Introduction
Consider the following unity-feedback system

Assume \(D(s) = K \)
- A proportional controller

Design for 8% overshoot
- Use root locus to determine \(K \) to yield required \(\zeta \)

\[
\zeta = -\frac{\ln(0.08)}{\sqrt{\pi^2 + \ln^2(0.08)}} = 0.63
\]

Desired poles and gain:
- \(s_{1,2} = -2 \pm j2.5 \)
- \(K = 2.4 \)
Introduction

- Overshoot is 8%, as desired, but steady-state error is large:
 - \(e_{ss} = 29.4\% \)

- Position constant:
 \[
 K_p = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{3K}{(s + 1)(s + 3)} = K
 \]
 \(K_p = 2.4 \)

- Steady-state error:
 \[
 e_{ss} = \frac{1}{1 + K_p} = \frac{1}{1 + K}
 \]
 \(e_{ss} = \frac{1}{1 + 2.4} = 0.294 \)
Introduction

- Let’s say we want to reduce steady-state error to 2%
- Determine required gain
 \[e_{ss} = \frac{1}{1 + K_p} = \frac{1}{1 + K} = 0.02 \]
 \[K = \frac{1}{0.02} - 1 = 49 \]
- Transient response is degraded
 - \(OS = 59.2\% \)
- Can set overshoot or steady-state error via gain adjustment
 - Not both simultaneously
Now say we want $\text{OS} = 8\%$ and $t_s \approx 1\; \text{sec}$, we’d need:

$$\zeta = 0.63 \quad \text{and} \quad \sigma = 4.6$$

Desired poles are not on the root locus

Closed-loop poles can exist only on the locus

If we want poles elsewhere, we must move the locus

Modify the locus by adding dynamics (poles and zeros) to the controller

A compensator
We’ll learn how to use root-locus techniques to design compensators to do the following:

- **Improve steady-state error**
 - Proportional-integral (PI) compensator
 - Lag compensator

- **Improve dynamic response**
 - Proportional-derivative (PD) compensator
 - Lead compensator

- **Improve dynamic response and steady-state error**
 - Proportional-integral-derivative (PID) compensator
 - Lead-lag compensator
Compensation Configurations

- Two basic compensation configurations:
 - *Cascade compensation*
 - *Feedback compensation*

- We will focus on *cascade* compensation
Improving Steady-State Error
Improving Steady-State Error

- We’ve seen that we can improve steady-state error by adding a pole at the origin
 - An integrator
 - System type increased by one for unity-feedback

- For example, consider the previous example
 - Let’s say we are happy with 8% overshoot and the corresponding pole locations
 - But, want to reduce steady-state error to 2% or less
Improving Steady-State Error

- System is type 0
 - Adding an integrator to $D(s)$ will increase it to type 1
 - Zero steady-state error for constant reference

- Let’s first try a very simple approach:

![System Diagram]

- Plot the root locus for this system
 - How does the added pole at the origin affect the locus?
Improving Steady-State Error

- Now have \((n - m) = 3\) asymptotes to \(C^\infty\)
 \[
 \theta_a = 60^\circ, 180^\circ, 300^\circ
 \]
 \[
 \sigma_a = -1.33
 \]

- Locus now crosses into the RHP
 - Integrator has had a \textit{destabilizing} effect on the closed-loop system

- System is now type 1, but
- Desired poles are no longer on the root locus
Desired poles no longer satisfy the angle criterion:
\[\angle D(s_1)G(s_1) = -(\phi_1 + \phi_2 + \phi_3) \]
\[\angle D(s_1)G(s_1) = -(128.8^\circ + 111.9^\circ + 68.1^\circ) \]
\[\angle D(s_1)G(s_1) = -308.8^\circ \neq 180^\circ \]

Excess angle from the additional pole at the origin, \(\phi_1 \)

How could we modify \(D(s) \) to satisfy the angle criterion at \(s_1 \)?
- A zero at the origin would do it, of course
- But, that would cancel the desired pole at the origin

How about a zero very close to the origin?
Improving Steady-State Error

- Now, $\psi_1 \approx \phi_1$
 - Angle contributions *nearly* cancel
 - s_1 is not on the locus, but *very close*

- The closer the zero is to the origin, the closer s_1 will be to the root locus

- Let $z_c = -0.1$

- Controller transfer function:
 \[
 D(s) = K \frac{(s + 0.1)}{s}
 \]

- Plot new root locus to see how close it comes to s_1
Improving Steady-State Error

- Now only two asymptotes to C^∞
 - $\theta_a = 90^\circ, 270^\circ$
 - $\sigma_a = -1.95$
- Real-axis breakaway point:
 - $s = -1.99$
- s_1 not on locus, but close
- Closed-loop poles with $\zeta = 0.63$:
 - $s_{1,2} = -1.96 \pm j2.44$
- Gain: $K = 2.37$
 - Determined from the MATLAB root locus plot
Improving Steady-State Error

