
ESE 471 – Energy Storage Systems

SECTION 5: FLOW BATTERIES
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Flow Battery Overview2



K. Webb ESE 471

3

Flow Batteries

 Flow batteries are electrochemical cells, in which the 
reacting substances are stored in electrolyte solutions 
external to the battery cell
 Electrolytes are pumped

through the cells
 Electrolytes flow across 

the electrodes
 Reactions occur at the 

electrodes
 Electrodes do not 

undergo a physical 
change

Source: EPRI
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Flow Batteries

 Flow batteries comprise 
two components:
 Electrochemical cell
 Conversion between 

chemical and electrical 
energy

 External electrolyte 
storage tanks
 Energy storage

Source: EPRI
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Flow Battery Electrochemical Cell

 Electrochemical cell
 Two half-cells separated by a proton-exchange 

membrane (PEM)
 Each half-cell contains an electrode and an electrolyte
 Positive half-cell: cathode and catholyte
 Negative half-cell: anode and anolyte

 Redox reactions occur in each half-cell to produce 
or consume electrons during charge/discharge

 Similar to fuel cells, but two main differences:
 Reacting substances are all in the liquid phase
 Rechargeable (secondary cells)



K. Webb ESE 471

6

Cell Stacks

 Open-circuit voltage of an individual cell in the range of 1 V … 2 V
 Determined by the particular chemistry

 For higher terminal voltages, multiple cells are connected in series
 Electrolyte flows through cell stack in parallel

Source: www.intechopen.com

 Carbon felt electrodes
 Porous – high surface area
 High conductivity

 Bipolar plates separate individual 
cells in the stack
 Shared electrode between adjacent 

cells
 Positive electrode for one cell, 

negative  electrode for the neighbor

 Electrodes on the ends are the 
external electrodes for the stack
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Flow Battery Characteristics

 Relatively low specific power and specific energy
 Best suited for fixed (non-mobile) utility-scale applications

 Energy storage capacity and power rating are decoupled
 Cell stack properties and geometry determine power
 Volume of electrolyte in external tanks determines energy storage 

capacity
 Flow batteries can be tailored for an particular application

 Very fast response times - < 1 msec
 Time to switch between full-power charge and full-power 

discharge
 Typically limited by controls and power electronics

 Potentially very long discharge times
 4 – 10 hours is common
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Flow batteries vs. Conventional Batteries

 Advantages over conventional batteries
 Energy storage capacity and power rating are decoupled

 Long lifetime
 Electrolytes do not degrade
 Electrodes are unaltered during charge/discharge

 Self-cooling
 Inherently liquid-cooled

 All cells in a stack supplied with the same electrolyte
 All cell voltages are equal
 Individual cells not susceptible to overcharge/undercharge
 No need for cell balancing
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Flow batteries vs. Conventional Batteries

 Advantages over conventional batteries (cont’d)
 Equal charge/discharge rates (power)
 Bipolar electrodes are possible
 Convenient for cell stacking

 Disadvantages over conventional batteries
 Higher initial cost
 Increased complexity associated with pumps and 

plumbing
 Lower specific energy and specific power
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Flow Battery Applications

 Peak shaving/load shifting
 Infrastructure upgrade deferral
 Arbitrage
 Long duration

 Load following
 Potentially replace peaker plants
 Long duration

 Integration of renewables
 Smooth fluctuating power from wind and solar
 Improve grid stability
 Short duration

 Frequency or voltage regulation
 Accommodate short-term real and reactive power demands
 Short duration
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Cost of Flow Batteries

 Cost of storage devices usually reported as either $/kW 
or $/kWh

 The Electric Power Research Institute (EPRI) estimates 
the cost of energy storages systems with three cost 
components
 Costs that scale with power capacity
 Costs that scale with energy storage capacity
 Fixed costs

 Total capital cost is given by
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝐸𝐸 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
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Cost of Flow Batteries

 Power:  $2300/kW
 Energy:  $300/kWh
 Fixed:  $250,000

 EPRI 2007 projections 
for 2013:
 Power:  $1250/kW
 Energy:  $210/kWh
 Fixed:  $280,000

 In 2007, the EPRI flow battery cost estimates were:

Source: EPRI
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Flow Battery Chemistry14
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Flow Battery Chemistry

 Several different chemistries used in flow batteries
 Most employ redox (oxidation-reduction) reactions
 Often referred to as redox flow batteries or RFBs

 Redox reactions
 Chemical reactions pairing a reduction reaction with an oxidation 

reaction
 Oxidation states of reactants are changed

 Reduction
 Gaining of electrons
 Oxidation state is decreased (reduced)

 Oxidation
 Loss of electrons
 Oxidation state is increased
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Redox Flow Battery Chemistry

 Oxidation at one electrode corresponds to reduction at 
the other
 Opposite reactions occur during charging and discharging

 Charging:
 Current flows from anode to cathode
 Electrons flow from cathode to anode
 Reduction occurs in the anolyte

𝐴𝐴𝑛𝑛+ + 𝑒𝑒− → 𝐴𝐴 𝑛𝑛−1 +

 Oxidation occurs in the catholyte

𝐵𝐵𝑚𝑚+ → 𝐵𝐵 𝑚𝑚+1 + + 𝑒𝑒−
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Redox Flow Battery Chemistry

 Discharging:
 Current flows from cathode to anode
 Electrons flow from anode to cathode
 Oxidation occurs in the anolyte

𝐴𝐴 𝑛𝑛−1 + → 𝐴𝐴𝑛𝑛+ + 𝑒𝑒−

 Reduction occurs in the catholyte

𝐵𝐵 𝑚𝑚+1 + + 𝑒𝑒− → 𝐵𝐵𝑚𝑚+
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Redox Couples

 Different flow batteries use different redox couples
 Pairs of redox reactants dissolved in electrolyte solution

 Common redox couples
 Vanadium/vanadium, V/V
 Zinc/bromine, Zn/Br
 Iron/chromium, Fe/Cr
 Bromine/Sulfur, Br/S

 Most common is the vanadium redox flow battery 
or VRB
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Vanadium

 Abundant
 Inexpensive
 Byproduct of many mining operations

 Vanadium can exist in four different oxidation states
 𝑉𝑉2+, 𝑉𝑉3+, 𝑉𝑉4+, and 𝑉𝑉5+

 In VRB electrolytes:
 𝑉𝑉4+ exists as 𝑉𝑉𝑂𝑂2+

 𝑉𝑉5+exists as 𝑉𝑉𝑂𝑂2+

 Vanadium in a VRB is dissolved in either:
 Sulfuric acid
 Mixture of sulfate and chloride (developed and licensed by PNNL)
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Vanadium

 Vanadium changes color as it changes oxidation state

Source: www.eenews.net, David Ferris

 Vanadium flow batteries use only a single element in both half-cells
 Eliminates the problem of cross-contamination across the membrane
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VRB Reactions

 At the anode (charging to the right):

𝑉𝑉3+ + 𝑒𝑒− ⇌ 𝑉𝑉2+

 At the cathode (charging to the right):

𝑉𝑉02+ + 𝐻𝐻2𝑂𝑂 ⇌ 𝑉𝑉𝑂𝑂2+ + 2𝐻𝐻+ + 𝑒𝑒−

 Anode half-cell standard potential
 𝐸𝐸0𝑎𝑎 = −0.26 𝑉𝑉

 Cathode half-cell standard potential
 𝐸𝐸0𝑐𝑐 = 0.99 𝑉𝑉

 Cell standard potential
 𝐸𝐸0 = 1.25 𝑉𝑉

 Cell potential given by the Nernst equation
 Nominal value often considered 1.4 𝑉𝑉
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Proton-Exchange Membrane

 Half-cells separated by 
a proton-exchange 
membrane (PEM)

 Allows protons to flow 
 From catholyte to 

anolyte during charging
 From anolyte to 

catholyte during 
discharging

Source: EPRI



K. Webb ESE 471

Electrochemical Model23
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Electrochemical Model

 As is the case for most batteries, a complete 
electrochemical model for a VRB is very complex

 Electrochemical model describes the relationship 
between cell voltage and
 State of charge (SOC)
 Operating conditions
 Current
 Electrolyte flow rate
 Temperature

