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Abstract
In this paper, we introduce a framework for shape
outlier, like carrying object, detection in dif-
ferent people from different views using pose
preserving dynamic shape models. We model
dynamic human shape deformations in differ-
ent people using kinematics manifold embedding
and decomposition of nonlinear mapping using
kernel map and multilinear analysis. The gener-
ative model supports pose-preserving shape re-
construction in different people, views and body
poses. Iterative estimation of shape style and
view with pose preserving generative model al-
lows estimation of outlier in addition to accurate
body pose. The model is also used for hole fill-
ing in the background-subtracted silhouettes us-
ing mask generated from the best fitting shape
model. Experimental results show accurate es-
timation of carrying objects with hole filling in
discrete and continuous view variations.

1. Introduction
The shape deformation in human motion contains rich in-
formation such as body pose, person identity, and even
emotional states of the person. It implies that human shape
deformations vary in different body poses, shape styles,
and emotional states. Different observation conditions like
view and background cause further variations in the ob-
served image or extracted shapes. The shape deformation
of human motion like gait causes variations of topology
and nonlinear deformations in observed shape sequences.
When we have a good generative shape deformation mod-
els according to state parameters like body pose, shape
style and view, we can solve many problems in human mo-
tion analysis, tracking and recognition.

This paper presents a dynamic shape model of human mo-

Appearing in Proceedings of the Workshop on Machine Learn-
ing Algorithms for Surveillance and Event Detection at the 23rd
ICML, 2006. Copyright 2006 by the author(s)/owner(s).

tion with decomposition of body pose, shape style and
view. To model nonlinear shape deformations by multiple
factors, we propose kinematics manifold embedding and
kernel mapping in addition to multilinear analysis of col-
lected nonlinear mappings. The kinematics manifold em-
bedding, which represents body configuration in low di-
mensional space based on motion captured data and invari-
ant to different people and view, is used to model dynamics
of shape deformation according to intrinsic body configu-
ration. The entire intrinsic configuration can have one-to-
one correspondence with kinematics manifold (Sec. 2.1).
Using this kinematics manifold embedding, individual dif-
ferences of shape deformations can be solely contained in
nonlinear mappings. By utilizing multilinear analysis for
these mappings, we can achieve decompositions of shape
styles and views in addition to the body poses (Sec. 2.2).
Iterative estimation of body pose, shape style and view pa-
rameters of given the decomposable generative model pro-
vides pose preserving, style preserving reconstruction of
shape in different view human motion (Sec. 2.3).

The proposed pose preserving, dynamic shape models are
used to detect shape outlier, like carrying objects, from se-
quences of silhouette images. The detection of carrying
objects is one of the key element in visual surveillance
systems (Haritaoglu et al., 1999). In gait challenge prob-
lem, the performance of gait recognition decrease dramat-
ically for probe set with briefcase (Sarkar et al., 2005).
Our pose-preserving dynamic shape model detects carry-
ing objects as outliers. By removing outliers from extracted
shape, we can estimate body pose and other factors accu-
rately in spite of variations of shapes due to carrying ob-
jects (Sec. 3.3). Hole filling based on signed distance rep-
resentation of shape (Sec. 3.1) also helps correcting shapes
from inaccurate background subtraction (Sec. 3.2). Iter-
ative procedure of hole filling and outlier detection using
pose preserving shape reconstruction achieves gradual hole
filling and advance in precision of carrying objects detec-
tion (Sec. 3.4). Experimental results using CMU Mobo
gait database (Gross & Shi, 2001) and our own data set
from multiple views show accurate estimation of carrying
object with correction of silhouettes from multiple people
and multiple view silhouettes with holes (Sec. 4).
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1.1. Related Work

There have been a lot of work on contour tracking
from cluttered environment such as active shape models
(ASM) (Cootes et al., 1995), active contours (Isard &
Blake, 1998), and exemplar-based tracking (Toyama &
Blake, 2001). Spatiotemporal models are also used for con-
tour tracking (Baumberg & Hogg, 1996). However, there
are few works to model shape variations in different people
and views as a generative model with capturing nonlinear
shape deformations.

