
Markov Blanket Feature Selection for Support Vector Machines

Jianqiang Shen and Lida Li and Weng-Keen Wong
1148 Kelley Engineering Center, School of EECS

Oregon State University, Corvallis, OR 97331, U.S.A.
{shenj,lili,wong}@eecs.oregonstate.edu

Abstract

Based on Information Theory, optimal feature selection
should be carried out by searching Markov blankets. In this
paper, we formally analyze the current Markov blanket dis-
covery approach for support vector machines and propose
to discover Markov blankets by performing a fast heuris-
tic Bayesian network structure learning. We give a suffi-
cient condition that our approach will improve the perfor-
mance. Two major factors that make it prohibitive for learn-
ing Bayesian networks from high-dimensional data sets are
the large search space and the expensive cycle detection op-
erations. We propose to restrict the search space by only
considering the promising candidates and detect cycles using
an online topological sorting method. Experimental results
show that we can efficiently reduce the feature dimensional-
ity while preserving a high degree of classification accuracy.

Introduction

Many machine learning problems require learning from
high-dimensional data sets in which the number of instances
is less than the number of features. A common strategy is to
first run a feature selection step before applying a traditional
learning algorithm. The main reasons for applying feature
selection is to avoid overfitting by removing irrelevant fea-
tures and to improve computational efficiency by decreasing
the number of features the learning algorithm needs to con-
sider. Many common-used feature selection methods such
as mutual information and information gain (Yang & Ped-
ersen 1997) are based on pairwise statistics. Although pair-
wise statistics can be computed quickly, they are unable to
capture higher order interactions and can be quite unreliable
when the training data is sparse. Also, the user usually has
to tune a threshold to determine the optimal feature set. This
paper presents an efficient and reliable feature selection ap-
proach without the need for such threshold.

Using Markov blankets for feature selection has been
shown to be effective (Koller & Sahami 1996). The Markov
blanket is defined as the set of variables M that ren-
ders a variable Xi conditionally independent of other vari-
ables given the variables in M . Feature selection algo-
rithms based on Markov blankets have attracted much at-
tention recently (Aliferis, Tsamardinos, & Statnikov 2003;

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bai et al. 2004). They all depend on some independence
tests. In this paper, we formally analyze the performance of
these test-based algorithms.

We propose to discover Markov blankets by first perform-
ing a fast heuristic Bayesian network structure learning step.
Bayesian networks exploit conditional independence to pro-
duce a succinct representation of the joint probability distri-
bution between a set of variables. Heuristic structure learn-
ing first defines a score that describes the fitness of each
possible structure to the observed data, and then searches
a structure that maximizes the score. We analyze the suffi-
cient condition that our approach improves the performance.
Rather than learning the Bayesian network, we could try to
learn only the Markov blanket for the class variable. How-
ever, as will be shown in our results, we observe much better
accuracy when we first learn a Bayesian network because the
Bayesian network captures a more accurate global view of
how all the random variables interact with each other. Sec-
ondly, learning a network gives us more flexibility, and we
can consider any node as the “class variable” once we have
the Bayesian network. Finally, learning a network can still
be quite efficient compared with only learning Markov blan-
kets. Our method can learn a reasonably accurate Bayesian
network from large text datasets within minutes.

Throughout this paper, we use linear support vector ma-
chines (SVMs) to perform classification after feature selec-
tion, since SVM is one of the state-of-the-art learning meth-
ods and has met success in numerous domains. This can
be considered as a hybrid generative-discriminative learn-
ing approach (Raina et al. 2004). Although discriminative
classifiers usually achieve higher prediction accuracy than
generative classifiers, it has been shown that a generative
classifier outperforms its discriminative counterpart when
the amount of training data is limited (Ng & Jordan 2002).
In this paper we essentially apply the generative learner to
identify which information is necessary for training the dis-
criminative learner. Our hybrid approach significantly out-
performs the pure SVM when the training size is small.

