Distributed Value Functions

Jeff Schneider Weng-Keen Wong Andrew Moore Martin Riedmiller
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University ~ University of Karlsruhe

Pittsburgh, PA 15213
Jeff.Schneider@cs.cmu.edu

wkw@cs.cmu.edu

Abstract

Many interesting problems, such as power
grids, network switches, and traffic flow, that
are candidates for solving with reinforcement
learning (RL), also have properties that make
distributed solutions desirable. We propose
an algorithm for distributed reinforcement
learning based on distributing the representa-
tion of the value function across nodes. Each
node in the system only has the ability to
sense state locally, choose actions locally, and
receive reward locally (the goal of the system
is to maximize the sum of the rewards over all
nodes and over all time). However each node
is allowed to give its neighbors the current
estimate of its value function for the states it
passes through. We present a value function
learning rule, using that information, that al-
lows each node to learn a value function that
is an estimate of a weighted sum of future re-
wards for all the nodes in the network. With
this representation, each node can choose ac-
tions to improve the performance of the over-
all system.

We demonstrate our algorithm on the dis-
tributed control of a simulated power grid.
We compare it against other methods includ-
ing: use of a global reward signal, nodes
that act locally with no communication, and
nodes that share rewards (but not value func-
tion) information with each other. Our re-
sults show that the distributed value function
algorithm outperforms the others, and we
conclude with an analysis of what problems
are best suited for distributed value functions
and the new research directions opened up by
this work.

Pittsburgh, PA 15213

Pittsburgh, PA 15213 D-76128 Karlsruhe, FRG
awm@cs.cmu.edu riedml@ira.uka.de

1 Introduction

Many interesting problems that are candidates for
solving with Reinforcement Learning (RL), also have
properties that make distributed solutions desirable.
Whenever the state and/or action space is large, a
distributed approach to performing the computation
is desirable because it makes computational speedups
from coarse-grain parallelism possible. In many sys-
tems access to sensors and actuators is inherently dis-
tributed, thus making a distributed solution method
an attractive alternative to implementing a global high
bandwidth communication network. Potential appli-
cations include control of power grids (or any other
distribution of a resource such as water, gas, etc.),
automobile traffic control, electronic network routing,
and control of robot teams. Fig. 1 provides an intu-
itive sense of the kinds of applications we envision for
our algorithms.

1.1 Related Work

Reinforcement learning and dynamic programming-
based methods for optimal control are fairly well un-
derstood [14, 4]. By contrast distributed reinforcement
learning is a much less mature concept because it is
harder to formulate and analyze theoretically. One
approach is to assume restricted interaction between
the nodes. For example, if the transfer function is such
that the dynamics of the local state depend only on the
local state and the local control, and the value func-
tion can be trivially split into components depending
only on local states and controls, then the solution to
optimally controlling the entire system is just the com-
posite solution created by solving the individual parts.
Of course making that assumption eliminates almost
all interesting problems.

A completely segregated approach can be taken with
the additional allowance that the choice of controls by
one node may restrict the space of controls available
to another [12]. The resulting algorithm requires some

global information, but does provide a provably op-
timal solution. Distributed elevator control has been
addressed with reinforcement learning [7] . That work
has shared, global state and cost information, but the
agents act independently. Other work provides a simi-
lar framework, but in the context of competing rather
than cooperating agents [9]. Homogeneous agents that
seek to learn similar value functions can improve learn-
ing speed and performance by exchanging learned poli-
cies and sensing [15] .

Weiss proposes a “bucket brigade” scheme for credit
assignment among cooperating reinforcement learning
agents[17]. Rather than each agent acting locally and
independently, they communicate globally in an auc-
tion to arbitrate which subset of agents will be allowed
to “take over the global controls” in each state. Sim-
ilarly, there are approaches where different behaviors
are learned for a system and they are combined with
the idea of choosing actions that will accomplish all
goals [1]. Similarly, economic models can form the ba-
sis of credit assignment methods [3].

Packet routing is a domain for which completely dis-
tributed approaches have been taken [5, 6, 13]. In this
problem, each node must make a decision about which
neighboring node to rout each packet to. The global
state space is the list of all packets in the system, their
current locations, and their destinations. Each node,
however, only has that information for the packets in
its own queue. The global cost function is the the av-
erage length of time it takes to send packets in the
network, but each node only stores and computes the
length of time it will take to send packets from itself.
As part of the routing algorithm, nodes periodically
ask their neighbors how long they predict it will take
them to deliver a packet if it is routed through them.
Empirical studies have been promising but have also
shown problems with ringing, instability, and adapting
to changing load conditions.

