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Abstract—This paper reviews three successful statistical data 

mining approaches developed recently at the Auton Lab of 

Carnegie Mellon University to support public health officials in 

their work towards protecting biomedical safety and security.  

The presented methods focus on monitoring health care data 

sources including hospital emergency department records, sales 

of over-the-counter medications, and consumer food 

complaints.  Their purpose is to detect statistically significant 

signs of disease outbreaks, or food safety related concerns, as 

early as possible.  These approaches have already been 

successfully deployed in the United States and other developed 

countries, but they also have a vast potential utility among 

developing societies.  The Auton Lab is actively seeking 

additional deployments, and several pieces of the relevant 

software are available for download and use free of charge. 

This paper describes each of the presented methods, and 

provides results of their utilization so far. 

I. INTRODUCTION 

IOMEDICAL security has recently gained a lot of 

attention in the research community, both because of the 

threat of emerging global pandemics such as SARS and 

avian influenza, as well as the potential danger of 

bioterrorist attacks.  In both cases, the early detection of 

emerging disease outbreaks can enable more rapid 

epidemiological response, possibly saving many lives.  

Many data sources may serve as useful indicators of an 

emerging outbreak of disease, including patient visits to 

emergency departments in hospitals, drug sales in medical 

stores, and consumer food complaints. Our focus is on the 

development of automatic bio-surveillance systems to 

analyze one or more of these data streams and generate 

alerts when abnormal patterns occur. 

 In this paper, we present overviews of three algorithms 

that have been successfully applied to monitor such data 

sources, enabling the timely and accurate detection of 

disease outbreaks and other patterns of adverse events.  All 

these algorithms have been developed at the Auton Lab of 

Carnegie Mellon University; more detailed descriptions and 

software implementations are available on our website 

(http://www.autonlab.org). 

II. WHAT’S STRANGE ABOUT RECENT EVENTS 

A. Overview 

Multidimensional data with a temporal component is 

available in numerous disciplines such as medicine, 

engineering, and astrophysics.  This data is often used for 

monitoring purposes by a novelty detection system.  These 

systems inspect the data for anomalies and raise an 

appropriate alert upon discovery of any deviations from the 

norm.  The What’s Strange About Recent Events (WSARE) 

is a statistical data mining technology for monitoring a 

stream of transactional database records to discover whether 

changes are occurring [1-3]. The changes might be in 

specific fields with means or variances that have changed 

significantly.  More interestingly, WSARE also alerts when 

no individual records look strange, and when no individual 

fields of the sequence of records is changing, but when the 

interrelationship between fields is changing.  When 

monitoring hospital admissions records, an example of such 

a pattern might be “there is no significant increase in males, 

but among men living in zip code X there is double the rate 

of respiratory problems”. 

WSARE requires records within a specified temporal 

period to be defined as recent records.  Records preceding 

the recent data points in time are used to produce a baseline 

dataset that represents normal behavior.  WSARE compares 

the recent data against the baseline data to find the most 

significant change in recent records.  This change is 

described using a rule, which is made up of components of 

the form
j

ii VX = , where iX is the i
th

 feature and 
j

iV is the 

j
th

 value of that feature. For example in case of emergency 

department cases, the one-component rule Gender = Male 

characterizes the subset of the data involving male visitors.  

Our most recent work [2-3] replaces our earlier baseline 

method [1] with a Bayesian network which produces the 

baseline distribution by taking the joint distribution of the 

data and conditioning on attributes that are responsible for 

the trends.  We show that our algorithm, called WSARE 3.0, 
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is able to detect outbreaks in simulated data with almost the 

earliest possible detection time while keeping a low false 

positive count. 

B. Algorithm 

The WSARE algorithm consists of three steps.  First of 

all, the baseline dataset is created.  Secondly, the algorithm 

searches for the best scoring rule using both the recent and 

the baseline datasets.  Finally, a p-value for the best scoring 

rule is calculated using a randomization test.  We will briefly 

provide more details about the three steps above.  We will 

be describing WSARE 3.0 [2-3], which uses a Bayesian 

network to create the baseline dataset. 

Determining the baseline is difficult due to the presence of 

various trends in data, such as trends caused by the day of 

week and by seasonal variations in temperature and weather.  