Searching Markov Blanket Features

Most common-used feature selection methods (such as mu-
tual information, information gain, Chi square (Yang & Ped-
ersen 1997)) are based on pairwise statistics which is unreli-
able when the training size is small. It is also difficult to de-

termine the optimal feature set size and the user has to tune
some threshold. Furthermore, pairwise statistics have diffi-
culty in removing redundant features and capturing higher-
order interactions. Consider variables x and y. It is possible
that they will be both retained if they are highly correlated
(and thus have close statistical measurements). It is also pos-
sible that they will be both removed if the class variable’s
interaction with x or y alone is not significant, although the
co-occurrence of x and y is very predictive of the class.

The Markov blanket criterion can address the above prob-
lems. The Markov blanket subsumes the information that a
variable has about all of the other features. Koller and Sa-
hami (1996) suggested that we should remove features for
which we find a Markov blanket within the set of remaining
features. Since finding Markov blankets is hard, they pro-
posed an approximate algorithm, which is suboptimal and
very expensive due to its simple approximation (Baker &
McCallum 1998). There are several other algorithms based
on Markov blankets (Aliferis, Tsamardinos, & Statnikov
2003; Bai et al. 2004). They all depend on independence
tests and are sensitive to test failures. Furthermore, the user
still needs to tune the threshold to determine the optimal fea-
ture set size. We analyze their error bounds and propose to
select features by heuristically searching Bayesian networks.

Analysis of Test-based Algorithms

For simplicity, let’s concentrate on binary, complete data.
We assume that the chi-square test is used for independence
test and a linear SVM is used for classification. The results
can be easily generalized to other situations.

Regarding variables A and B, independence test T is car-
ried out by testing null hypothesis H0 : PAB = PA · PB .
Given the nominal level α, it rejects H0 if the chi-square
statistic χ̃2 > χ2

1,α, where χ2
1,α is the upper α percent-

age point of the cumulative chi-square distribution with 1
degree of freedom. Let S

n denote a training set with n
samples generated from probability distribution D, F(Sn)
denote the feature set returned by applying feature selec-
tion algorithm F to S

n. We denote the expected error
rate of F given n samples as Errn(F). There could be
many different definitions of Errn(F), and one possibility

is Errn(F) =
∫
Sn∈D

P (Sn) |Φ⊗F(Sn)|
|Φ∪F(Sn)| dSn, where Φ is the

optimal feature set, U ⊗ V is the difference between set U
and V . Most Markov-blanket algorithms are test-monotonic:

Definition 1 We call feature selection algorithm F test-
monotonic, if F relies on independence test T , and
Errn(F) = h(Errn(T)). Here h is a monotonically in-
creasing function in which h(x) > 0 if x > 0, and Errn(T)
is the expected error rate of applying T to n samples.

Lemma 1 A test-monotonic feature selection algorithm
with fixed nominal level α is not asymptotically consistent,
i.e., Errn(F) > 0 as n → ∞.
Proof It has been shown that type I error of T is strictly no
less than its nominal level α (Loh 1989). Thus Errn(T) =
P · EI + (1 − P) · EII ≥ P · EI > 0 as n → ∞. Here
P is the probability that two variables are independent, EI
is the type I error and EII is the type II error. Based on the
definition of test-monotone, Errn(F) > 0 as n → ∞.

Thus, T will mistakenly treat two independent variables
as dependent with probability no less than α. In practice,
usually P > 0.5 and people set α to 5% to control the type I
error. With small α, it is very likely that T treats dependent
variable as independent, which is shown in the following:

Lemma 2 Given nominal level α, if we want the probability
that T identifies two dependent variables as independent to

be no more than ǫ, then we need n > 1
∆ (

√
χ2

1,α + 1
4U2

ǫ +

Uǫ)
2 samples, where ∆ is a constant depending on the cor-

relation between the variables, and Uǫ is the upper ǫ per-
centage point of the cumulative normal distribution.
Proof (Sketch) We want to ensure type II error P (χ̃2 ≤
χ2

1,α) ≤ ǫ. Under the alternative hypothesis, χ̃2 fol-
lows the non-central chi-square distribution with 1 degree
of freedom and non-centrality parameter λ = n · ∆ (Meng
& Chapman 1966). Applying Pearson transformation and
Fisher approximation (Johnson & Kotz 1970), we get n >
1
∆ (

√
χ2

1,α + 1
4U2

ǫ + Uǫ)
2 after some operations.