 Internal losses
 Electrolyte concentrations
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Open-Circuit Voltage

 The open-circuit voltage as a function of SOC :

Source: www.intechopen.com
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Equivalent Circuit Model

 Simple RFB equivalent circuit model
 Thévenin equivalent circuit
 State-of-charge-dependent open-circuit voltage source

 The resistance models losses in 
the battery
 Voltaic losses
 Ohmic and ionic losses in the 

electrodes, electrolytes, and 
membrane

 Coulombic (Faradaic) losses
 Losses due to chemical side reactions
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Mechanical Model27
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RFB Fluid Model 

 The equivalent circuit model accounts for electrical 
and electrochemical behavior of the flow battery
 Models electrical and electrochemical losses that affect 

efficiency

 Flow batteries require electrolyte to be pumped
through the cell stack
 Pumps require power
 Pump power affects efficiency

 Need a fluid model for the battery in order to 
understand how mechanical losses affect efficiency
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RFB Fluid Model 

 Power required to pump electrolyte through cell stack
 Pumping power is proportional to

 Density of the fluid
 Head loss through the system
 Flow rate

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = Δ𝑝𝑝𝑝𝑝 (1)

 Total power required by the pump is determined by the 
pump efficiency

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(2)



K. Webb ESE 471

30

RFB Fluid Model 

 Pressure drop through the system includes pressure 
drops through both the piping and the cell stack

Δ𝑝𝑝 = Δ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + Δ𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3)

 Pressure drop along the piping is the sum of frictional 
losses and minor losses

Δ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −𝛾𝛾 Δ𝑧𝑧 + ℎ𝑓𝑓 + ℎ𝑚𝑚 (4)
where

𝛾𝛾:  specific weight of the fluid (𝛾𝛾 = 𝜌𝜌𝜌𝜌)
Δ𝑧𝑧:  height differential along the pipe
ℎ𝑓𝑓:  frictional losses
ℎ𝑚𝑚:  minor losses
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RFB Fluid Model 

 The frictional losses and minor losses are the sum of the losses 
along each section of pipe or from each fitting, valve, bend, etc.
 Given by the Darcy-Weisbach equation

ℎ𝑓𝑓,𝑖𝑖 = 𝑓𝑓𝑖𝑖
𝐿𝐿𝑖𝑖
𝐷𝐷𝑖𝑖

𝑉𝑉𝑖𝑖
2

2𝑔𝑔
(5)

and

ℎ𝑚𝑚,𝑖𝑖 = 𝑘𝑘𝐿𝐿,𝑖𝑖
𝑉𝑉𝑖𝑖
2

2𝑔𝑔
(6)

where
𝑓𝑓𝑖𝑖:  Darcy friction factor – dependent on roughness, diameter, 

and Reynolds number
𝑘𝑘𝐿𝐿,𝑖𝑖:  loss coefficient associated with each lossy feature (e.g. 

inlet, outlet, valves, bends, etc.)
𝐿𝐿𝑖𝑖:  length of section
𝐷𝐷𝑖𝑖:  diameter of section
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RFB Fluid Model 

 Calculating pressure drop across the cell stack becomes 
much more complicated
 Analytically intractable
 Evaluate using computational fluid dynamics (CFD) simulation

 CFD used for cell stack design to ensure
 Uniform electrolyte flow across electrodes
 Minimal pressure drop through stack

Source: www.intechopen.com
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Efficiency33
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Flow Battery Efficiency

 We would like to derive an expression for the 
round-trip efficiency of the flow battery
 Ratio of the energy delivered from the battery to the 

energy delivered to the battery

𝜂𝜂𝑟𝑟𝑟𝑟 = 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝑖𝑖𝑖𝑖

⋅ 100% (7)

 The input energy, 𝐸𝐸𝑖𝑖𝑖𝑖, is the electrical energy 
delivered to the battery terminals plus the energy 
delivered to the pumps

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖,𝑏𝑏 + 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 (8)
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Flow Battery Efficiency

 The energy quantities in (8) are given by the integrals of the 
respective powers
 For the battery

