SECTION 5: FLOW BATTERIES

ESE 471 – Energy Storage Systems

Flow Batteries

- 3
- Flow batteries are electrochemical cells, in which the reacting substances are stored in electrolyte solutions external to the battery cell
 - Electrolytes are *pumped* through the cells
 - Electrolytes flow across the electrodes
 - Reactions occur *at* the electrodes
 - Electrodes do not undergo a physical change

Flow Batteries

Flow batteries comprise two components:

Electrochemical cell

- Conversion between chemical and electrical energy
- External electrolyte storage tanks
 - Energy storage

Source: EPRI

Flow Battery Electrochemical Cell

- Electrochemical cell
 - Two half-cells separated by a proton-exchange membrane (PEM)
 - Each half-cell contains an *electrode* and an *electrolyte*
 - Positive half-cell: cathode and catholyte
 - Negative half-cell: anode and anolyte
- Redox reactions occur in each half-cell to produce or consume electrons during charge/discharge
- Similar to fuel cells, but two main differences:
 Reacting substances are all in the liquid phase
 Rechargeable (secondary cells)

Cell Stacks

- Open-circuit voltage of an individual cell in the range of 1 V ... 2 V
 Determined by the particular chemistry
- For higher terminal voltages, multiple cells are connected in series
 Electrolyte flows through cell stack in parallel
- Carbon felt electrodes
 - Porous high surface area
 - High conductivity
- Bipolar plates separate individual cells in the stack
 - Shared electrode between adjacent cells
 - Positive electrode for one cell, negative electrode for the neighbor
- Electrodes on the ends are the external electrodes for the stack

Flow Battery Characteristics

- 8
- Relatively low *specific power* and *specific energy* Best suited for fixed (non-mobile) utility-scale applications
- Energy storage capacity and power rating are decoupled
 - Cell stack properties and geometry determine power
 - Volume of electrolyte in external tanks determines energy storage capacity
 - Flow batteries can be tailored for an particular application
- Very *fast response times* < 1 msec</p>
 - Time to switch between full-power charge and full-power discharge
 - Typically limited by controls and power electronics

Potentially very *long discharge times*

■ 4 – 10 hours is common

Flow batteries vs. Conventional Batteries

Advantages over conventional batteries

- Energy storage capacity and power rating are decoupled
- Long lifetime
 - Electrolytes do not degrade
 - Electrodes are unaltered during charge/discharge
- Self-cooling
 - Inherently liquid-cooled
- All cells in a stack supplied with the same electrolyte
 - All cell voltages are equal
 - Individual cells not susceptible to overcharge/undercharge
 - No need for cell balancing

Flow batteries vs. Conventional Batteries

Advantages over conventional batteries (cont'd)

- Equal charge/discharge rates (power)
- Bipolar electrodes are possible
 - Convenient for cell stacking

Disadvantages over conventional batteries

- Higher initial cost
- Increased complexity associated with pumps and plumbing
- Lower specific energy and specific power

Flow Battery Applications

11

Peak shaving/load shifting

- Infrastructure upgrade deferral
- Arbitrage
- Long duration

Load following

- Potentially replace peaker plants
- Long duration

Integration of renewables

- Smooth fluctuating power from wind and solar
- Improve grid stability
- Short duration

Frequency or voltage regulation

- Accommodate short-term real and reactive power demands
- Short duration

Cost of Flow Batteries

- Cost of storage devices usually reported as either \$/kW or \$/kWh
- The Electric Power Research Institute (EPRI) estimates the cost of energy storages systems with *three cost components*
 - Costs that scale with *power* capacity
 - Costs that scale with *energy* storage capacity
 - Fixed costs
- Total capital cost is given by

Capital Cost =
$$P \cdot (scaled power cost)$$

+ $E \cdot (scaled energy cost)$
+ (fixed cost)

Cost of Flow Batteries

In 2007, the EPRI flow battery cost estimates were:

- Power: \$2300/kW
- Energy: \$300/kWh
- Fixed: \$250,000
- EPRI 2007 projections for 2013:
 Power: \$1250/kW
 - Energy: \$210/kWh
 - Fixed: \$280,000

Future Projections for Capital Cost of Vanadium Redox Battery Systems

¹⁴ Flow Battery Chemistry

Flow Battery Chemistry

Several different chemistries used in flow batteries
 Most employ *redox* (oxidation-reduction) *reactions* Often referred to as redox flow batteries or RFBs