Note χ2
1,α and Uǫ grow extremely fast as α → 0 and ǫ →

0. A test-based feature selection algorithm usually involves
Ω(m) independence tests given m variables. Because ∆ is
usually very small, the probability that T treats dependent
variables as independent is high with limited samples. Thus,
test-based feature selection algorithms are too aggressive in
removing features, as also shown in the experiments.

Method Based on Bayesian Network Learning

We showed that test-based algorithms are very sensitive to
α and even with infinite samples their error rates are still
proportional to α. We propose to search Markov blan-
kets through learning a Bayesian network with some good
heuristic strategy. Bayesian networks provide a descrip-
tive summary of relationships between variables and an ef-
ficient representation of the joint probability distribution. In
this paper, we use Bayesian Information Criterion (BIC) as
the search score. We choose BIC because it can penalize
the model complexity and lead to smaller feature sets. If
the goal is to preserve the prediction accuracy as much as
we can, then a Bayesian score such as BDeu(Heckerman,
Geiger, & Chickering 1995) might be preferred.

Given the class variable C, let M̂ be its minimal Markov
blanket. M̂ is the smallest variable set rendering C con-

ditionally independent of all other variables not in M̂ . We

propose to search M̂ and adopt M̂ as the goal feature set.

We approximate M̂ by heuristically learning a Bayesian net-
work structure. If the learned Bayesian network is reason-

ably accurate, M̂ should be close to the set consisting of C’s
parents, children, and children’s parents. The user does not
need to specify any thresholds. The optimization approach
is also much more robust compared with the independence-
test approach. Finally, Bayesian network structure learning
methods using the BIC or Bayesian score is asymptotically
successful: with probability 1, it will converge to the right
structure given sufficient samples (Geiger et al. 2001).

Definition 2 The graph dimension |G| =
∑m

i=1 2|PaG(i)| is
the number of parameters needed to specify graph G, where

PaG(i) are the parents of node Xi. For a graph G we denote
by I(G) the set of all conditional independence relations in
G. G is an I-map for optimal graph G∗ if I(G) ⊆ I(G∗).

Note |G| ≥ |G∗|, |G| can grow very large by adding a few
edges. We are interested in promising learning approaches:

Definition 3 Given m variables, a Bayesian network struc-
ture learning algorithm A is called π-promising if A only
evaluates O(m) candidates, while the target structure G∗ is
always in the candidate set and there are only O(1) I-map
graphs such as |G| − |G∗| < π in the candidate set.

In other words, a π-promising algorithm only evaluates
a few promising candidates and most candidates are dif-
ferent from the target graph with some edges. A larger π
leads to the better performance. We say a data set is feature-
challenging if more than half variables are irrelevant to the
classification. SVMs, especially those with a complex ker-
nel have some ability to select features, at the cost of more
samples. As also shown in the experiments, our feature se-
lection method can improve the performance of SVMs:

Proposition 1 Given a feature-challenging data set with m
variables, the performance of a linear SVM will be improved
by using the features learned from a π-promising algorithm
if there are n > m1/(π−1) samples.
Proof (Sketch) We first show that a linear SVM dis-
criminates irrelevant features at a speed no faster than

O(
√

m
n log(n

m)). Meanwhile, the probability that a specific
non I-map graph outscores G∗ decays exponentially with n,
and the probability for a I-map graph decays as a power of
n (Zuk, Margel, & Domany 2006). The π-promising al-
gorithm converges to the optimal graph at a speed faster

than O(m(log n)
1

2
π−1n− 1

2
π) by the union bound. When

n > m1/(π−1), this rate is faster than SVMs. Its selected
feature can improve the performance of SVMs.

A π-promising algorithm converges to the optimality very
fast, at a speed faster than the 1

2π power of the sample size.
A good heuristic learning method only evaluates a limited
number (generally O(m)) of candidate structures. Although
we usually can not guarantee G∗ is in the candidate set, at
least some promising candidates close to G∗ are in the set.
Thus we can think they are roughly π-promising. Test-based
methods are quite unstable when the samples are limited.
Especially, the probability that they treat dependent vari-
ables as independent are high and they are too aggressive in
removing features. On the contrary, searching Markov blan-
kets through Bayesian network is asymptotically consistent.
More importantly, it needs much fewer examples to learn a
reasonable feature set with some good heuristics.