2 Distributed Value Functions

In the description of our method, we refer to the sam-
ple problem diagrammed in fig. 1. The job of the dis-
tribution network is to minimize a cost function based
on providing resources to the customers. The figure
shows the nodes in a chain, but we make no assump-
tions on the connectivity of the graph. This problem
could easily be written as a global reinforcement learn-
ing problem with, states X that represent flow rates
and resource levels, actions A that represent changes in
flow rates, and rewards (or penalties) R that represent
satisfaction of customer requests and costs incurred in
doing so. A distributed formulation of the problem
makes the following changes:

e State space. Each node, i, observes some of the
flows and resource levels (presumably those it can
sense locally), which are represented by X;. It
may be the case that some state variables are ob-
servable by more than one, or even all nodes.

e Action space. Each node, i, has the ability to
choose some of the flow control actions, called
A;. We assume that each action variable from
the global formulation is chosen by exactly one
node in the distributed formulation.

e Rewards. Each node, ¢, receives a reward pre-
sumably based on the satisfaction of its own cus-
tomers, called R;. We assume that the sum of the
reward functions in the distributed case is equal
to the global reward function in the global case
(R =3, R;), and that the overall goal in the dis-
tributed formulation is to optimize that sum over
time.

2.1 Global RL Formulation

The usual approach to solving the resource distribu-
tion problem with globally available states, actions,
and rewards leads to a Bellman equation:

V(z) = max(R(z,a) +7 Y plala,x)V () (1)

where V is the value function and = is a temporal dis-
count factor. This equation may be solved using many
methods including many reinforcement learning vari-
ants. The result is the optimal value function which
also represents the expected discounted sum of future
rewards under the optimal policy:

V*(z) = E(Y_ ¥ R(z:, ar)) (2)

Once obtained, the value function may be used to gen-
erate optimal control decisions by finding the action,
a, that gives the maximum in eq. 1.

2.2 A Distributed RL Formulation

The main purpose of this paper is to introduce and
evaluate four algorithms for distributed RL (DRL). In
this section we describe each of them. The first two
are common in the literature in various forms, while
the last two are new.

We start by assuming that each action variable is cho-
sen by a particular node and the reward function is
broken up into a sum where each term is received at
one node. For simplicity we continue to assume the
state is globally observable. The question of local state

Distributor Nodes

Y

Ro

Customers C

()
ﬁﬁ

Provider

=

()

@ﬁ

Ro
Globa State - X
Global Action - A
Globa Reward - R
Ay
mers Customers

()

ﬁﬁ

Figure 1: A sample resource distribution network. The shaded circles have a dual meaning in this figure. They
represent 1) physical distribution centers in a network with resource providers and customers, and 2) logical
nodes in the distributed RL formulation of the problem. They are the points at which state is sensed, actions

are taken, and rewards are received.

observability will be addressed later. Our approach is
to define a value function for each node, V;(z), that
will be computed and used to choose that node’s ac-
tions.

2.2.1 Global reward DRL

A first step toward distributed RL (DRL) is to have
each node sense, act, and learn locally, but base learn-
ing and control decisions on a global reward signal.
That results in a Bellman equation of the form:

Vi(z) = ?éi?f(R(X’A) + E p('|a,)V (2)) (3)

where A; represents only the action variables avail-
able for node ¢ to choose. The unknown action choices
of the other nodes will affect the probabilities in the
transfer function, p(). X and A refer to the combined
global state and action spaces, and R is the single,
global reward that is distributed to all nodes. Un-
fortunately, the probability on the right-hand side of
eq. 3 isn’t well defined for node i. It depends on
what policy the neighboring nodes are following and
would be very hard to estimate. An alternative is the
Q-learning formulation, which will be described later.
Without addressing the issue of how/if a simultaneous
solution to the set of these equations can be found,
we observe that once it is found, the value function

retains its meaning as the expected discounted sum of
future rewards under the resulting policy:

Vile) = B(Y_ 7 R(Xe, A) (4)

t=0

Each node is attempting to learn the same value func-
tion (V;* = V*), but is hindered by its lack of knowl-
edge about what actions the other nodes will take (and
by having only local state available, which will be ad-
dressed later). This method is not fully distributed,
though, since it depends on the global broadcast of a
reward signal.