Redox reactions

- Chemical reactions pairing a reduction reaction with an oxidation reaction
- **Oxidation states** of reactants are changed

Reduction

- Gaining of electrons
- Oxidation state is decreased (reduced)

Oxidation

- Loss of electrons
- Oxidation state is increased

Redox Flow Battery Chemistry

- Oxidation at one electrode corresponds to reduction at the other
 - Opposite reactions occur during charging and discharging

Charging:

- Current flows from anode to cathode
- Electrons flow from cathode to anode
- Reduction occurs in the anolyte

$$A^{n+} + e^- \to A^{(n-1)+}$$

Oxidation occurs in the catholyte

$$B^{m+} \to B^{(m+1)+} + e^-$$

Redox Flow Battery Chemistry

Discharging:

Current flows from cathode to anode
 Electrops flow from anode to esthede

Electrons flow from anode to cathode

Oxidation occurs in the anolyte

 $A^{(n-1)+} \rightarrow A^{n+} + e^-$

Reduction occurs in the catholyte

$$B^{(m+1)+} + e^- \to B^{m+}$$

Redox Couples

- Different flow batteries use different *redox couples* Pairs of redox reactants dissolved in electrolyte solution
- Common redox couples
 - Vanadium/vanadium, V/V
 - Zinc/bromine, Zn/Br
 - Iron/chromium, Fe/Cr
 - Bromine/Sulfur, Br/S
- Most common is the vanadium redox flow battery or VRB

Vanadium

- 19
- Abundant
- Inexpensive
- Byproduct of many mining operations
- Vanadium can exist in four different oxidation states
 V²⁺, V³⁺, V⁴⁺, and V⁵⁺
- In VRB electrolytes:
 - V^{4+} exists as VO^{2+}
 - V^{5+} exists as VO_2^+
- Vanadium in a VRB is dissolved in either:
 - Sulfuric acid
 - Mixture of sulfate and chloride (developed and licensed by PNNL)

Vanadium

□ Vanadium changes color as it changes oxidation state

Source: www.eenews.net, David Ferris

Vanadium flow batteries use only a single element in both half-cells
 Eliminates the problem of cross-contamination across the membrane

VRB Reactions

At the anode (charging to the right):

$$V^{3+} + e^- \rightleftharpoons V^{2+}$$

□ At the cathode (charging to the right):

$$V0^{2+} + H_20 \rightleftharpoons VO_2^+ + 2H^+ + e^-$$

Anode half-cell standard potential

D $E_{0a} = -0.26 V$

Cathode half-cell standard potential

D $E_{0c} = 0.99 V$

Cell standard potential

• $E_0 = 1.25 V$

- Cell potential given by the *Nernst equation*
 - Nominal value often considered 1.4 V

Proton-Exchange Membrane

 Half-cells separated by a *proton-exchange membrane* (PEM)

- Allows protons to flow
 - From catholyte to anolyte during charging
 - From anolyte to catholyte during discharging

Source: EPRI

23 Electrochemical Model

Electrochemical Model

- 24
- As is the case for most batteries, a complete electrochemical model for a VRB is very complex
- Electrochemical model describes the relationship between cell voltage and
 - State of charge (SOC)
 - Operating conditions
 - Current
 - Electrolyte flow rate
 - Temperature
 - Internal losses
 - Electrolyte concentrations

Open-Circuit Voltage

25

The open-circuit voltage as a function of SOC :

Equivalent Circuit Model

- Simple RFB equivalent circuit model
 - Thévenin equivalent circuit
 - State-of-charge-dependent open-circuit voltage source
- The resistance models losses in the battery
 - Voltaic losses
 - Ohmic and ionic losses in the electrodes, electrolytes, and membrane

Coulombic (*Faradaic*) losses

Losses due to chemical side reactions

27 Mechanical Model

- The equivalent circuit model accounts for electrical and electrochemical behavior of the flow battery
 - Models electrical and electrochemical losses that affect efficiency
- Flow batteries require electrolyte to be *pumped* through the cell stack
 - Pumps require power
 - Pump power affects efficiency

Need a *fluid model* for the battery in order to understand how *mechanical losses* affect efficiency