Efficient Bayesian Network Searching

Learning Bayesian network structure is usually done using
heuristic methods since optimization is a hard problem. We
approximate π-promising learning by employing some good
heuristics. They are quite stable even with limited samples
and lead to reasonably good feature sets in general. Since
in practice feature selection usually needs to deal with mas-
sive datasets, it is necessary to restrict the search space and
improve the efficiency of searching the optimal operation.

Restricting the Search Space

The search procedure usually spends a lot of time examin-
ing extremely unreasonable candidate structures. We experi-
enced two approaches to restrict the search space: one tries
to restrict the candidate parents for each node (Friedman,
Nachman, & Peér 1999), another tries to restrict the candi-
date edges for the entire graph (Goldenberg & Moore 2004).

The Sparse Candidate Algorithm Traditional heuristic
search such as hill-climbing usually restricts the search to
Bayesian networks in which each variable has at most p par-

ents. Thus, there are O(
∑i=p

i=0(
|V |−1

i)) possible parent sets
for each variable. The search space is still prohibitively large
when |V | is large. The sparse candidate algorithm uses sta-
tistical cues from the training data to restrict the possible
parents of each variable. Instead of having |V | − 1 possible
parents for a variable, we only consider k possible parents,

and usually k ≪ |V |. Thus there are only O(
∑i=p

i=0(
k
i))

possible parent sets for each variable. We then attempt to
maximize the score with respect to these restrictions. This
“Restrict-Maximize” process is iterated until the score has
converged or we reach the maximal iteration steps.

There are several different ways to choose the promising
parent candidates (Friedman, Nachman, & Peér 1999). In
this paper we choose the candidate based on the score if we
were to add that candidate as a parent. To illustrate this,
suppose we are given variable Xi and the current DAG G =
(V,E). We compute Sij which is the score of DAG G′ =
(V,E ∪ {Xj → Xi}) for each variable Xj . We then choose
variables with the highest Sij values as the candidate parents
for variable Xi. To enforce the monotonic improvement of
the score, we always include the current parent set in the
candidate parent set.

The Screen-based Algorithm The sparse candidate algo-
rithm reduces the search space by restricting the candidate
parent set for each node. The maximum number of parents
and the size of the candidate parent set are the same for any
variable. However, it is likely that some variables are di-
rectly influenced by many variables while some variables are
influenced by only a few variables. Thus, the sparse candi-
date algorithm could still examine many unreasonable can-
didate structures while on the other hand, some significant
interactions between variables could be ignored. We use a
variation of the screen-based Bayesian net structure search
algorithm (Goldenberg & Moore 2004) to reduce the search
space and only consider promising candidate edges.

The screen-based algorithm begins by collecting the co-
occurrences between variables. If variable Xi and Xj co-
occurs at least θ times, we search the best scoring DAG with
node set {Xi,Xj} explaining the data. If that best DAG has
an edge, we store the edge and the score into an edge dump.
After we go through all co-occurrences, we sort the edges in
the edge dump in decreasing order of their scores. For each
edge in the edge dump, if it will improve the network score
and will not introduce a cycle, then we add it to the network.
The edge dump is usually small and thus the searching is
quite fast. We found this screen-based algorithm works sur-
prisingly well in practice with some extra post-processing.

Cycle Detection Using Online Topological Sorting

During the heuristic search, we should only consider le-
gal moves: Bayesian networks are directed acyclic graphs
(DAGs), and we need to ensure that acyclicity is preserved
for addition and reversal operations. Given a DAG G =
(V,E) with |V | variables and |E| edges, Depth First Search
(DFS) algorithm takes O(|V | + |E|) to detect cycles (Cor-
men et al. 2001; Witten & Frank 2005). Giudici and Castelo
(2003) proposed a more efficient cycle detection algorithm
which reduces the cost to O(1) for addition and O(|V |) for
reversal. However, it needs to maintain an ancestor matrix
and the update takes O(|V |2). When |V | is large, the cost of
cycle detection becomes a speed bottleneck.