𝐸𝐸𝑖𝑖𝑖𝑖,𝑏𝑏 = ∫0
𝑡𝑡𝑐𝑐 𝑃𝑃𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑

𝐸𝐸𝑖𝑖𝑖𝑖,𝑏𝑏 = ∫0
𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏 𝑡𝑡 𝑣𝑣𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑 (9)

where 𝑡𝑡𝑐𝑐 is the charging time

 The pump runs and requires power during both charge and 
discharge, so, 

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 = ∫0
𝑡𝑡𝑐𝑐+𝑡𝑡𝑑𝑑 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 𝑡𝑡 𝑑𝑑𝑑𝑑 (10)

where 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 is given by (2)
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Flow Battery Efficiency

 Substituting (10) and (9) into (8), we have

𝐸𝐸𝑖𝑖𝑖𝑖 = ∫0
𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏 𝑡𝑡 𝑣𝑣𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑 + ∫0

𝑡𝑡𝑐𝑐+𝑡𝑡𝑑𝑑 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 𝑡𝑡 𝑑𝑑𝑑𝑑 (11)

 Note that not all of 𝐸𝐸𝑖𝑖𝑖𝑖,𝑏𝑏 is stored
 Some energy is lost in 𝑅𝑅𝑏𝑏

 Stored energy is

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑖𝑖𝑖𝑖,𝑏𝑏 − 𝐸𝐸𝑅𝑅𝑏𝑏,𝑖𝑖𝑖𝑖

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∫0
𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏 𝑡𝑡 𝑣𝑣𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑 − ∫0

𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏2 𝑡𝑡 𝑅𝑅𝑏𝑏 𝑑𝑑𝑑𝑑 (12)

 The energy output from the battery is equal to the stored energy 
minus losses in 𝑅𝑅𝑏𝑏 as energy flows out of the battery

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑅𝑅𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑖𝑖𝑖𝑖,𝑏𝑏 − 𝐸𝐸𝑅𝑅𝑏𝑏,𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑅𝑅𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = ∫0
𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏 𝑡𝑡 𝑣𝑣𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑 − ∫0

𝑡𝑡𝑐𝑐+𝑡𝑡𝑑𝑑 𝑖𝑖𝑏𝑏2 𝑡𝑡 𝑅𝑅𝑏𝑏 𝑑𝑑𝑑𝑑 (13)
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Flow Battery Efficiency

 Substituting (11) and (13) into (7), gives the round-
trip efficiency:

𝜂𝜂𝑟𝑟𝑟𝑟 = ∫0
𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏 𝑡𝑡 𝑣𝑣𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑−∫0

𝑡𝑡𝑐𝑐+𝑡𝑡𝑑𝑑 𝑖𝑖𝑏𝑏
2 𝑡𝑡 𝑅𝑅𝑏𝑏 𝑑𝑑𝑑𝑑

∫0
𝑡𝑡𝑐𝑐 𝑖𝑖𝑏𝑏 𝑡𝑡 𝑣𝑣𝑏𝑏 𝑡𝑡 𝑑𝑑𝑑𝑑+∫0

𝑡𝑡𝑐𝑐+𝑡𝑡𝑑𝑑 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖 𝑡𝑡 𝑑𝑑𝑑𝑑
(14)

 This is round-trip efficiency at the terminals of the 
battery
 DC-DC efficiency
 Typical values: 70% … 85%
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Flow Battery Efficiency

 More meaningful is AC-AC round-trip efficiency
 Accounts for power conversion system
 May include transformer losses as well

𝜂𝜂𝑟𝑟𝑟𝑟,𝐴𝐴𝐴𝐴 = 𝜂𝜂𝑟𝑟𝑟𝑟,𝐷𝐷𝐷𝐷 ⋅ 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝2 ⋅ 𝜂𝜂𝑡𝑡𝑡𝑡2

 𝜂𝜂𝑟𝑟𝑟𝑟,𝐷𝐷𝐷𝐷 is given by (14)
 Transformer loss typically ~1%
 Typical values: 65% … 75%
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Electrolyte Flow Rate

 Efficiency is determined, in part, by the amount of 
power consumed by the pumps
 Pumping power dependent on flow rate:

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Δ𝑝𝑝 ⋅ 𝑄𝑄

 Minimum required flow rate is a function of:
 Battery input/output power
 Higher power requires higher flow rate

