝑡 = 87%



K. Webb ESE 471

81

Ultracapacitor Sizing – Example 

 Solving numerically, we 
find that the efficiency 
of the capacitor bank is 
a bit higher

𝜂𝜂𝑟𝑟𝑡𝑡 = 94.6%

 𝐼𝐼𝑚𝑚𝑑𝑑𝑎𝑎 overestimates the 
time-average current

 Accounting for 
conversion losses, we 
have

𝜂𝜂𝑟𝑟𝑡𝑡 = 89%
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Efficiency Summary

Configuration Round-trip efficiency

Single 
capacitor

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅0 1− 𝑑𝑑
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅0 1− 𝑑𝑑

𝑁𝑁𝑠𝑠 in series

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑁𝑁𝑠𝑠𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑁𝑁𝑠𝑠𝑅𝑅0 1− 𝑑𝑑
1
2𝑁𝑁𝑠𝑠𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑁𝑁𝑠𝑠𝑅𝑅0 1− 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅𝑠𝑠 1− 𝑑𝑑
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅𝑠𝑠 1− 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅0 1− 𝑑𝑑
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅0 1− 𝑑𝑑
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Efficiency Summary

Configuration Round-trip efficiency

𝑁𝑁𝑝𝑝 in parallel

𝜂𝜂𝑟𝑟𝑡𝑡 =

1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼 𝑅𝑅0𝑁𝑁𝑝𝑝

1 − 𝑑𝑑

1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼 𝑅𝑅0𝑁𝑁𝑝𝑝

1 − 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅0𝑝𝑝 1− 𝑑𝑑
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅0𝑝𝑝 1− 𝑑𝑑
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Efficiency Summary

 All of the expressions on this and the previous two pages are for 
constant-current charging/discharging
 For constant power, use an approximate average current

Configuration Round-trip efficiency

𝑁𝑁𝑠𝑠 in series,
𝑁𝑁𝑝𝑝 in parallel

𝜂𝜂𝑟𝑟𝑡𝑡 =

1
2𝑁𝑁𝑠𝑠𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼 𝑁𝑁𝑠𝑠𝑁𝑁𝑝𝑝

𝑅𝑅0 1 − 𝑑𝑑

1
2𝑁𝑁𝑠𝑠𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼 𝑁𝑁𝑠𝑠𝑁𝑁𝑝𝑝

𝑅𝑅0 1 − 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅0𝑝𝑝 1− 𝑑𝑑
1
2𝑉𝑉𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅0𝑝𝑝 1− 𝑑𝑑

𝜂𝜂𝑟𝑟𝑡𝑡 =
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑑𝑑2 − 𝐼𝐼𝑅𝑅𝑒𝑒𝑒𝑒 1 − 𝑑𝑑
1
2𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑑𝑑2 + 𝐼𝐼𝑅𝑅𝑒𝑒𝑒𝑒 1 − 𝑑𝑑
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