Creating the baseline distribution without taking these trends 

into account can lead to unacceptably high false positive 

counts and slow detection times.  WSARE 3.0 accounts for 

these trends by using a Bayesian network to model the joint 

probability distribution of the features of the data.  These 

features can be divided into environmental attributes, which 

are features such as the season and the day of week that 

cause trends in the data, and response attributes, which are 

the remaining features such as syndrome and gender.  

WSARE 3.0 learns a Bayesian network from all data from 

before the recent period.  During this Bayesian network 

structure learning phase, environmental attributes are 

prevented from having parents because we are not interested 

in predicting their distributions, but rather, we want to use 

them to predict the distributions of the response attributes.  

Once the Bayesian network structure is learned, we can then 

produce a conditional probability distribution that represents 

the baseline behavior given the environmental attributes for 

the current day.  As an example, suppose we are monitoring 

Emergency Department data and that the environmental 

attributes Season, Day of Week, and Weather cause 

fluctuations in this data.  Also, let the response attributes be 

X1, …, Xn.  Assuming that today is a snowy winter Saturday, 

we can use the joint probability distribution captured by the 

Bayesian network to produce the conditional probability 

distribution P(X1, …, Xn | Season = Winter, Day of Week = 

Saturday, Weather = Snow), which intuitively represents the 

baseline distribution given the conditions for the current day.  

The baseline dataset can consequently be produced by 

sampling a large number of records from this conditional 

probability distribution. 

Once the baseline dataset is generated, we need to search 

for the best scoring rule, which characterizes the group with 

the most unusual shift in proportions between the baseline 

and recent datasets.  In order to prevent over-fitting, 

additional components are only added to the best rule so far 

if the addition of those components is statistically 

significant. 

Let BR be the best scoring rule found and let Score(BR) 

be the score of BR.   We cannot interpret Score(BR) as its 

actual p-value because the process for finding the best 

scoring rule involves multiple hypothesis tests.  The final 

step of WSARE accounts for the multiple hypothesis testing 

problem by calculating a compensated p-value for the best 

scoring rule through a randomization test in which the date 

and the remaining features are assumed to be independent.   

The randomization test consists of several iterations, 

typically around 1000.  On iteration j, we shuffle the dates 

between records in the recent and the baseline datasets to 

produce a randomized dataset called
j

randDB .  We then find 

the best scoring rule
j

BR on
j

randDB .  At the end, we 

determine where Score(BR) would be ranked among the 

values of Score(
j

BR ) from all the iterations.  The 

compensated p-value CPV is calculated as: 

( ) ( )

iterationstestionrandomizat

BRScoreBRScore
CPV

j

#

# <
=  

Finally, an alarm sounds if the compensated p-value CPV 

is lower than a threshold, for example 0.01. 

C. Results 

WSARE has been downloaded by more than 100 public 

health departments from the USA and the rest of the world 

since we made it publicly available in January 2003. 

Recently, the Israel Center for Disease Control evaluated 

WSARE 3.0 retrospectively using an unusual outbreak of 

influenza type B that occurred in an elementary school in 

central Israel.  WSARE 3.0 was applied to patient visits to 

community clinics between the dates of May 24, 2004 to 

June 11, 2004.  The attributes in this dataset included the 

visit date, area code, ICD-9 code, age category, and day of 

week.  The day of week was used as the only environmental 

attribute.  WSARE 3.0 reported two rules with p-values at 

0.002 and five other rules with p-values below 0.0001.  Two 

of the five anomalous patterns with p-values below 0.0001 

corresponded to the influenza outbreak in the data.  The 

rules that characterized the two anomalous patterns consisted 

of the same three attributes of primary complaint code, area 

code and age category, indicating that an anomalous pattern 

was found involving children aged 6-14 having viral 

symptoms within a specific geographic area.  WSARE 3.0 

successfully detected the outbreak on the second day from 

its onset. Similarly, in a recent retrospective analysis of the 

Walkerton (Canada) fatal outbreak of E. coli infection due to 

tap water contamination, it was determined that WSARE 3.0 

would have detected the outbreak one day before a boil-

water advisory was released if its alarm threshold was set to 

a level that permitted two false positives per year. 
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III. SPATIAL SCAN STATISTICS  

A. Overview 

In the field of bio-surveillance, epidemiologists are 

interested in detecting significant clusters of disease cases; 

these clusters may be indicative of an emerging disease 

epidemic.  We have developed a system for automatic 

detection of disease clusters that can detect potential 

outbreaks, pinpoint their spatial location, and distinguish 

between significant clusters and those simply due to chance.  