- Power required to pump electrolyte through cell stack
- Pumping power is proportional to
 - Density of the fluid
 - Head loss through the system
 - Flow rate

$$P_{pump} = \rho g h Q = \Delta p Q \tag{1}$$

 Total power required by the pump is determined by the pump efficiency

$$P_{pump,in} = \frac{P_{pump}}{\eta_{pump}} \tag{2}$$

Pressure drop through the system includes pressure drops through both the piping and the cell stack

$$\Delta p = \Delta p_{pipe} + \Delta p_{stack} \tag{3}$$

 Pressure drop along the piping is the sum of frictional losses and minor losses

$$\Delta p_{pipe} = -\gamma \left(\Delta z + h_f + h_m \right) \tag{4}$$

where

 γ : specific weight of the fluid ($\gamma = \rho g$) Δz : height differential along the pipe h_f : frictional losses h_m : minor losses

- 31
- The *frictional losses* and *minor losses* are the sum of the losses along each section of pipe or from each fitting, valve, bend, etc.
 Given by the *Darcy-Weisbach equation*

$$h_{f,i} = f_i \frac{L_i V_i^2}{D_i 2g}$$
(5)

and

$$h_{m,i} = k_{L,i} \frac{V_i^2}{2g}$$
(6)

where

- f_i : Darcy friction factor dependent on roughness, diameter, and Reynolds number
- $k_{L,i}$: loss coefficient associated with each lossy feature (e.g. inlet, outlet, valves, bends, etc.)
- L_i : length of section
- D_i : diameter of section

- 32
- Calculating pressure drop across the cell stack becomes much more complicated
 - Analytically intractable
 - Evaluate using computational fluid dynamics (CFD) simulation

- CFD used for cell stack design to ensure
 - Uniform electrolyte flow across electrodes
 - Minimal pressure drop through stack

33 Efficiency

- 34
- We would like to derive an expression for the round-trip efficiency of the flow battery
 - Ratio of the *energy delivered from* the battery to the *energy delivered to* the battery

$$\eta_{rt} = \frac{E_{out}}{E_{in}} \cdot 100\% \tag{7}$$

The input energy, E_{in}, is the electrical energy delivered to the battery terminals plus the energy delivered to the pumps

$$E_{in} = E_{in,b} + E_{pump,in} \tag{8}$$

- 35
- The energy quantities in (8) are given by the integrals of the respective powers
 - **•** For the battery

$$E_{in,b} = \int_0^{t_c} P_b(t) \, dt$$

$$E_{in,b} = \int_0^{t_c} i_b(t) v_b(t) dt$$

where t_c is the charging time

 The pump runs and requires power during both charge and discharge, so,

$$E_{pump,in} = \int_0^{t_c + t_d} P_{pump,in}(t) dt \tag{10}$$

where $P_{pump,in}$ is given by (2)

36

Substituting (10) and (9) into (8), we have

$$E_{in} = \int_0^{t_c} i_b(t) v_b(t) dt + \int_0^{t_c + t_d} P_{pump,in}(t) dt$$
(11)

- Note that not all of *E_{in,b}* is stored
 Some energy is lost in *R_b*
- Stored energy is

$$E_{stored} = E_{in,b} - E_{R_{b,in}}$$
$$E_{stored} = \int_0^{t_c} i_b(t) v_b(t) dt - \int_0^{t_c} i_b^2(t) R_b dt$$
(12)

□ The energy output from the battery is equal to the stored energy minus losses in R_b as energy flows out of the battery

$$E_{out} = E_{stored} - E_{R_{b,out}} = E_{in,b} - E_{R_{b,in}} - E_{R_{b,out}}$$
$$E_{out} = \int_0^{t_c} i_b(t) v_b(t) dt - \int_0^{t_c+t_d} i_b^2(t) R_b dt$$
(13)

37

Substituting (11) and (13) into (7), gives the roundtrip efficiency:

$$\eta_{rt} = \frac{\int_0^{t_c} i_b(t) v_b(t) dt - \int_0^{t_c+t_d} i_b^2(t) R_b dt}{\int_0^{t_c} i_b(t) v_b(t) dt + \int_0^{t_c+t_d} P_{pump,in}(t) dt}$$

(14)

This is round-trip efficiency at the terminals of the battery

DC-DC efficiency

• Typical values: 70% ... 85%

- More meaningful is AC-AC round-trip efficiency
 - Accounts for power conversion system
 - May include transformer losses as well

$$\eta_{rt,AC} = \eta_{rt,DC} \cdot \eta_{pcs}^2 \cdot \eta_{tf}^2$$

- $\square \eta_{rt,DC}$ is given by (14)
- Transformer loss typically ~1%
- **Typical values: 65% ... 75%**