- Initial transient relatively unchanged
 - Pole/zero pair near the origin nearly cancel
 - 2nd-order poles close to desired location

- Zero steady-state error
 - Pole at origin increases system type to type 1
 - Slow transient as error is integrated out

- 2nd-order approximation is valid
 - Poles: \(s = -0.07, \)
 \[s = -1.96 \pm j2.44 \]
 - Zeros: \(s = -0.1 \)
Ideal Integral Compensation
The compensator we just designed is an *ideal integral* or *proportional-integral (PI) compensator*

Control input to plant, $U(s)$, has two components:
- One *proportional* to the error, plus
- One proportional to the *integral* of the error

$$U(s) = E(s) \left[K \frac{(s + a)}{s} \right] = KE(s) + \frac{Ka}{s} E(s)$$

Equivalent to:
PI Compensation – Summary

- **PI compensation**

\[
D(s) = K \frac{(s + a)}{s} = K_p + \frac{K_i}{s}
\]

- Controller adds a *pole at the origin* and a *zero nearby*

- Pole at origin (integrator) increases system type, *improves steady-state error*

- Zero near the origin nearly cancels the added pole, leaving *transient response nearly unchanged*
PI Compensation – Zero Location

- *Compensator zero very close to the origin:*
 - Closed-loop poles moved very little from uncompensated location
 - Relatively low integral gain, K_i
 - Closed-loop pole close to origin – slow
 - Slow transient as error is integrated out

- *Compensator zero farther from the origin:*
 - Closed-loop poles moved farther from uncompensated location
 - Relatively higher integral gain, K_i
 - Closed-loop pole farther from the origin – faster
 - Error is integrated out more quickly
Root locus and step response variation with z_c:

- $z_c = 0.1$
- $z_c = 0.2$
- $z_c = 0.4$
- $z_c = 0.6$

PI-Compensated Step Response vs. PI Zero Location
Lag Compensation
Lag Compensation

- PI compensation requires an *ideal integrator*
 - Active circuitry (opamp) required for analog implementation
 - Susceptible to *integrator windup*

- An alternative to PI compensation is *lag compensation*
 - Pole placed near the origin, not at the origin
 - Analog implementation realizable with passive components (resistors and capacitors)

- Like PI compensation, lag compensation uses a closely-spaced pole/zero pair
 - Angular contributions nearly cancel
 - Transient response nearly unaffected

- System type not increased
 - Error is improved, not eliminated
Lag Compensation – Error Reduction

- Consider the following generic feedback system

- A type 0 system, assuming $p_i \neq 0, \forall i$

- Position constant:

$$K_{pu} = \lim_{s \to 0} G(s) = K \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots}$$

- Now, add lag compensation

- The compensated position constant:

$$K_{pc} = \left(K \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots}\right) \frac{z_c}{p_c} = K_{pu} \frac{z_c}{p_c}$$
Lag Compensation – Error Reduction

- Compensator pole is closer to the origin than the compensator zero, so

\[z_c > p_c \quad \text{and} \quad K_{pc} > K_{pu} \]

- For large improvements in \(e_{ss} \), make \(z_c \gg p_c \)
 - But, to avoid affecting the transient response, we need \(z_c \approx p_c \)
 - As long as both \(z_c \) and \(p_c \) are very small, we can satisfy both requirements: \(z_c \gg p_c \) and \(z_c \approx p_c \)

\[
K_{pc} = \left(K \frac{z_1 z_2 \ldots}{p_1 p_2 \ldots} \right) \frac{z_c}{p_c} = K_{pu} \frac{z_c}{p_c}
\]
Lag Compensation – Example

- Apply lag compensation to our previous example
 - Design for a 10x improvement of the position constant

\[
\begin{align*}
R(s) & \rightarrow \sum \rightarrow K \frac{(s+z_c)}{(s+p_c)} \rightarrow \frac{3}{(s+1)(s+3)} \rightarrow Y(s)
\end{align*}
\]

- Want \(p_c \approx 0 \) (relative to other poles)
 - Let \(p_c = 0.01 \)

- Want a 10x improvement in \(K_p \)
 - \(z_c = 10p_c = 0.1 \)

- Lag pole and zero differ by a factor of 10
 - Static error constant improved by a factor of 10

- Lag pole/zero are very close together relative to poles at \(s = -1, -3 \)
 - Angular contributions nearly cancel
 - Transient response nearly unaffected
Lag Compensation – Example

- Root locus and step response of lag-compensated system
Lag Compensation – Example

- Now, let $z_c = 0.4$ and $p_c = 0.04$
 - 2nd-order poles moved more
 - Faster low-frequency closed-loop pole
 - Faster overall response
Lag Compensation – Summary

- **Lag compensation**

\[D(s) = K \frac{(s+z_c)}{(s+p_c)}, \quad \text{where} \quad p_c < z_c \]