More generally, our methods can be applied to any spatial 

data mining problem where the goal is detection of 

overdensities: spatial regions with higher than expected 

values of some quantity (the “count”) with respect to some 

underlying “baseline” information.  This is useful not only 

for bio-surveillance (including both detection of naturally 

occurring outbreaks and terrorist bio-attacks) but also in 

many other application domains, such as medical imaging, 

astrophysics, and military surveillance. 

B. Algorithm 

We consider spatial datasets that have been aggregated to 

a uniform, two-dimensional grid.  Let G be an N×N grid of 

cells, where each cell si∈G is associated with a count ci and 

an underlying baseline bi.  For example, a cell’s count may 

be the number of disease cases in that geographical location 

in a given time period, while its baseline may be the total 

population “at-risk” for the disease.  Our goal is to search 

over all rectangular regions S ⊆ G, and find the region S* 

with the highest score according to some score function F: 

S* = argmaxS  F(S).  This score function can be derived from 

our models of how the data is generated under the null 

hypothesis H0 (of no clusters) and the set of alternative 

hypotheses H1(S), each representing a cluster in some region 

S.  We typically use the likelihood ratio statistic, which is the 

likelihood of the data under the alternative hypothesis 

divided by the likelihood of the data under the null 

hypothesis.  For many of the models used in the bio-

surveillance domain, the score function F(S) can be 

expressed as a function of two sufficient statistics: the total 

count of the region, C(S) = ∑S ci, and the total baseline of the 

region, B(S) = ∑S bi.  This enables us to efficiently compute 

the score function for any given region S. 

One such efficiently computable score function, which is 

also of great interest to epidemiologists, is Kulldorff’s 

spatial scan statistic [4].  This statistic assumes that counts 

ci are generated by an inhomogeneous Poisson process with 

mean qbi, where bi is the at-risk population and q is the 

underlying “disease rate.” Kulldorff proved that the 

following likelihood ratio statistic is most powerful for 

finding a single region of elevated disease rate:   

( )
tot

tot

tot

tot

tot

tot
B

C
C
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B

C
CSF logloglog)( −

−

−
−+=    

In the above score function, C represents the total count of 

region S, B represents its total baseline, and Ctot and Btot 

represent the total count and total baseline of the grid 

respectively.  Our algorithms can use either Kulldorff’s 

score function or many other possible statistics; in certain 

cases, other score functions will have better detection power 

than Kulldorff’s.  

Though much previous work focuses on the case of 

detecting compact (circular or square) clusters, we presented 

an efficient algorithm [5] that can detect both compact and 

elongated (rectangular) clusters.  This extension is important 

in epidemiological applications because disease clusters are 

often elongated: airborne pathogens may be blown by the 

wind, creating an ellipsoid “plume,” and waterborne 

pathogens may be carried along the path of a river.  In each 

of these cases, the resulting clusters have high aspect ratios, 

and tests for squares and circles will have low power for 

detecting these clusters.  Naively, the algorithmic complexity 

of searching an N×N grid is O(N
3
) for squares and O(N

4
) for 

rectangles.  In [5], we used an “overlap-kd tree” data 

structure to reduce the complexity of searching rectangular 

regions to O((N log N)
2
).  This algorithm makes spatial 

scanning practical and computationally feasible even for 

massive real world datasets, which require high grid 

resolutions for accurate searching.  Although [5] only 

considered axis-aligned rectangles, the work can be easily 

extended to search for non-axis aligned rectangles.  One 

simple method of doing this is to examine multiple 

“rotations” of the data, mapping each to a separate grid and 

computing the most significant region for each grid. 