The framework to separate the motion from the style
in a generative fashion was introduced in our previous
work (Elgammal & Lee, 2004b), where the motion is rep-
resented in a low dimensional nonlinear manifold. Nonlin-
ear manifold learning technique can be used to find intrin-
sic body configuration space (Wang et al., 2003; Elgam-
mal & Lee, 2004b). However, discovered manifolds are
twisted differently according to person styles, views, and
other factors like clothes in image sequences (Elgammal &
Lee, 2004a). We propose kinematics manifold embedding
as an alternative uniform representation of intrinsic body
configuration (Sec. 2.1).

Shape models are used for segmentation and tracking of
medical image using level sets (Tsai et al., 2003; Para-
gios, 2003; Leventon et al., 2000). The shape priors also
used as constraints in geodesic active contours (Rousson &
Paragios, 2002). These shape priors can be used for pose-
preserving shape estimation. However, this model does not
contain dynamic characteristics of shape deformations in
human motion. This paper presents the generative dynamic
shape model in multiple view and people using kinematics
manifold embedding.

In spite of the importance of carrying objects or outliners
detection in visual surveillance system, there has been few
works focused on carrying objects detection due to difficul-
ties in modeling variations of shape due to carrying objects.
Detecting carrying object has been designed to work under
a visual surveillance system (Haritaoglu et al., 1999). By
analyzing symmetry in silhouette model, they detected car-
rying object by aperiodic outlier regions. The system is
very sensitive to noise of foreground object detection, size
of carrying object, and the axis of symmetry which is used
to compute asymmetric of shape (BenAbdelkader & Davis,
2002). Amplitude of the shape feature and the location
of detected objects are constrained to improve accuracy of
carrying object detection (BenAbdelkader & Davis, 2002).
Detecting outlier accurately and removing noise and filling
hole in extracted silhouette still remains unresolved. This
paper proposes gradual detection of outlier, and correction
of noise silhouette by hole filling and shape outlier removal
using pose-preserving dynamic shape model.

2. Pose Preserving Dynamic Shape Models
We can think of the shape of a dynamic object as instances
driven from a generative model. Let yt ∈ Rd be the shape
of the object at time instance t represented as a point in a
d-dimensional space. This instance of the shape is driven
from a model in the form

yt = γ(bt ;s,v), (1)

where the γ(·) is a nonlinear mapping function that maps
from a representation of the body pose bt into the observa-
tion space given a mapping parameter s,v that characterizes
the person shape and view variations in a way independent
of the configuration. Given this generative model, we can
fully describe observation instance yt by state parameters
bt , s, and v. For the generative model, we need low di-
mensional representation of body pose bt invariant to the
view and shape style. We need universal representation for
body configuration invariant to the variation of observation
in different people and in different view. Kinematics man-
ifold embedding is used for intrinsic manifold representa-
tion of body configuration bt .

2.1. Kinematics Manifold Embedding

We find low dimensional representation of kinematics man-
ifold by applying nonlinear dimensionality reduction tech-
niques for motion captured data. We first convert joint
angles of motion capture data into joint locations in 3 di-
mensional spaces. We align global transformation in ad-
vance in order to model motion only due to body config-
uration change. Locally linear embedding (LLE) (Roweis
& Saul, 2000) is applied to find low dimensional intrin-
sic representation from the high dimensional data (collec-
tion of joint location). The discovered manifold is one-
dimensional twisted circular manifold in three-dimensional
spaces.
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Figure 1. Kinematics manifold embedding and its mean manifold:
two different views in 3D space