- Controller adds a *pole near the origin* and a *slightly-higher-frequency zero nearby*

- **Static error constant improved** by \(z_c/p_c \)

- Angle contributions from closely-spaced pole/zero nearly cancel

- *Transient response is nearly unchanged*
Improving Transient Response
Improving Transient Response

- Consider the following system

- Root locus:
 - Three asymptotes to C^∞ at 60°, 180°, and 300°
 - Real-axis breakaway point: $s = -1.88$
 - Locus crosses into RHP
Improving Transient Response

- Design proportional controller for 10% overshoot
 - $K = 1.72$

- Overshoot < 10% due to third pole
Improving Transient Response

- Now, decrease settling time to $t_s \approx 1.5 \text{ sec}$
 - Maintain same overshoot ($\zeta = 0.59$)

 $$\sigma \approx \frac{4.6}{t_s} = 3.1$$

- Desired poles:
 - $s_{1,2} = -3.1 \pm j4.23$
 - Not on the locus

- Must add compensation to move the locus where we want it
 - *Derivative compensation*
Ideal Derivative Compensation
One way to improve transient response is to add the derivative of the error to the control input to the plant. This is ideal derivative or proportional-derivative (PD) compensation.

\[U(s) = E(s)(K_p + K_d s) = K(s + z_c)E(s) \]

Compensator transfer function:
\[D(s) = K(s + z_c) \]

Compensator adds a single zero at \(s = -z_c \)
PD Compensation

- Compensator zero will change the root locus
 - Placement of the zero allows us to move the locus to place closed-loop poles where we want them

- One less asymptote to C^∞
 - $(n - m)$ decreased by one

- Asymptote origin changes

 $$\sigma_a = \frac{\Sigma p_i - \Sigma z_i}{n - m}$$

 - As z_c increases (moves left), σ_a moves right, toward the origin
 - As z_c decreases (moves right), σ_a moves further into the LHP
PD Compensation

- Derivative compensation allows us to speed up the closed-loop response
 - Control signal proportional to (in part) the derivative of the error

- When the reference, $r(t)$, changes quickly:
 - Error, $e(t)$, changes quickly
 - Derivative of the error, $\dot{e}(t)$, is large
 - Control input, $u(t)$, may be large

- Derivative compensation *anticipates future error* and compensates for it
PD Compensation – Example 1

- Now add PD compensation to our example system
- Root locus depends on z_c
 - Let’s first assume $z_c < 3$
- Two real-axis segments
 - $-6 \leq s \leq -3$
 - Between pole at -1 and z_c
- Two asymptotes to C^∞
 - $\theta_a = 90^\circ, 270^\circ$
 - $\sigma_a = \frac{z_c-10}{2}$
 - As z_c varies from $0 \ldots 3$, σ_a varies from $-5 \ldots -3.5$
- Breakaway point between $-6 \ldots -3$
PD Compensation – Example 1

- As z_c moves to the left, σ_a moves to the right
- Moving z_c allows us to move the locus

![Graphs showing the movement of the locus with different z_c values](image)
PD Compensation – Example 1

- Now move the zero further to the left: \(z_c > 3 \)
- Still two real-axis segments
 - \(-6 \leq s \leq -z_c\)
 - \(-3 \leq s \leq -1\)
- Two asymptotes to \(C^\infty \)
 - \(\theta_a = 90^\circ, 270^\circ \)
 - \(\sigma_a = \frac{z_c - 10}{2} \)
 - As \(z_c \) varies from \(3 \) ... \(\infty \), \(\sigma_a \) varies from \(-3.5 \) ... \(\infty \)
- Breakaway point between \(-3 \) ... \(-1\)

\[
\begin{align*}
R(s) & \quad \sum \quad K(s+z_c) \quad \frac{15}{(s+1)(s+3)(s+6)} \quad Y(s)
\end{align*}
\]
Asymptote origin continues to move to the right

- $z_c = 3.5$
- $z_c = 4.0$
- $z_c = 4.5$
- $z_c = 5.0$
PD Compensation – Calculating \(z_C \)

- For this particular system, we’ve seen:
 - Additional zero decreased the number of asymptotes to \(C^\infty \) by one
 - A stabilizing effect – locus does not cross into the RHP
 - Adjusting \(z_C \) allows us to move the asymptote origin left or right

- Next, we’ll determine exactly where to place \(z_C \) to place the closed-loop poles where we want them
PD Compensation – Example 2

- Desired 2nd-order poles: \(s_{1,2} = -3.1 \pm j4.23 \)
 - Calculate required value for \(z_c \) such that these points are on the locus

- Must satisfy the angle criterion
 \[
 \angle D(s_1)G(s_1) = 180^\circ \\
 \angle D(s_1)G(s_1) = \psi_c - \phi_1 - \phi_2 - \phi_3 \\
 \psi_c = 180^\circ + \phi_1 + \phi_2 + \phi_3 \\
 \phi_1 = 116.4^\circ \\
 \phi_2 = 91.35^\circ \\
 \phi_3 = 55.57^\circ
 \]

- The required angle from \(z_c \):
 \(\psi_c = 83.3^\circ \)

- Next, determine \(z_c \)
Compensator zero, \(z_c \), must contribute \(\psi_c = 83.3^\circ \) at \(s_{1,2} = -3.1 \pm j4.23 \).