Once we have found the most significant region of grid G 

according to our score function, we can compute its 

statistical significance (p-value) using randomization.  To do 

so, we generate a large number R (typically 1000) of replica 

grids, where a replica has the same underlying baselines bi as 

G, but has counts randomly generated under the assumption 

of a uniform disease rate.  For each replica grid, we find the 

maximum region score.  The p-value can then be calculated 

as (Rbeat + 1) / (R + 1), where Rbeat is the number of replica 

grids with maximum scores higher than the original grid.  If 

the p-value is less than 0.05, we can conclude that the 

discovered region is unlikely to have occurred by chance, 

and is thus a “significant spatial cluster.”  Otherwise, no 

significant clusters exist. 

C. Multidimensional Spatial Scans 

In [6], we extended our efficient spatial scan statistics 

(SSS) methods to multidimensional data.  This extension 

makes spatial scanning computationally feasible for a variety 

of datasets with more than two spatial dimensions: for 

example, we successfully applied the spatial scan to detect 

clusters of brain activity in three-dimensional fMRI 

(functional magnetic resonance imaging) data.  We can also 
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scan efficiently over space-time clusters, using time as an 

additional dimension, or include various other attributes of 

the data.  For example, for emergency department visits, in 

addition to hospital location and time, we can include patient 

age and gender, allowing us to more accurately detect 

epidemics with different effects on different groups.  For 

over-the counter drug sales, we can include store location, 

time, and information about promotional sales.  In both of 

these bio-surveillance domains, multi-dimensional scans 

result in more meaningful results, as they not only indicate 

the spatial location of an outbreak but also present 

characteristics of that outbreak, based on the location and 

extent of the detected region in the multidimensional space.  

D. Space Time Clusters 

By extending spatial scan statistics to multi-day analysis 

in a space-time framework, we are able to detect emerging 

clusters of disease, whether these clusters emerge rapidly or 

gradually.  In [7], we presented a class of spatio-temporal 

cluster detection methods that combine univariate time series 

analysis with spatial scan statistics for rapid detection of 

emerging space time clusters.  These “expectation-based” 

approaches have two steps: first inferring how many cases 

we expect to see in each spatial location, then detecting 

spatial regions where the recent counts are significantly 

higher than expected.  We have developed space-time scan 

statistics to detect both persistent clusters (regions that have 

constant relative risk over time) and emerging clusters 

(regions with risk that is monotonically increasing over 

time).  To estimate baseline counts, a wide variety of 

univariate time series algorithms were used: these include 

exponentially weighted linear regression (EWLR), and 

exponentially weighted moving average (EWMA), with 

various methods of adjusting for day of week and 

seasonality.  Through extensive testing, many of these 

methods were shown to be highly successful on the task of 

prospective detection of disease outbreaks. 

E. Bayesian Scan Statistics 

In [8], we proposed a Bayesian method for cluster 

detection, the “Bayesian spatial scan statistic.”  This method 

allows us to incorporate prior information about the 

likelihood, size, and impact of an outbreak; by combining 

these priors with the observed data, we can compute the 

posterior probability of an outbreak in each spatial region.  

We demonstrated that the Bayesian method has several 

advantages over the standard (frequentist) approach, 

including higher power to detect clusters and much faster 

run time.  Other advantages include easier calibration, easier 

interpretation and visualization of results, and easier 

extension to multivariate data; see [8] for more details. 

F. Results 

We have demonstrated that our spatial scan techniques are 

useful for fast and accurate cluster detection in a variety of 

applications, including bio-surveillance and medical 

imaging.  In the bio-surveillance domain, we have shown 

that our techniques can rapidly detect disease outbreaks, 

with both a high probability of detection and a low false 

positive rate. 

We have also designed ultra-fast versions of spatial scan 

algorithms using the overlap-kd tree data structure, making 

these algorithms practical even for massive real-world 

datasets.  Our “fast spatial scan” techniques achieve 100-

1000x speedups as compared to naïve methods, with no loss 

of accuracy.  Use of the Bayesian approach can further 

speed up investigation, since randomization testing is 

unnecessary in the Bayesian framework.  