In this paper, we detect cycles by maintaining an online
topological ordering (Alpern et al. 1990). Let x → y de-
note that there is an edge from x to y, and x

...
→ y denote

that there is a path from x to y. A topological ordering, ord,
of a DAG G = (V,E) maps each vertex variable to an in-
teger between 1 and |V | such that, for any x → y ∈ E,
ord(x) < ord(y). We can take extra work to maintain ord
of the graph and detect cycles efficiently based on ord. Edge
removal is always legal and we need not to update ord. Edge
reversal equals to first removing the arc, and then adding it
in the opposite direction. Thus, edge addition is our major
concern. When we add an edge x → y, we have two cases.
First, ord(x) < ord(y). We have the following lemma.

Lemma 3 If we insert an edge x → y to DAG G(V,E) in
which ord(x) < ord(y), then the new graph is still a DAG.

Proof This can be proved by contradiction. We assume that
the new inserted edge x → y introduces a cycle. Then there
must exist a path from y to x in G. Assuming the path is y →
v1 → . . . vℓ → x, by the definition of topological ordering,
we have ord(y) < ord(v1) < . . . < ord(vℓ) < ord(x).
This is contradicted with the fact ord(x) < ord(y).

Based on Lemma 3, it is always legal to add an edge x →
y if ord(x) < ord(y). We do not update the topological
ordering in this case. Second, if ord(x) > ord(y) (including
the case to reverse edge y → x), we only need to check
a small subgraph of G and update its topological ordering.
We define δ+

xy and δ−xy . (Pearce & Kelly 2006) and can use
Depth First Search to find them:

Definition 4 The Affect Region ARxy of a DAG G is {k ∈
V |ord(y) ≤ ord(k) ≤ ord(x)}. We define a set δxy as
δ+
xy ∪ δ−xy , where δ+

xy = {k ∈ ARxy|y
...
→ k} and δ−xy =

{k ∈ ARxy|k
...
→ x}.

Lemma 4 Adding edge x → y where ord(x) > ord(y) will
introduce a cycle if and only if x ∈ δ+

xy .

The proof is similar to Lemma 3. Thus, to check the le-
gality of adding an edge x → y where ord(x) > ord(y), we
only need to apply a Depth First Search algorithm to see if
x ∈ δ+

xy . The complexity is only O(|δ+
xy|+ |E(δ+

xy)|) where

E(δ+
xy) = {a → b ∈ E|a ∈ δ+

xy ∨ b ∈ δ+
xy}.

We should notice three important things when updating
ord: 1) adding edge x → y need not influence the order of
any node outside δxy , 2) in the new graph, the order of any
node in δ−xy should have a smaller order than the order of any

Table 1: Time (s) to learn a Bayesian network with different
cycle detection methods (no post-processing)

Dataset |V | |S| p k DFS time PK time

Sonar 61 208 5 60 2.24 0.75

Lung-cancer 57 32 5 56 8.63 2.89

MFeat-pixel 241 2000 5 40 486.36 23.21

Corn vs Wheat 2590 393 5 10 > 259200 399

Corn vs Crude 4324 570 5 10 > 259200 1627

node in δ+
xy , 3) for any nodes a, b ∈ δ+

xy , if ord(a) > ord(b)
in the old ordering, then it holds in the new ordering (the
statement is also true for any node pair in δ−xy). There have
been several algorithms on maintaining ord (Alpern et al.
1990; Pearce & Kelly 2006). In this paper, we apply the
PK algorithm (Pearce & Kelly 2006) to maintain ord, which
takes Θ(|E(δxy)| + |δxy| log |δxy|).

Experimental Results

We apply our feature selection methods to complete, discrete
data. We begin with an empty network. We adopt the greedy
hill-climbing for the sparse candidate algorithm, and set θ=4
for the screen-based algorithm. The learned network struc-
ture is suboptimal due to the search space restriction. To
partially overcome the problem, we adopt the random hill-
climbing to post-process the learned structure (Goldenberg
& Moore 2004). Specifically, we randomly perform an edge
operation (addition with probability 0.8, removal with 0.1,
and reversal with 0.1) and keep the operation if the score is
improved. We try 5 million random operations by default.