Calculate the required value of \(z_c \)

\[
\psi_c = \angle(s_1 + z_c) = \angle(-3.1 + j4.23 + z_c) = 83.3^\circ
\]

\[
\psi_c = \tan^{-1}\left(\frac{4.23}{z_c - 3.1}\right)
\]

\[
\tan(\psi_c) = \frac{4.23}{z_c - 3.1}
\]

\[
z_c = \frac{4.23}{\tan(\psi_c)} + 3.1 = \frac{4.23}{\tan(83.3^\circ)} + 3.1
\]

The required compensator zero:

\[
z_c = 3.6
\]
PD Compensation – Example 2

- Locus passes through desired points
- Closed-loop poles at $s = -3.1 \pm j4.23$ for $K = 1.6$
- Third closed-loop pole at $s = -3.8$
 - Close to zero at $s = -3.6$
 - 2nd-order approximation likely justified
PD Compensation – Example 2

- Settling time reduced, as desired
- Overshoot is a little higher than 10%
 - Higher order pole and zero do not entirely cancel
 - Iterate to further refine performance, if desired
PD Compensation – Summary

- **PD compensation**

 \[D(s) = K(s + z_c) \]

 - Controller adds a *single zero*

- Angular contribution from the compensator zero allows the root locus to be modified

- Calculate \(z_c \) to satisfy the angle criterion at desired closed-loop pole locations
 - Use magnitude criterion or plot root locus to determine required gain
Lead Compensation
Feedback control requires measurement of a system’s output with some type of sensor

- Inherently noisy
- Measurement noise tends to be broadband in nature
 - I.e., includes energy at high frequencies
- High-frequency signal components change rapidly
 - Large time derivatives
- Derivative (PD) compensation amplifies measurement noise

An alternative is lead compensation

- Amplification of sensor noise is reduced
Lead Compensation

- PD compensation utilizes an ideal differentiator
 - *Amplifies sensor noise*
 - Active circuitry (opamp) required for analog implementation

- An alternative to PD compensation is *lead compensation*
 - Compensator adds one zero and a higher-frequency pole

$$D(s) = K \frac{(s+z_c)}{(s+p_c)}, \hspace{1cm} \text{where} \hspace{1cm} p_c > z_c$$

- Pole can be far enough removed to have little impact on 2nd-order dynamics
- Additional high-frequency pole *reduces amplification of noise*
- Analog implementation realizable with passive components (resistors and capacitors)
Apply lead compensation to our previous example system

Desired closed-loop poles:

\[s_{1,2} = -3.1 \pm j 4.23 \]

Angle criterion must be satisfied at \(s_1 \)

\[\angle D(s_1)G(s_1) = 180^\circ \]
\[\angle D(s_1) + \angle G(s_1) = 180^\circ \]
\[\angle D(s_1) = 180^\circ - \angle G(s_1) \]
\[\angle G(s_1) = -(\phi_1 + \phi_2 + \phi_3) \]
\[\angle G(s_1) = -263.3^\circ \]

Required net angle contribution from the compensator:

\[\angle D(s_1) = 443.3^\circ = 83.3^\circ \]
Lead Compensation – Example

- For s_1 to be on the locus, we need $\angle D(s_1) = 83.3^\circ$
 - Zero contributes a positive angle
 - Higher-frequency pole contributes a smaller negative angle
 - Net angular contribution will be positive, as required:
 \[\angle D(s_1) = \angle(s_1 + z_c) - \angle(s_1 + p_c) = 83.3^\circ \]
- Compensator angle is the angle of the ray from s_1 through z_c and p_c
 \[\angle D(s_1) = \theta_c = 88.3^\circ \]
- Infinite combinations of z_c and p_c will provide the required θ_c
An infinite number of possible z_c/p_c combinations

- All provide $\theta_c = 83.3^\circ$
- Different static error constants
- Different required gains
- Different location of other closed-loop poles

No real rule for how to select z_c and p_c

Some options:
- Set p_c as high as acceptable given noise requirements
- Place z_c below or slightly left of the desired poles
Lead Compensation – Example

- Root locus and Step response for $z_c = 0.5, p_c = 8.5$
- Lower-frequency pole/zero do not adequately cancel

$$z_c = 0.5, \ p_c = 8.5, \ K = 9.4$$
Lead Compensation – Example

- Root locus and Step response for $z_c = 1.5$, $p_c = 11.3$
- Effect of lower-frequency pole/zero reduced