Electrolyte Flow Rate

Efficiency is determined, in part, by the amount of power consumed by the pumps

Pumping power dependent on *flow rate*:

$$P_{pump} = \Delta p \cdot Q$$

Minimum required flow rate is a function of:

- Battery input/output power
 - Higher power requires higher flow rate
- State of charge
 - Higher flow rate for:
 - Charging at high SOC
 - Discharging at low SOC

Flow Rate

- One approach to setting flow rate for a given power charge/discharge:
 - Set flow rate to the maximum value required during the charge/discharge cycle
- Better yet, adjust flow rate to optimize efficiency
 - Dynamically adjust flow rate to the minimum required value for the current operating point
 - Variable flow rate will be a function of
 - SOC
 - Battery current
 - Necessary to account for non-equilibrium (transient) concentration effects within the cell

Castle Valley, UT

- PacifiCorp (Utah Power) service area
- Rattlesnake #22 feeder
 - 85 miles long
 - 25 kV
 - 10,957 kVA connected distribution transformers
 - Serves Moab and Castle Valley
 - At or over capacity during hot summer months
 - Customer complaints of poor power quality
- Environmentally, geologically pristine, sensitive area

Source: VRB Power Systems

Castle Valley, UT – VRB

Vanadium redox flow battery

- VRB Power Systems, Inc.
- Installed between the two load centers on the long distribution feeder
- **D** Power: 250 kW and 250 kvar
- Energy storage: 2 MWh
- **Discharge time**: 8 hours
- **3800** sq. ft.
- HVAC system maintains temperature at 5 °C ... 40 °C
- Purpose of the battery: *asset deferral* Alternative would be to upgrade the feeder

Castle Valley, UT – VRB

Castle Valley, UT – VRB

- □ Battery provides:
 - Peak shaving
 - Voltage regulation

Castle Valley, UT – Electrolyte Tanks

- Electrolyte storage tanks
 - Only two
 - Other systems use many
 - Fiberglass
 - 43' long × 9.5' diameter
 - **70,000** liters

46

Castle Valley, UT – Stacks

Six cell stacks

- Three two-stack series combinations connected in parallel
- 100 cells per stack
 - Nominal stack voltage: 140 V

- Each stack can provide 42 kW continuously
 Brief bursts of 150 kW possible
- Nominal DC battery voltage: 280 V

Castle Valley, UT – Power Conversion System

- □ 375 kVA transformer connects to 3-φ, 480 V bus
- Inverter includes AC-DC and DC-DC inverters
- 353 kVA
- 94% efficiency
- Power output: 250 kW and 250 kvar
 - Leading or lagging power factor

Castle Valley, UT – HMI

Human-machine interface:

Castle Valley, UT – Battery Operation

- 50
- Predetermined daily baseline charge/discharge profiles
 - Summer and Winter profiles
- Variable real/reactive power provided on top of baseline power for voltage regulation
- DC-DC efficiency: 78%
- AC-AC efficiency: 69%

Turlock, CA – Fe/Cr Flow Battery

- 51
- Battery purpose
 Integration of renewables
 Load shifting
- Fe/Cr flow battery
 250 kW charge/ discharge

Source: EnerVault

- □1MWh
- 4 hours of charge/ discharge
- EnerVault Corporation

Turlock, CA – Fe/Cr Flow Battery

- Almond orchard
 - 150 kW solar PV array
 - 260 kW well pump for irrigation
- Nine 120-cell stacks
 - 30 kW each

Turlock, CA – Fe/Cr Flow Battery

53

Unlike most flow batteries, EnerVault connects cell stacks in series

Pullman, WA – VRB

- Washington State University, Pullman, WA
 - Vanadium redox flow battery
 - Largest flow battery in North America or EU
 - **1** MW
 - **u** 4 MWh
 - UniEnergy Technologies
- Battery used for
 - Frequency regulation
 Voltage regulation

Pullman, WA – VRB

UET battery modules

- **G** 600 kW
- **2.2** MWh
- Five 20' shipping containers
- 20 MW per acre
- 40 MW per acre if double-stacked
- **□**~\$700/kWh
- **D** 65% ... 70% AC efficiency