2.2.2 Local DRL

A naive, but fully distributed, formulation is one where
each node acts only to optimize its own rewards and
does not communicate with its neighbors. That results
in a Bellman-like equation of the form:

Vi(e) = max(Ri(x, a) + 5 > p(la,2)V () (5)

Rather than assuming a global reward function that is
computed (probably based on information transmitted
in from each node’s sensors to a central location) and
broadcast to all nodes, we use a local signal available at

each node. It is assumed that this reward function can
be computed directly from a node’s own local sensors
and actions. Again, without addressing the issue of
how /if a simultaneous solution to the set of these equa-
tions can be found, we observe that the value function
retains its meaning as the expected discounted sum of
future rewards under the resulting policy:

= E() 4" Ri(a, ar)) (6)

The catch is that the composite policy is no longer
guaranteed to be optimal for the overall system. It is
easy to see an example of this in terms of the example
in fig. 1. Suppose the provider does not offer enough to
satisfy all customers and the penalty for depriving the
node 2 customers is greater than that for depriving the
node 0 customers. If the resource must flow through
the distribution nodes from 0 to 1 to 2, node 0 will
act to satisfy its own customers even at the greater
expense of starving the others further down. Note that
the result is bad even if the penalties are equal, but
quadratic.

2.2.3 Distributed reward DRL

One way to have nodes communicate and act to help
each other out is to have neighbors exchange informa-
tion about the immediate rewards they receive. If each
considers a weighted average of its local rewards and
those of its neighbors we get the following equation for
each node’s value function:

(Izrégx Zf (4, 7)R
z'eX

(7)

where f(i,7) is a weighting function that determines

how strongly node i will weight the immediate rewards

of node j in its average. It is assumed that f(¢,j) will

be zero for all pairs of nodes that are not neighbors,

and that f(¢,¢) will be non-zero. The equation con-

tains the variable a;, which is the action to be chosen

by node j. We do not assume that node ¢ will get to

see this action choice, but that node j will report the
resulting reward, R;.

We might hope that this will result in less greedy
behavior because if everyone cares about themselves
and their neighbors, then good will might propagate
throughout the network. If we consider a system with
discrete states and the value function is represented in
a table, we can see that a solution takes the form:

=B Y6 yleas) ()

(@,a5)+7 3 pla'la, 2)Vi(a"))

A node that uses this value function to make its policy
decisions will act to improve the long term rewards of
its neighbors and will make tradeoffs according to the
weights given by f(7, j). Unfortunately, it will still not
help its non-neighbors, because, as we see in eq. 8§,
node 7 still does not have any component of rewards
other than its immediate neighbors. Reusing the pre-
vious example, node 0 will still act to starve node 2’s
customers.

2.2.4 Distributed value function DRL

Nodes can act to assist non-neighbors if the value func-
tion equation is updated to have the nodes exchange
information not about their immediate rewards, but
about their value functions:

Vi(z) = maX(Ri(:v,aH’ny(i;j) Y p(@'|a,z)V(a"))

a€A; z'eX
(9)

At this point we have changed the Bellman equation
to the point where we can not say much about what
properties a solution would have. In a deterministic
system such as the example below, we can write a so-
lution in the following form:

wa

i(ze, a5, (10)

One thing to note is that the weights in the average
for eq. 10, f'(7,j), are no longer equal to the weights
in eq. 9 as they were previously between eqs. 7 and
8. Pairs of nodes that have zero weight in the former
equation, may receive non-zero weights in the latter.
In that case, nodes can act to help their non-neighbors
as well.

In order to see how weighting of non-neighbors occurs
consider a system organized as a 3 node chain where
each node uses a simple average of itself and its neigh-
bors. We remove the max from eq. 9 by assuming the
nodes already implement a fixed, optimal policy. We
further simplify by assuming we have a system with
only one state, thereby making it stateless (we’ll fix
that later). The three value function equations (with
the sums in eq. 9 expanded) are:

Vo(z) = Ro(z,a) + v(0.50V5 (z) 4+ 0.50V1 (z) + 0.00V2(z)) (11)
Vi(z) = Ri(z,a) + v(0.33V (z) 4+ 0.33V1(z) + 0.33V2(z))
Va(z) = Rz(z,a) + v(0.00Vo (z) 4+ 0.50V1 (z) + 0.50V%(z))

Because there is only one state, the transition proba-
bilities and the expected value on the right hand side

of eq. 9 are reduced to a single term. The solution to
these equations (with v = 0.9) is:

Vo(z) = 4.0Rg(z,a) + 3.9R1(z,a) + 2.1Ry(x,a) (12)
Vi(z) = 2.6 Ro(z,a) + 4.8R1(x,a) + 2.6 Ra(z, a)
Va(z) = 2.1Ro(2z, a) + 3.9R (2, a) + 4.0Rz(2, a)

These equations match eq. 10 with different coeffi-
cients for f’(7,j) as mentioned before. Most impor-
tantly, we see that the value function for node 0 now
includes a positive weight on the rewards received by
node 2 even though those two nodes never commu-
nicate directly, which was the original intent of this
algorithm. In the real case where there are numerous
states, eq. 12 becomes a matrix of equations, one for
each node-state pair, and the weighted sum of next
states returns to each equation. The solution to that
set of equations is still just a matter of linear algebra,
but the resulting weights on the rewards depend on
the transition probabilities between the states.

With this formulation we have effectively created a dis-
tributed representation of the value functions over the
nodes. Each node is trying to learn a weighted sum of
its own expected future rewards and those of the other
nodes in the network. If we have chosen our weighting
function well (more on this later), we could sum the
value functions over all the nodes and the result would
be an expected future weighted sum of rewards over all
the nodes just as in the global RL approach. However,
this is accomplished with access only to local rewards
and communication of value function information only
between immediate neighbors.

2.3 Local state and the use of Q-Learning

In the previous section, we based our discussions on the
use of global state information available at all nodes.
In order to have a fully distributed method, it is neces-
sary to also have local state. Intuitively, this is easiest
to think about in terms of function approximation. In
the case of traditional, global reinforcement learning
work, the use of function approximators to represent
the value function has become common. Its main pur-
pose is to handle state spaces that are too large to
be stored in tabular form, and to speed up learning
through generalization in large state spaces. In some
cases, the convergence proofs for reinforcement learn-
ing have been extended to the use of function approx-
imation [8, 2]. In the case of local state for distributed
RL, we can think of it exactly as value function approx-
imation where each node has chosen differing sets of
features (their own locally observable state) to be used
by their function approximators. Based on that intu-
ition, we speculate that these convergence results may
extend to our algorithms, but answering that question

is future work. Additionally, the question of how good
the chosen function approximator is for a particular
problem remains important.

There 1s a practical problem introduced by the use
of local state variables. All of the equations in our
derivation have been written strictly in terms of the
value function. At first glance, it might seem that
this will lead to the use of a kind of value iteration
coupled with the learning of system models to solve
the problem ([10, 11], for example). This can’t be done
easily, though, because the use of local state means
neighbors can’t use state as a common language with
which to communicate. It isn’t possible for one node
to ask another “If I am in state x and choose action
a, what state will that put you n, and what action
will you choose?” because neither of them has any
representation of the other’s states and actions.

Despite this problem, reward and value functions are
a universal language. Constructing a Q-learning [16]
algorithm to solve the problem only requires nodes to
communicate in these terms. A Q-learning rule that
each node can implement to learn the value function
in eq. 9 is:

Qi(ri,ai) — (l—a)Qi(mi,ai)—}— (13)
a(Ri(i, ai) + v Z fi,3)Vj(x5))
Vi(z;) < maxQ;(z;,a)

a€A;

Each node performs the updates specified by these
equations online. Because the learning is done online
(it can also be done off-line using a trace) as the sys-
tem actually passes through various states, there is no
need for neighbors to specify to each other what state
or action they’ve been in or taken. It is only necessary
for them to transmit their current estimated value of
the state they land in at each iteration.

3 Experimental Results

We tested our algorithm on a simulated power grid
problem. We use a D.C. formulation because it sim-
plifies the simulation and keeps the number of state
variables smaller. Simulation of a real A.C. power grid
requires the use of complex, rather than real, variables.
Our simulation uses variable resistors as a means of
controlling power flow. Historically, this hasn’t been
possible in real power grids, but new devices are be-
ing developed that will allow it. Our system has the
following components (again, refer to fig. 1):

Providers. These are the power generation facilities
and are treated as fixed voltage sources.

Customers. These represent cities, which have a de-
sired voltage (or a desired power requirement
based on a fixed resistance load).