![Root locus and Step response graph]

$z_c = 1.5$, $p_c = 11.3$, $K = 13.9$
Lead Compensation – Example

- Root locus and Step response for $z_c = 2.5$, $p_c = 19.2$
- Lower-frequency pole/zero very nearly cancel

\[
\begin{align*}
z_c &= 2.5, \quad p_c = 19.2, \quad K = 26.6
\end{align*}
\]
Lead Compensation – Example

- Root locus and Step response for $z_c = 3.2$, $p_c = 48.5$
- Higher-frequency pole/zero almost completely cancel

$z_c = 3.2$, $p_c = 48.5$, $K = 73.6$
Here, $z_c = 2.5$ or $z_c = 3.2$ are good choices.

Steady-state error varies.

Error depends on gain required for each lead implementation.
Lead Compensation – Summary

- **Lead compensation**
 \[D(s) = K \frac{(s + z_c)}{(s + p_c)} \], where \(p_c > z_c \)

- Controller adds a **lower-frequency zero** and a **higher-frequency pole**

- Net angular contribution from the compensator zero and pole allows the root locus to be modified
 - Allows for **transient response improvement**

- Infinite number of possible \(z_c/p_c \) combinations to satisfy the angle criterion at the design point
Improving Error and Transient Response
Improving Error and Transient Response

- PI (or lag) control improves *steady-state error*
- PD (or lead) control can improve *transient response*

- Using both together can improve both error and dynamic performance
 - PD or lead compensation to achieve desired transient response
 - PI or lag compensation to achieve desired steady-state error

- Next, we’ll look at two types of compensators:
 - *Proportional-integral-derivative* (PID) compensator
 - *Lead-lag* compensator
Improving Error and Transient Response

- Two possible approaches to the design procedure:
 1. First design for transient response, then design for steady-state error
 - Response may be slowed slightly in the process of improving steady-state error
 2. First design for steady-state error, then design for transient response
 - Steady-state error may be affected

- In either case, iteration is typically necessary
- We’ll follow the first approach, as does the text
PID Compensation
Proportional-Integral-Derivative Compensation

- **Proportional-integral-derivative (PID) compensation**
 - Combines PI and PD compensation
 - PD compensation adjusts transient response
 - PI compensation improves steady-state error

- Controller transfer function:

 \[D(s) = K_p + \frac{K_i}{s} + K_d s = \frac{K_d s^2 + K_p s + K_i}{s} \]

- **Two zeros and a pole at the origin**
 - Pole/zero at/near the origin determined through PI compensator design
 - Second zero location determined through PD compensator design
PID Design Procedure

- **PID compensator design procedure:**

1. Determine closed-loop pole location to provide desired transient response
2. Design PD controller (zero location and gain) to place closed-loop poles as desired
3. Simulate the PD-compensated system, iterate if necessary
4. Design a PI controller, add to the PD-compensated system, and determine the gain required to maintain desired dominant pole locations
5. Determine PID parameters: K_p, K_i, and K_d
6. Simulate the PID-compensated system and iterate, if necessary
PID Compensation – Example

- Design PID compensation to satisfy the following specifications:
 - $t_s \approx 2\text{ sec}$
 - $\%OS \approx 20\%$
 - Zero steady-state error to a constant reference

- First, design PD compensator to satisfy dynamic specifications
PID Compensation – Example

- Calculate desired closed-loop pole locations
 \[\sigma \approx \frac{4.6}{t_s} = 2.3 \]
 \[\zeta = -\frac{\ln(0.2)}{\sqrt{\pi^2 + \ln^2(0.2)}} = 0.46 \]
 \[\omega_d = \frac{\sigma}{\zeta} \sqrt{1 - \zeta^2} = \frac{2.3}{0.46} \sqrt{1 - 0.46^2} \]
 \[\omega_d = 4.49 \]

- Desired 2nd-order poles:
 \[s_{1,2} = -2.3 \pm j4.49 \]

- Uncompensated root locus does not pass through the desired poles
 - Gain adjustment not sufficient
 - Compensation required
PID Compensation – Example

- **PD compensator design**
- **Determine the required angular contribution of the compensator zero to satisfy the angle criterion at \(s_1 \)**

\[
\angle D_{pd}(s_1)G(s_1) = 180^\circ
\]

\[
\angle D_{pd}(s_1) = 180^\circ - \angle G(s_1)
\]

\[
\angle G(s_1) = -\phi_1 - \phi_2 - \phi_3
\]

\[
\phi_1 = \angle (s_1 + 1) = 106.15^\circ
\]

\[
\phi_2 = \angle (s_1 + 3) = 81.14^\circ
\]

\[
\phi_3 = \angle (s_1 + 6) = 50.51^\circ
\]

\[
\angle G(s_1) = -237.8^\circ
\]

\[
\angle D_{pd}(s_1) = 180^\circ + 237.8^\circ = 417.8^\circ
\]