We have tested these algorithms on real-world datasets 

including emergency department visits (from four different 

states) and over the-counter sales data (throughout the 

United States).  Results show that our algorithms can scale 

to such datasets containing millions of records.  Every day, 

our SSS system [9] receives data from over 20,000 stores 

and hospitals nationwide, uses our automatic cluster 

detection methods to find potential outbreaks, and makes 

these results available to state and local public health 

officials through a web-based graphical interface. These 

public health officials also provide us with valuable 

feedback on the system, enabling us to continually improve 

our models and methods. 

We have demonstrated that our space-time methods can 

rapidly and accurately detect emerging disease epidemics.  

We have also retrospectively studied various real world 

outbreaks and found impressive results.  As an example, our 

retrospective analysis of the Walkerton E. Coli outbreak 

(discussed above) determined that the space-time scan would 

have detected the outbreak two days before the boil-water 

advisory, that is, one day before WSARE.  The tradeoff, of 

course, is that WSARE is a more general detector than the 

space-time scan, and can detect a greater range of outbreak 

types. Tests on semi-synthetic outbreaks (simulated 

outbreaks injected into real baseline Emergency Department 

and over-the-counter sales data) likewise demonstrated that 

our method is fast, accurate, and has high power to detect 

outbreaks [7].      

IV. TIP MONITOR  

A. Overview 

TIP MONitor’s (TIPMON) job is to identify small subsets 

(pairs and triplets) of significantly correlated records in an 

incoming stream of multidimensional event-based data such 

as anonymous individual patient health events involving 

chief complaint strings, prescription orders, public safety 

hotlines or customer complaints.  Very often, such data is 

sparse, noisy and it may contain very little and spotty 
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evidence of potentially crucial coincidences.  The last 

feature makes it very hard to detect important events with 

more traditional approaches used by bio-surveillance 

analysts (such as spatial scan statistics, WSARE, or 

multivariate time series analysis), since they are designed to 

benefit from ample evidence. 

Suppose that among the chief complaint strings of two 

unrelated patients in the same city on the same date there 

was a mention of bloody stools in pediatric cases. The 

multiple mentions of “bloody stools” or “pediatric” might 

not be surprising, but the tying together of these two factors, 

given matching geographic locations and timings of 

reporting, is sufficiently rare that seeing only two such cases 

is of interest. This was precisely the evidence that was the 

first noticeable signal of the tragic Walkerton, Canada, 

waterborne bacterial gastroenteritis outbreak caused by 

contamination of tap water in May 2000. That weak signal 

was spotted by an astute physician, not by a surveillance 

system. Reliable automated detection of such signals in 

multivariate data requires new analytic approach such as that 

in TIPMON.  

B. Algorithm 

TIPMON analyzes a stream of data.  Given a new case 

nX and an old case oX , TIPMON computes the probability 

of these two cases being noisy copies of each other, under 

hypothesis that they have been generated by the same 

underlying common cause, kC . Figure 1 shows this scenario 

pictorially.  For instance, two food consumer complaint 

reports stemming from the same root cause related to 

contamination at some food processing plant are likely to 

have uniquely similar characteristics, as compared to other 

reports not related to that particular cause. 

 
Fig. 1.  “Noisy Copy” model in TIPMON. 

 

For every new case, TIPMON simultaneously analyzes 

multiple causal models to find out if any cases in the past 

would have matched this new case based on each of the 

predefined causal scenarios.  These causal models can be 

defined as conditional probability of new case and old case 

being related given the particular cause, 

mathematically ( )kon CXXP |, .  These models could 

either be learned, given a sufficient amount of labeled data 

on hand, or alternatively they could be defined by the 

domain experts.  Each individual scenario of interest defines 

a new causal model that would be monitored by TIPMON.  

New causes and corresponding scenarios could also be 

incrementally added through active learning. 

Consider an application that has a total of K defined 

causal models and N-1 past cases. Let nokQ be the 

probability of case nX being similar to a past case oX given 

a cause kC .  For this new case nX , TIPMON analyzes the 

past historical data to answer the following three critical 

questions.  First, it finds the probability of nX being similar 

to any past case, 
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nokQ .  This indicates how critical 

this case could be for further investigation, and the 

complement of that value directly characterizes 

anomalousness of the new case given the collection of past 

cases.  Secondly, it finds the chances of the new case being 

generated according to each specific scenario k, 
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each old case being similar to the new case by computing the 

corresponding marginal probability 
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.  Looking at 

pairs of cases corresponding to the highest scores defined 

above, human analysts can more efficiently allocate their 

time to investigate most probable emerging patterns of 

recently occurring adverse events.      