Distributors. The distributors represent both phys-
ical entities and the nodes of our distributed RL
formulation. This is where the intelligent control
decisions must be made. The variables of the con-
trol problem are as follows:

Local actions. Each node makes a choice for
each power line connected to it. It can re-
quest that the resistance on that line be dou-
bled, halved, or left the same. Lines that go
between distributors and providers, or dis-
tributors and cities, are controlled by the dis-
tributor. Any line that goes between two dis-
tributor nodes will get two requests on how
its resistance should change. The arbitra-
tion scheme shown below determines the ac-
tual change in resistance. The resistors have
6 possible values and attempts to increase
them beyond their maximum value, or de-
crease them below their minimum value re-
sult in them staying the same.

Node 1 Node 2 request
request || Halve [Same | Double
Halve Halve | Halve Same
Same Halve | Same Double
Double || Same | Double | Double

Local state. A distributor receives state infor-
mation for each line it has depending on what
its connected to:

distributor-distributor: 1) Whether the
neighboring voltage is higher or not (2
states), 2) whether the neighboring volt-
age increased, lowered, or remained the
same from the last iteration (3 states),
3) whether the resistor is at its mini-
mum, maximum, or in between (3 states).
There are 18 possible states total.

distributor-city: The same as for distribu-
tors except that item 2 is whether or not
the city needs more voltage. There are 12
possible states total.

distributor-provider: Only items 1 and 3.
There are 6 possible states total.

The complete local state space for a node is
the cross product of the states for each line it
is attached to. For example, a node that con-
nects to one city, one provider, and one other
node will sense one of 1296 possible states.

Local reward. The local reward received by
each node is based solely on the satisfaction
of its local customers (the city it is directly
attached to). If the voltage available to them
is below the desired level, the node receives

1

L= . global reward (G) ~—
100 = DR L local (L) —=— o
@ distributed reward (DR) H&—
?ﬁ@gted value function (DVF) H<—
L+8 DR

cost
6oy

i % DR 9 E
Fout TDR

¥ pvr

0.1

Grid A Grid B Grid C Grid D

Figure 3: Graph of results on a log scale showing cu-
mulative cost over 60000 iterations in policy evaluation
mode.

a penalty equal to the difference between the
two, otherwise the reward signal is zero. Note
that this can be a problem when some dis-
tributors are connected only to other distrib-
utors, but not to any customers. They will
have no local reward to base their decisions
and learning on. We will see the effects of
this in the experiments.

We ran each distributed RL algorithm on each of the
power grids shown in fig. 2. Note that it was not
practical to run the traditional global RL method be-
cause even the smallest grid has hundreds of millions of
states. For each run there were 60000 learning steps,
followed by an evaluation phase which did not learn
and followed its policy 95% of the time and chose ran-
domly the other 5%. We used v = 0.95. o = 0.1 ini-
tially and is decayed. The exploration rate is started
at 1.0 and stays there for the first 30000 steps, then
decays. For the distributed reward and distributed
value function cases, f(¢,j) is chosen to compute a
simple average of the node and its neighbors. During
the trials, an initial random setting of all the resistors
is chosen. The system operates for 300 steps, and then
the resistors are changed to new random settings. This
loop continues throughout the learning and evaluation
phases.

Fig. 3 and table 3 summarize the experimental re-
sults. They show average cost (negative reward) per
step during the evaluation phase along with their con-
fidence intervals. These are averages over 10 trials and
each took about 45 minutes on a 400MHz Pentium II.

The results show distributed value function performing
best in every case except grid A. On grid A, global re-
ward is best. We speculate that this is because there
are only two cities, and thus only two sources of re-

Provider

Grl d D Provider | Provider

Figure 2: The 4 power grids used in the experiments.

Algorithm Grid A Grid B
Rank Avgcost 95% C.I. | Rank Avgcost 95% C.I.
Global reward 1 4.55 +1.22 3 0.79 +0.28
Local 4 41.67 +0.39 4 193.33 +3.22
Dist. reward 3 41.00 +0.30 2 0.65 +0.57
Dist. value fn 2 17.17 +5.87 1 0.32 +0.07
Grid C Grid D
Global reward 2 72.33 +6.82 3 0.72 +0.17
Local 4 115.50 +3.97 4 113.00 +1.07
Dist. reward 3 90.00 +1.78 2 0.32 +0.19
Dist. value fn 1 44.00 +8.75 1 0.17 +0.02

Table 1: Average reward per step in policy evaluation mode for the 4 DRL algorithms on 4 different power grids.

ward. Lumping them together into a global reward
signal doesn’t hide as much information as in the other
cases. Local DRL performs poorly everywhere, which
shows that locally greedy approaches aren’t sufficient
to solve this problem. The fact that distributed reward
performs reasonably, but not as well as distributed
value function indicates that it is necessary to con-
sider more than the rewards of immediate neighbors.
Local DRL and distributed reward both suffer when
there are nodes without cities attached (or in the lat-
ter case when no neighboring distributors have cities
attached), because they have no source of local reward.