- **Required angle from PD zero**

\[
\psi_{pd} = 57.8^\circ
\]
PID Compensation – Example

- Use required compensator angle to place the PD zero, z_{pd}

\[\angle D_{pd}(s_1) = \angle (s_1 + z_{pd}) \]
\[\angle D_{pd}(s_1) = \angle (-2.3 + z_{pd} + j4.49) \]
\[\tan(\psi_{pd}) = \frac{4.49}{z_{pd} - 2.3} \]
\[z_{pd} = \frac{4.49}{\tan(57.8^\circ)} + 2.3 = 5.13 \]

- PD compensator transfer function:

\[D_{pd}(s) = K(s + 5.13) \]
PID Compensation – Example

- PD-compensated root locus
- Determine required gain from MATLAB plot, or
- Apply the **magnitude criterion**:

\[
K = \left| \frac{1}{D_{pd}(s_1)G(s_1)} \right|
\]

\[
K = \left| \frac{(s_1 + 1)(s_1 + 3)(s_1 + 6)}{15(s_1 + 5.13)} \right|
\]

\[K = 1.55\]

- PD compensator:

\[D_{pd}(s) = 1.55(s + 5.13)\]
PID Compensation – Example

- Performance specifications not met exactly
 - Higher-frequency pole/zero do not entirely cancel
 - Close enough for now – may need to iterate when PI compensation is added

![PID-Compensated Step Responses](image)

- %OS = 21.0%
- \(t_s = 1.7 \text{ sec} \)
- %OS = 18.3%
- \(t_s = 3.3 \text{ sec} \)
PID Compensation – Example

Next, add PI compensation to the PD-compensated system.

- Add a pole at the origin and a zero close by

\[D_{pi}(s) = \frac{s + z_{pi}}{s} \]

Where should we put the zero, \(z_{pi} \)?

- In this case, open-loop pole at the origin will become a closed-loop pole near \(-z_{pi}\)
- Very small \(z_{pi} \) yields very slow closed-loop pole
 - Error integrates out very slowly
- Small \(z_{pi} \) means PI compensator will have less effect on the PD-compensated root locus
- Simulate and iterate
PID Compensation – Example

- Step response for various z_{pi} values:
- Here, $z_{pi} = 0.8$ works well
 - Moving z_{pi} away from the open-loop pole at the origin moves the 2nd-order poles significantly:
 $$s_{1,2} = -1.86 \pm j3.63$$
 - Faster low-frequency closed-loop pole means error is integrated out more quickly
PID Compensation – Example

- The resulting PID compensator:

\[D(s) = K \frac{(s + 0.8)}{s}(s + 5.13) \]

- Required gain: \(K = 1.15 \)

\[D(s) = \frac{1.15s^2 + 6.817s + 3.718}{s} \]

\[D(s) = \frac{K_d s^2 + K_p s + K_i}{s} \]

- The PID gains:

\(K_p = 6.817, \ K_i = 3.718, \ K_d = 1.15 \)
PID Compensation – Example

- Step response of the PID-compensated system:
- Settling time is a little slow
- A bit of margin on the overshoot
- Iterate
 - First, try adjusting gain alone
 - If necessary, revisit the PD compensator

![PID-Compensated Step Responses](image)

- %OS = 18.1%
- $t_s = 2.2$ sec
PID Compensation – Example

- Increasing gain to $K = 1.25$ speed things up a bit, while increasing overshoot.

- Recall, however that root locus asymptotes are vertical.
 - Increasing gain will have little effect on settling time.

- If further refinement is required, must revisit the PD compensator.
PID Compensation – Example

- How valid was the second-order approximation we used for design of this PID-compensated system?

- Pole at $s = -0.78$
 - Nearly canceled by the zero at $s = -0.8$

- Pole at $s = -5.5$
 - Not high enough in frequency to be negligible, but
 - Partially canceled by zero at $s = -5.13$

- But, validity of the assumption is not really important
 - Used as starting point to locate poles
 - Iteration typically required anyway
PID Compensation – Summary

- **PID compensation**
 \[
 D(s) = K_p + \frac{K_i}{s} + K_d s = \frac{K_d s^2 + K_p s + K_i}{s}
 \]
- Two zeros and a pole at the origin
- Cascade of PI and PD compensators

- PD compensator
 - Added zero allows for transient response improvement

- PI compensator
 - Pole at the origin increases system type
 - Nearby zero nearly cancels angular contribution of the pole, limiting its effect on the root locus
Lead-Lag Compensation
Lead-Lag Compensation

- Just as we combined derivative and integral compensation, we can combine **lead** and **lag** as well
 - *Lead-lag compensation*
 - Lead compensator improves **transient response**
 - Lag compensator improves **steady-state error**