The manifold is represented using a one-dimensional pa-
rameter by spline fitting. In order to find intrinsic mani-
fold representation using nonlinear dimensionality reduc-
tion, dense sampling from the manifold points is required.
We use multiple cycles to find kinematics intrinsic mani-
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fold representation by LLE. For one-dimensional represen-
tation of the multiple cycles, we use mean-manifold rep-
resentation in the parameterizations. The mean manifold
can be found by averaging multiple cycles after detecting
cycles by measuring geodesic distance along the manifold.
The mean-manifold is parameterized by spline fitting by a
one-dimensional parameter βt ∈R and a spline fitting func-
tion g : R→ R3 that satisfies bt = g(βt), which is used to
map from the parameter space into the three dimensional
embedding space. Fig. 1 shows kinematics manifold from
motion capture data with three walking cycles and their
mean manifold representation.

2.2. Decomposing and Modeling Shape Style Space

Individual variations of the shape deformation can be dis-
covered in the nonlinear mapping space between the kine-
matics manifold embedding and the observation in differ-
ent people. If we have pose-aligned shape for all the peo-
ple, then it becomes relatively easy to find shape variations
according to the shape style. Similarly, as we have com-
mon representation of the body pose, all the differences
of the shape deformation can be contained in the mapping
between the embedding points and observation sequences.
We employ nonlinear mapping based on empirical kernel
map (Schlkopf & Smola, 2002) to capture nonlinear defor-
mation in difference body pose. There are three steps to
model individual shape deformations using nonlinear map-
ping. We focus on gait, walking sequence. But it can be
applicable to other cyclic motion analysis in different peo-
ple.

First, for a given shape deformation sequence, we detect
gait cycles and embed collected shape deformation data to
the intrinsic manifold. In our case, kinematics manifold
is used for gait embedding in each detected cycle. As the
kinematics manifold comes from constant speed walking
motion captured data, we can embed the shape sequence
in equally spaced points along the manifold. Second, we
learn nonlinear mapping between the kinematics embed-
ding space and shape sequences. According to the repre-
senter theorem (Kimeldorf & Wahba, 1971), we can find a
mapping that minimizes the regularized risk in the follow-
ing form for given patterns xi and target values yi = f (xi):

f (x) =
m

∑
i=1

αik(xi,x). (2)

The solutions lie on the linear span of kernels centered on
data points. The theorem shows that any nonlinear map-
ping is equivalent to a linear projection from a kernel map
space. In our case, this kernel map allows modeling of mo-
tion sequence with different number of frames as a com-
mon linear projection from the kernel map space. The map-
ping coefficients of the linear projection can be obtained by

solving the linear system

[ysv
1 · · ·ysv

Nsv ] = Csv[ψ(xsv
1 ) · · ·ψ(xsv

Nsv)]. (3)

Given motion sequence with Ns shape styles and Nv view,
we obtain Ns×Nv number of mapping coefficients. Third,
multi-linear tensor analysis can be used to decompose
the gait motion mapping into orthogonal factors. Ten-
sor decomposition can be achieved by higher-order sin-
gular value decomposition (HOSVD) (Lathauwer et al.,
2000)(Vasilescu & Terzopoulos, 2003), which is a general-
ization of SVD. All the coefficient vectors can be arranged
in an order-three gait motion coefficient tensor C with a
dimension of Ns×Nv×Nc, where Nc is the dimension of
mapping coefficient. The coefficient tensor can be decom-
posed as C = A ×1 S×2 V ×3 F where S is the collection
of the orthogonal basis for the shape style subspace. V rep-
resents the orthogonal basis of the view space and F rep-
resents the basis of the mapping coefficient space. A is a
core tensor which governs the interactions among different
mode bases.

The overall generative model can be expressed as

yt = A × s× v×ψ(bt). (4)

The pose preserving reconstruction problem using this gen-
erative model is the estimation of configuration parameter
bt , shape style parameter s, and view parameter v at each
new frame given shape yt .