C. Results 

A variant of TIPMON, named EPFC (Emerging Patterns 

in Food Complaints) is the analytical core of the Consumer 

Complaint Monitoring System (CCMS II) deployed at the 

United States Department of Agriculture (USDA).  It is 

monitoring food complaints related to meat, eggs and 

poultry.  EPFC is designed to screen sparse and noisy data 

for potential linkages between individual reports of adverse 

effects of food on its consumers. 

These consumer complaint reports, collected in a passive 

surveillance mode, contain multi-dimensional and 

heterogeneous snippets of specific information about the 

consumers’ demographics, the kinds, brands and sources of 

the food they ate, symptoms of sickness they may be 

experiencing, characteristics of foreign objects which could 

have been found in food, involved locations and times of 

occurrences, and so on.  The EPFC estimates how likely it is 

for a newly reported complaint case to be a close copy of 

some other case in the past data, if both have been generated 

by the same specific underlying cause, such as for instance a 

CK 

XN XO 
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malicious contamination of raw food at plant.  The top 

matches are reported to human analysts for investigation.  

The EPFC resolves the problem of manually checking for all 

possible associations between all possible pairs of 

complaints over recent weeks, and it helps to efficiently 

allocate limited analytical and investigative resources.  Its 

unique feature is the ability to remain sensitive to signals 

supported by very little data – significant alerts can be raised 

on the basis of a very few complaints from consumers, 

provided that the few complaints contain significantly 

similar and explicable root causes. 

The EPFC is receiving very positive feedback from its 

users. When tested on historical CCMS data, it managed to 

instantaneously flag an outbreak of a food borne illness (E. 

coli), which took experienced analysts over two weeks to 

identify. This has been possible due to the ability of 

TIPMON to remain sensitive to small signals in multivariate 

data; even when data is spotty, noisy and even if it comes in 

a short supply (the CCMS system currently logs only about 

100 complaints per week). 

V. CONCLUSION 

We presented three algorithms for prospective bio-

medical surveillance: WSARE, spatial scan statistics (SSS), 

and TIPMON.  Table 1 shows a brief comparison of the 

utility of these methods in the field of biomedical security.   
 

 

 

Traditional approaches in bio-medical security (e.g. 

univariate time series analysis) are highly dependent on the 

prior knowledge about the type and location of disease 

outbreaks under consideration.  SSS has been developed to 

scan for anomalous spatial regions, and hence only needs to 

know the type of outbreak.  WSARE searches for a variety 

of anomalous rules or patterns, and thus does not need either 

a prespecified type or location.  The strength of TIPMON 

relies on the ability to early detect meaningful patterns based 

on small amount of evidence.  

These three methods have already demonstrated utility in 

detecting outbreaks of infectious diseases and in discovering 

problems in safety of food supply in their early stages.  The 

WSARE and SSS algorithms as well as related software are 

available for free download at http://www.autonlab.org.  We 

highly encourage readers to download and apply them for 

bio-surveillance and adverse events monitoring tasks.  We 

are hoping that these algorithms can be added to already 

existing systems at no cost or at a limited cost, dramatically 

improving system performance, as well as serving as stand-

alone outbreak detection tools.  We are always interested in 

resolving any practical issues related to applying these 

algorithms to real datasets. 
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TABLE  I 

FUNCTIONALITY COMPARISON CHART 

Algorithm 

Prior 

Knowledge 

Required 

Amount of 

Evidence 

Needed 

Ability to  

Rapidly Detect 

Complex 

Patterns 

Traditional 

Approaches 

What and 

Where to look 

for? 

Large 
Low to 

Moderate 

WSARE --- Large High 

SSS 
What to look 

for? 
Large 

Moderate to 

High 

TIPMON 
Causal 

Scenarios* 
Small High 

 

* Causal scenarios can be learned from data if sufficient supply of it is 

available. 

 