- Compensator transfer function:

\[
D(s) = K \frac{(s + z_{\text{lead}})(s + z_{\text{lag}})}{(s + p_{\text{lead}})(s + p_{\text{lag}})}
\]

- Lead compensator adds a pole and zero - \(z_{\text{lead}} < p_{\text{lead}} \)
- Lag pole/zero close to the origin - \(z_{\text{lag}} > p_{\text{lag}} \approx 0 \)
Lead-Lag Design Procedure

- **Lead-lag compensator design procedure:**
 1. Determine closed-loop pole location to provide desired transient response
 2. Design the lead compensator (zero, pole, and gain) to place closed-loop poles as desired
 3. Simulate the lead-compensated system, iterate if necessary
 4. Evaluate the steady-state error performance of the lead-compensated system to determine how much of an improvement is required to meet the error specification
 5. Design the lag compensator to yield the required steady-state error performance
 6. Simulate the lead-lag-compensated system and iterate, if necessary
Lead-Lag Compensation – Example

- Design lead-lag compensation to satisfy the following specifications:
 - $t_s \approx 2$ sec
 - $\%OS \approx 20\%$
 - 2% steady-state error to a constant reference

- First, design the lead compensator to satisfy the dynamic specifications
- Then, design the lag compensator to meet the steady-state error requirement
Design the lead compensator to achieve the same desired dominant 2nd-order pole locations:

\[s_{1,2} = -2.3 \pm j4.49 \]

Again, an infinite number of possibilities

Let’s assume we want to limit the lead pole to \(s = -100 \) due to noise considerations

Lower pole frequency results in amplification of less noise

\[
D_{\text{lead}}(s) = K \frac{(s + z_{\text{lead}})}{(s + 100)}
\]

Apply the angle criterion to determine \(z_{\text{lead}} \)
Lead-Lag Compensation – Example

\[\angle D_{lead}(s_1)G(s_1) = 180^\circ \quad \rightarrow \quad \angle D_{lead}(s_1) = 180^\circ - \angle G(s_1) \]

\[\angle G(s_1) = -\phi_1 - \phi_2 - \phi_3 \]

\[\phi_1 = \angle(s_1 + 1) = 106.15^\circ \]

\[\phi_2 = \angle(s_1 + 3) = 81.14^\circ \]

\[\phi_3 = \angle(s_1 + 6) = 50.51^\circ \]

\[\angle G(s_1) = -237.8^\circ \]

\[\angle D_{lead}(s_1) = 180^\circ + 237.8^\circ \]

\[\angle D_{lead}(s_1) = 417.8^\circ = 57.8^\circ \]

\[\angle D_{lead}(s_1) = \psi_{lead} - \phi_{lead} \]

\[\phi_{lead} = \angle(s_1 + 100) = 2.63^\circ \]

\[\psi_{lead} = \angle D_{lead}(s_1) + \phi_{lead} \]

\[\psi_{lead} = 60.43^\circ \]
Next, calculate z_{lead} from ψ_{lead}

$$\psi_{\text{lead}} = \angle(s_1 + z_{\text{lead}})$$

$$\psi_{\text{lead}} = \tan^{-1}\left(\frac{Im(s_1)}{Re(s_1) + z_{\text{lead}}}\right)$$

$$\tan(\psi_{\text{lead}}) = \left(\frac{Im(s_1)}{Re(s_1) + z_{\text{lead}}}\right)$$

$$z_{\text{lead}} = \frac{Im(s_1)}{\tan(\psi_{\text{lead}})} - Re(s_1)$$

$$z_{\text{lead}} = \frac{4.49}{\tan(60.43^\circ)} + 2.3$$

$$z_{\text{lead}} = 4.85$$
Lead-Lag Compensation – Example

- Lead compensator:
 \[D_{\text{lead}}(s) = K \frac{(s + 4.85)}{(s + 100)} \]

- From magnitude criterion or MATLAB plot, \(K = 156 \)

- Lead compensator transfer function:
 \[D_{\text{lead}}(s) = 156 \frac{(s + 4.85)}{(s + 100)} \]

- Next, simulate the lead-compensated system to verify dynamic performance and to evaluate steady-state error
Lead-Lag Compensation – Example

- Performance specifications not met exactly
 - Higher-frequency pole/zero do not entirely cancel
 - Close enough for now – may need to iterate when lag compensation is added, anyway
- Steady-state error is 13.8%
Lead-Lag Compensation – Example

- Desired position constant:
 \[e_{ss} = \frac{1}{1 + K_p} = 0.02 \]
 \[K_p = \frac{1}{e_{ss}} - 1 = 49 \]

- \(K_p \) for lead-compensated system
 \[K_{p,lead} = \frac{1}{0.138} - 1 = 6.26 \]

- Required error constant improvement
 \[z_{lag} = \frac{K_p}{\rho_{lag} K_{p,lead}} = 7.83 \]
Lead-Lag Compensation – Example