We use the F1 value (Joachims 2001) which is 2*preci-
sion*recall/(precision+recall) to measure performance. The
SVM implementation we use is LibSVM (Chang & Lin
2001) with the linear kernel and C = 1 as suggested in
(Joachims 2001). We expect that a good heuristic learning
method is usually close to π-promising and can find good
feature sets with large chance. It is also interesting to inves-
tigate how efficient our method is.

The Time Performance of Cycle Detections

To ensure candidate network structures are legal, cycle de-
tection has to be run frequently and can become a compu-
tation bottleneck if it is not efficient. We apply the sparse
candidate algorithm to three datasets (Sonar, Lung-Cancer
and MFeat-pixel) from the UCI ML Data Repository to test
our cycle detection algorithm. We also test on two subsets
of the Reuters-21578 dataset (we will discuss how to get
them later in Section). We compare the computing time of
learning with different cycle detection methods in Table 1,
where |V | is the number of variables, |S| is the number of
training instances, p is the maximal parent number, and k
is the count of the candidate parents. The time shown as
> 259200 means that the program does not finish after run-
ning 72 hours. As we can see, using the online topological
sorting to detect cycles is much more efficient than the Depth
First Search, especially when there are many variables.

10
2

10
3

0.58

0.6

0.62

0.64

0.66

0.68

0.7

The number of training instances

F
1
 v

a
lu

e

Sparse candidate
Information gain
Grow−shrink
All features

(a) Boerlage92 problem

10
2

10
3

0.65

0.7

0.75

0.8

0.85

0.9

The number of training instances

Sparse candidate
Information gain
Grow−shrink
All features

(b) Win95pts problem

Figure 1: Performance of feature selections given the train-
ing size, with 95% confidence intervals.

Experiments on Synthetic Data

We evaluate performance with two different Bayesian net-
works from the Norsys Bayes Net Library1. One network
is Boerlage92 which has 23 variables and describes a par-
ticular scenario of neighborhood events. Most child-parent
relationships are “Noisy-OR” and can be easily captured us-
ing pairwise testing. We try to predict variable TW (whether
Tom is currently fairly wealthy) based on the remaining vari-
ables. Another network is Win95pts which has 76 variables
and describes printer troubleshooting in Windows95. Most
child-parent relationships are “Noisy-And” and are difficult
to be captured using pairwise testing. We try to predict vari-
able NetOK (whether the net is OK).

We draw a given number of samples from the network
and apply the sparse candidate method with p=k=15 to se-
lect features. We then use SVMs to evaluate the F1 value on
10000 sampled instances. As a comparison, we also apply
the Grow-Shrink (GS) algorithm (Margaritis & Thrun 1999)
to search the Markov blanket. The GS algorithm relies on
the chi-square tests and is the basis of several other Markov
blanket feature selection methods (Aliferis, Tsamardinos, &
Statnikov 2003; Bai et al. 2004). We set nominal level α to
5%. We also use the information gain criterion (Yang & Ped-
ersen 1997) to select the same number of features with the
sparse candidate algorithm. The result averaged over 1000
trials is plotted in Figure 1. Note that for this experiment,
using BDeu (Heckerman, Geiger, & Chickering 1995) and
the screen-based algorithm give similar results.

When the interactions between variables are mainly high-
order (the Win95pts problem), information gain has diffi-
culty in finding the right feature set because it mainly relies
on pairwise statistical measurements. The GS algorithm is
quite unreliable when the data is limited and it needs much
more samples to converge to a reasonable performance than
our method. Its performance even decreases with more train-
ing data. Using the Markov blanket features of the learned
Bayesian network gives better performance than using all
features when the data is limited. However, the difference in
performance decreases when we have more training data.