 State of charge
 Higher flow rate for:

 Charging at high SOC
 Discharging at low SOC
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Flow Rate

 One approach to setting flow rate for a given power 
charge/discharge:
 Set flow rate to the maximum value required during the 

charge/discharge cycle

 Better yet, adjust flow rate to optimize efficiency
 Dynamically adjust flow rate to the minimum required value 

for the current operating point
 Variable flow rate will be a function of
 SOC
 Battery current

 Necessary to account for non-equilibrium (transient) 
concentration effects within the cell
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Castle Valley, UT

 PacifiCorp (Utah Power) service area
 Rattlesnake #22 feeder

 85 miles long
 25 kV
 10,957 kVA connected distribution 

transformers
 Serves Moab and Castle Valley
 At or over capacity during hot summer 

months
 Customer complaints of poor power 

quality
 Environmentally, geologically pristine, 

sensitive area
Source: VRB Power Systems
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Castle Valley, UT – VRB 

 Vanadium redox flow battery
 VRB Power Systems, Inc.

 Installed between the two load 
centers on the long distribution 
feeder

 Power:  250 kW and 250 kvar

 Energy storage:  2 MWh

 Discharge time:  8 hours

 3800 sq. ft.
 HVAC system maintains temperature at 5 °C … 40 °C

 Purpose of the battery: asset deferral
 Alternative would be to upgrade the feeder

Source: VRB Power Systems
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Castle Valley, UT – VRB 

Source: VRB Power Systems
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Castle Valley, UT – VRB 

 Battery provides:
 Peak shaving
 Voltage regulation

Source: VRB Power Systems
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Castle Valley, UT – Electrolyte Tanks

 Electrolyte storage tanks
 Only two 
 Other systems use many

 Fiberglass
 43’ long × 9.5’ diameter
 70,000 liters

Source: VRB Power Systems
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Castle Valley, UT – Stacks

 Nominal stack voltage: 140 V
 Stack dimensions: 1.0 m × 1.1 m × 1.3 m
 Each stack can provide 42 kW continuously

 Brief bursts of 150 kW possible
 Nominal DC battery voltage: 280 V

 Six cell stacks
 Three two-stack series 

combinations connected in 
parallel

 100 cells per stack
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Castle Valley, UT – Power Conversion System

 375 kVA transformer 
connects to 3-𝜙𝜙, 480 V bus

 Inverter includes AC-DC and 
DC-DC inverters

 353 kVA
 94% efficiency 
 Power output: 250 kW and 

250 kvar
 Leading or lagging power 

factor
Source: EPRI
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Castle Valley, UT – HMI

 Human-machine interface:
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Castle Valley, UT – Battery Operation

 Predetermined daily 
baseline charge/discharge 
profiles
 Summer and Winter 

profiles

 Variable real/reactive 
power provided on top of 
baseline power for 
voltage regulation

 DC-DC efficiency: 78%

 AC-AC efficiency: 69%
Source: EPRI



K. Webb ESE 471

51

Turlock, CA – Fe/Cr Flow Battery

 Battery purpose
 Integration of 

renewables
 Load shifting

 Fe/Cr flow battery
 250 kW charge/ 

discharge
 1 MWh
 4 hours of charge/ discharge
 EnerVault Corporation

Source: EnerVault
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Turlock, CA – Fe/Cr Flow Battery

 Almond orchard
 150 kW solar PV array
 260 kW well pump for irrigation

 Nine 120-cell stacks
 30 kW each

Source: EnerVault
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Turlock, CA – Fe/Cr Flow Battery

 Unlike most flow batteries, EnerVault connects cell 
stacks in series

Source: EnerVault
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Pullman, WA – VRB 

 Washington State University, Pullman, WA
 Vanadium redox flow battery
 Largest flow battery in North America or EU
 1 MW
 4 MWh
 UniEnergy

Technologies
 Battery used for

 Frequency 
regulation

 Voltage regulation
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Pullman, WA – VRB 

 UET battery modules
 600 kW
 2.2 MWh
 Five 20’ shipping 

containers
 20 MW per acre
 40 MW per acre if 

double-stacked
 ~$700/kWh
 65% … 70% AC 

efficiency
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