- Arbitrarily set \(p_{lag} = 0.01 \)
- To achieve desired error, we need
 \[
 z_{lag} = 8 \cdot p_{lag} = 0.08
 \]
- The lag compensator transfer function:
 \[
 D_{lag}(s) = \frac{(s + 0.08)}{(s + 0.01)}
 \]
- Magnitudes of lag pole/zero effectively cancel, so required gain is unchanged:
 \[
 K = 156
 \]
- Lead-lag compensator transfer function:
 \[
 D(s) = 156 \frac{(s + 4.85)(s + 0.08)}{(s + 100)(s + 0.01)}
 \]
Lead-Lag Compensation – Example

- Root locus and closed-loop poles/zeros for the lead-lag-compensated system:

- Second-order poles:
 \[s_{1,2} = -2.27 \pm j4.46 \]

- Other closed-loop poles:
 \[s = -100.2 \]
 \[s = -5.2 \]
 \[s = -0.07 \]

- Closed-loop zeros:
 \[s = -0.08 \]
 \[s = -4.85 \]
Lead-Lag Compensation – Example

- Step response for the lead-lag-compensated system:
 - Steady-state error requirement is satisfied
 - Slow closed-loop pole at \(s = -0.07 \) results in very slow tail as error is eliminated
 - Can speed this up by moving the lag pole/zero away from the origin
 - Dominant poles will move
Lead-Lag Compensation – Example

- Increase the lag pole/zero frequency by 8x
 \[p_{\text{lag}} = 0.08 \text{ and } z_{\text{lag}} = 0.64 \]

- Lag pole/zero now affect the root locus significantly
 - Dominant poles move:
 \[s_{1,2} = -1.9 \pm j3.8 \]
 - Required gain for \(\zeta = 0.46 \) changes:
 \[K = 123 \]

- Reduced gain will reduce \(K_p \)
 - \(z_{\text{lag}}/p_{\text{lag}} \) ratio must increase
Some iteration shows reasonable transient and error performance for:

\[p_{\text{lag}} = 0.08 \]
\[z_{\text{lag}} = 0.8 \]
\[K = 130 \]

Lead-lag compensator:

\[D(s) = 130 \frac{(s + 4.85)(s + 0.8)}{(s + 100)(s + 0.08)} \]
Lead-Lag Compensation – Summary

- **Lead-lag compensation**
 \[D(s) = K \frac{(s+z_{lead})(s+z_{lag})}{(s+p_{lead})(s+p_{lag})}, \quad p_{lead} > z_{lead} \text{ and } p_{lag} < z_{lag} \]

 - *Two zeros* and *two poles*
 - Cascade of lead and lag compensators

- **Lead compensator**
 - Added pole/zero improves *transient response*

- **Lag compensator**
 - *Steady-state error improved* by \(\frac{z_{lag}}{p_{lag}} \)
 - Nearby zero partially cancels angular contribution of the pole, limiting its effect on the root locus
 - May introduce a slow transient
Compensator Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Transfer function</th>
<th>Improves</th>
<th>Comments</th>
</tr>
</thead>
</table>
| PI | $K \frac{(s + z_c)}{s}$ | Error | • Pole at origin
• Zero near origin
• Increases system type
• May introduce a slow transient
• Active circuitry required
• Susceptible to integrator windup |
| Lag | $K \frac{(s + z_c)}{(s + p_c)}$ | Error | • Pole near the origin
• Small negative zero
• $z_c > p_c$
• Error constant improved by z_c/p_c
• May introduce a slow transient
• Passive circuitry implementation possible |
Compensator Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Transfer function</th>
<th>Improves</th>
<th>Comments</th>
</tr>
</thead>
</table>
| PD | $K(s + z_c)$ | Transient response | • Zero at $-z_c$ contributes angle to satisfy angle criterion at desired closed-loop pole location
 | | | • Active circuitry required
 | | | • Amplifies sensor noise |
| Lead | $\frac{(s + z_c)}{(s + p_c)}$ | Transient response | • Lower-frequency zero
 | | | • Higher-frequency pole
 | | | • Net angle contribution satisfies angle criterion at design point
 | | | • Added pole helps reduce amplification of higher-frequency sensor noise
 | | | • Passive circuitry implementation possible |
Compensator Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Transfer function</th>
<th>Improves</th>
<th>Comments</th>
</tr>
</thead>
</table>
| PID | $K_p + \frac{K_i}{s} + K_d s$ | Error & transient response | • PD compensation improves transient response
• PI compensation improves steady-state error
• Active circuitry
• Amplifies noise |
| Lead-lag | $K \frac{(s + z_{lead})(s + z_{lag})}{(s + p_{lead})(s + p_{lag})}$ | Error & transient response | • Lead compensation improves transient response
• Lag compensation improves steady-state error
• Passive circuitry implementation possible
• Amplification of high-frequency noise reduced |