Experiments on Benchmark Text Data

We also test on 7 binary text classification problems. They
are Student vs Faculty from the WebKB set, Corn vs Wheat,

1Available at http://www.norsys.com/netlibrary/index.htm

Corn vs Crude, and Interest vs FX from the Reuters-21578
set, Mac vs PC, Auto vs Motorcycle, and Baseball vs
Hockey from the 20Newsgroup set. We remove the header
of each document and convert the remainder into a 0/1 vec-
tor without stemming or a stoplist.

The result is presented in Table 2. By capturing a more
accurate global view of how all the random variables in-
teract with each other, selecting features through learning
a Bayesian network beats other feature selection methods
in most cases, and can slightly improve the prediction ac-
curacy. On the contrary, the GS algorithm is usually too
aggressive in reducing the feature dimensionality and thus
hurts the performances. The information gain method has
difficulty in finding high-order interactions and thus shows
suboptimal results. The screen-based method beats the
sparse candidate method in most cases because it has no re-
striction on its parent size. For the 20Newsgroup data which
is difficult to classify due to the discursive writing style of
documents, the accuracy of the screen-based algorithm is
significantly better than any other methods. One exception
is the WebKB data, in which we can accurately predict the
category using just several words. For example, “graduate”
and “advisor” are very good indicators for “student”.

Such high-dimensional data sets pose a challenge to most
Bayesian network learning algorithms. For example, Opti-
mal Reinsertion (Moore & Wong 2003) ran out of memory
on every dataset, even if we set p=3 and ran it on a ma-
chine with 4G memory. Our methods can learn a Bayesian
network from such massive data extremely fast. The screen-
based method can learn a Bayesian network within minutes.
Depending on the data size, the 5 million random operations
of the post-processing take about 15 minutes to 1 hour. Thus,
our feature selection method through heuristic Bayesian net-
work structure learning is quite efficient.

Conclusion and Discussion
We analyze the Markov blanket feature selection algorithms
based on the independence test and present an efficient fea-
ture selection method that uses a fast, heuristic technique
to learn a Bayesian network over a high-dimensional data
set. There is no threshold tuning and it can automatically
find the optimal feature set. Also, since Bayesian networks
provide the dependency explanations between variables, this
feature selection method is easy to incorporate prior ex-
pert knowledge and explain the learned results. We analyze
the sufficient condition when this method will improve the
performance of classifiers. Experimental results show that
our method can efficiently reduce the feature dimensional-
ity without much loss of classification accuracy. To our best
knowledge, there has been no attempt to heuristically learn
a Bayesian network from massive text data. We show that
by restricting the search space and improving the efficiency
of cycle detection, heuristic search methods can efficiently
learn a Bayesian network from high-dimensional data.

Our feature selection method can be considered as a hy-
brid generative-discriminative learning approach. Raina et
al. (Raina et al. 2004) propose a hybrid model in which
a high-dimensional subset of the parameters are trained to
maximize generative likelihood, and another small subset of

Table 2: Performance on benchmark text datasets

(a) F1 values of different feature selections (×100)

Dataset all features GS IG SC(k:10, p:5) SC(k:20, p:10) Screen-based

WebKB 95.087 96.37 92.33 95.83 96.42 94.37

Corn vs Wheat 81.43 78.99 78.99 78.05 78.64 81.82

Corn vs Crude 99.73 98.95 99.73 99.47 99.73 100

Interest vs FX 78.69 76.24 80.31 76.53 77.72 79.47

Mac vs PC 83.82 76.69 84.19 83.29 84.14 86.31

Auto vs Motor 90.47 85.83 89.95 90.71 90.55 91.34

Baseball vs Hockey 90.97 83.68 91.94 90.92 92.62 93.81

(b) Number of selected features

Dataset original GS SC 10 SC 20 Screen

WebKB 10850 8 98 109 601

C vs W 2589 5 6 6 24

C vs C 4323 5 48 59 421

I vs F 4191 5 9 9 62

M vs P 7212 7 55 61 322

A vs M 8859 7 74 80 411

B vs H 9483 7 119 128 849

(c) CPU time (without the post-processing)

Dataset SC 10 SC 20 Screen

WebKB 85842 100472 431

C vs W 399 1056 23

C vs C 1627 3411 56

I vs F 1742 3306 201

M vs P 7965 12769 139

A vs M 13902 21549 281

B vs H 8189 12515 337

parameters are trained to maximize conditional likelihood.
We are interested in comparing our approach with this algo-
rithm. With a large amount of real-world data being stored
in relational form, we would also like to investigate learning
the structure of probabilistic relational models (Friedman et
al. 1999) and construct predictive feature sets for a class
variable given the learned model.