4 Conclusions and Future Work

In summary, we have presented a general algorithm for
distributed reinforcement learning that allows nodes
to work toward the benefit of other nodes across the
system, while only requiring communication with im-
mediate neighbors. Our results show this algorithm
performing well on a power grid control application.

A remaining question is how to choose f(i,j) in order
to get the best result. In the derivation, we observed
that the different algorithms result in similar looking
solutions (eqs. 4, 6, 8 and 10). The only difference is
in the effective weighting function f’(¢,j). Local and
global reward offer one specific function each, while
distributed reward and distributed value function offer
a class of functions depending on the chosen f(3, j).
Distributed value function can imitate global reward
(using a fully connected graph with uniform weights)
and local (zero weights on all neighbors), but it can
not imitate distributed reward. Although we did not
find any here, there may be cases where distributed
reward performs best.

Another question is whether, and under what condi-
tions, the solution to eq. 9 yields an optimal or near-
optimal policy for the entire system. It is obvious that
it does not for some choices of f(4,j). It might if the
graph of nodes is fully connected and all nodes weight
all others equally (the global reward case), but this is
uninteresting practically because it requires full com-
munication between all nodes. Possible future work is
to put bounds on the suboptimality for specific weight-
ings.

An interesting extension to this method is the case
where the neighbor relation and the weighting func-
tion, f(i,7), change dynamically. In a simple case the
structure of the grid may change during the learning
process due to external causes. In a more sophisti-
cated version, nodes may have actions that allow them
to change who their neighbors are. That could be ap-
propriate when the nodes are mobile agents traveling
around occasionally encountering each other, or choos-
ing to work together in teams.

References

[1] M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida,
and K. Hosoda. Coordination of multiple behaviors
acquired by vision-based reinforcement learning. In
Proceedings of the International Conference on Intel-
ligent Robots and Systems (IROS 94), pages 917-924,
1994.

[2] L. Baird. Residual Algorithms: Reinforcement Learn-
ing with Function Approximation. In Machine Learn-
ing: Proceedings of the Twelfth International Confer-
ence. Morgan Kaufman, 1995.

[3] E. Baum. Manifesto for an Evolutionary Economics
of Intelligence, pages 285-344. Springer-Verlag, 1998.

[4] D. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 1995.

[5] J. Boyan and M. Littman. Packet routing in dynami-
cally changing networks: A reinforcement learning ap-
proach. In Neural Information Processing Systems,
volume 6, 1994.

[6] S. Choi and D. Yeung. Predictive g-routing: A
memory-based reinforcement learning approach to
adaptive traffic control. In Neural Information Pro-
cessing Systems 8, 1996.

[7] R. Crites and A. Barto. Improving elevator perfor-
mance using reinforcement learning. In Neural Infor-
mation Processing Systems 8, 1996.

[8] G. Gordon. Stable function approximation in dynamic
programming. In The 12th International Conference
on Machine Learning, 1995.

[9] M. Littman. Markov games as a framework for multi-
agent reinforcement learning. In Proceedings of the
Eleventh International Conference on Machine Learn-
ing, pages 157-163, 1994.

[10] J. Schneider. Exploiting model uncertainty estimates
for safe dynamic control learning. In Neural Informa-
tion Processing Systems 9, 1996.

[11] J. Schneider, J. Boyan, and A. Moore. Value function
based production scheduling. In International Con-
ference on Machine Learning, 1998.

[12] S. Singh and D. Cohn. How to dynamically merge
markov decision processes. In Neural Information
Processing Systems, volume 10, 1998.

[13] D. Subramanian, P. Druschel, and J. Chen. Ants and
reinforcement learning: A case study in routing dy-
namic networks. In Proceedings of IJCAI-97, 1997.

[14] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MI'T Press, 1998.

[15] M. Tan. Multi-agent reinforcement learning: inde-
pendent vs. cooperative agents. In Proceedings of the
Tenth International Workshop on Machine Learning,
pages 330-337, 1993.

[16] C. Watkins. Learning from Delayed Rewards. PhD
thesis, Cambridge University, 1989.

[17] G. Weiss. Distributed reinforcement learning.
Robotics and Autonomous Systems, 15:135-142, 1995.