References

Aliferis, C. F.; Tsamardinos, I.; and Statnikov, A. 2003. HITON:
A novel markov blanket algorithm for optimal variable selection.
In AMIA 2003 Symposium Proceedings, 21–25.

Alpern, B.; Hoover, R.; Rosen, B. K.; Sweeney, P. F.; and Zadeck,
F. K. 1990. Incremental evaluation of computational circuits. In
SODA-90, 32–42.

Bai, X.; Glymour, C.; Padman, R.; Ramsey, J.; Spirtes, P.; and
Wimberly, F. 2004. PCX: Markov blanket classification for large
data sets with few cases. Report CMU-CALD-04-102, CMU.

Baker, L. D., and McCallum, A. K. 1998. Distributional cluster-
ing of words for text classification. In SIGIR-98, 96–103.

Chang, C.-C., and Lin, C.-J. 2001. LIBSVM: a li-
brary for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C. 2001.
Introduction to Algorithms. MIT Press, 2nd edition.

Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999. Learn-
ing probabilistic relational models. In IJCAI-99, 1300–1309.

Friedman, N.; Nachman, I.; and Peér, D. 1999. Learning
Bayesian network structure from massive datasets: The “sparse
candidate” algorithm. In Proc. of UAI-99, 206–215.

Geiger, D.; Heckerman, D.; King, H.; and Meek, C. 2001. Strat-
ified exponential families: graphical models and model selection.
The Annals of statistics 29:505–529.

Giudici, P., and Castelo, R. 2003. Improving Markov Chain
Monte Carlo model search for data mining. Machine Learning
50(1-2):127–158.

Goldenberg, A., and Moore, A. 2004. Tractable learning of large
Bayes net structures from sparse data. In ICML-04, 345–352.

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995. Learn-
ing Bayesian networks: The combination of knowledge and sta-
tistical data. Machine Learning 20(3):197–243.

Joachims, T. 2001. Learning to Classify Text Using Support Vec-
tor Machines. Kluwer Publishers.

Johnson, N. I., and Kotz, S. 1970. Distributions in Statistics.
Continuous Distributions. New York: Wiley.

Koller, D., and Sahami, M. 1996. Toward optimal feature selec-
tion. In Proc. of ICML-96, 284–292.

Loh, W.-Y. 1989. Bounds on the size of the chi-square-test of
independence in a contingency table. The Annals of statistics
17(4):1709–1722.

Margaritis, D., and Thrun, S. 1999. Bayesian network induction
via local neighborhoods. In NIPS 12, 505–511.

Meng, R. C., and Chapman, D. G. 1966. The power of chi square
tests for contingency tables. Journal of the American Statistical
Association 61:965–975.

Moore, A., and Wong, W.-K. 2003. Optimal reinsertion: A new
search operator for accelerated and more accurate bayesian net-
work structure learning. In Proc. of ICML-03, 552–559.

Ng, A. Y., and Jordan, M. I. 2002. On discriminative vs. gen-
erative classifiers: A comparison of logistic regression and naive
Bayes. In Advances in NIPS 14.

Pearce, D. J., and Kelly, P. H. J. 2006. A dynamic topological
sort algorithm for directed acyclic graphs. J. Exp. Algorithmics
11:1–24.

Raina, R.; Shen, Y.; Ng, A. Y.; and McCallum, A. 2004. Classi-
fication with hybrid generative/discriminative models. NIPS 16.

Witten, I. H., and Frank, E. 2005. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann.

Yang, Y., and Pedersen, J. O. 1997. A comparative study on
feature selection in text categorization. In ICML-97, 412–420.

Zuk, O.; Margel, S.; and Domany, E. 2006. On the number of
samples needed to learn the correct structure of a bayesian net-
work. In UAI.