2.3. Pose Preserving Reconstruction

When we know the state of the decomposable genera-
tive model, we can synthesize the corresponding dynamic
shapes. For given body pose parameter, we can reconstruct
best fitting shape by estimating style and view parameter
with preserving the body pose. Similarly, when we know
body pose parameter and view parameter, we can recon-
struct best fitting shape by estimating style parameter with
preserving view and body pose. If we want to synthesize
new shape at time t for a given shape normalized input yt ,
we need to estimate the body pose bt , the view v, and the
shape style s which minimize the reconstruction error

E(bt ,v,s) =|| yt −A × v× s×ψ(bt) || . (5)

We assume that the estimated optimal style can be written
as a linear combination of style vectors in the training data.
Therefore, we need to solve for linear regression weights
α such that sest = ∑Ks

k=1 αksk where each sk is one of the
Ks shape style vectors in the training data. Similarly for
the view, we need to solve for weights β such that vest =
∑Kv

k=1 βkvk where each vk is one of the Kv view class vectors.

If the shape style and view factors are known, then equa-
tion 5 reduces to a nonlinear 1-dimensional search problem
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for a body pose bt on the kinematics manifold that mini-
mizes the error. On the other hand, if the body pose and
the shape style factor are known, we can obtain view con-
ditional class probabilities p(vk|yt ,bt ,s) which is propor-
tional to the observation likelihood p(yt | bt ,s,vk). Such the
likelihood can be estimated assuming a Gaussian density
centered around A × vk × s×ψ(bt), i.e.,p(y | bt ,s,vk) ≈
N (C × vk× s×ψ(bt),Σvk

).

Given view class probabilities we can set the weights to
βk = p(vk | y,bt ,s). Similarly, if the body pose and the view
factor are known, we can obtain the shape style weights by
evaluating the shape given each shape style vector sk as-
suming a Gaussian density centered at C× v× sk×ψ(bt).
An iterative procedure similar to a deterministic anneal-
ing where in the beginning the each view and shape style
weights are forced to be close to uniform weights to avoid
hard decisions about view and shape style classes, is used to
estimate xt ,v,s from given input yt . To achieve this, we use
variables, view and style class variances, that are uniform
to all classes and are defined as Σv = Tvσ2

v I and Σs = Tsσ 2
s I

respectively. The parameters Tv and Ts start with large val-
ues and are gradually reduced and in each step and a new
configuration estimate is computed.

3. Carrying Object Detection
We can detect carrying objects by iterative estimation of
outlier using the generative model that can synthesize pose-
preserving shape. In order to achieve better alignment in
normalized shape representation, we performed hole filling
and outlier removal for the extracted shape.

3.1. Shape Representation

Background Subtraction: We captured gait sequence on
treadmill with multiple camera. Nonparametric kernel den-
sity estimation methods (Elgammal et al., 2002) are applied
for per-pixel background models assuming static camera
and employing local model of intensity.

To learn shape deformations in normal walking without
carrying object, we collected walking sequences on tread-
mill for five people with 11 different views around circle
in the same camera height. Fig. 2 (a) shows an example
of captured real image. We performed background sub-
traction after learning statistical model for the background.
However, due to lighting around camera and cluttered in-
door environments, some of the silhouettes are not good
as shown in Fig. 2 (b). To achieve consistent shape rep-
resentation in different people and hole filling for inaccu-
rate background subtraction, we correct silhouettes used for
training.

Normalization of Silhouette Shape: For consistent rep-
resentation of shape deformation by variant factors, we

(a) Input (c)

(b) Silhouette (d)

Figure 2. An example of background subtraction and silhouette
representation: (a) Input image. (b) Background subtracted im-
age. (c) Normalized silhouette. (d) Signed distance representa-
tion.

normalize silhouette shapes by resizing and re-centering.
To be invariant to the distance from camera and different
height in each subject, we normalized the extracted silhou-
ette height from background-subtracted body silhouettes.
In addition, the horizontal center of the shape is re-centered
by the center of gravity of silhouette blocks. We use sil-
houette blocks whose sizes are larger than specific thresh-
old value for consistent centering of shape in spite of small
incorrect background block from noise and shadow. we
perform normalization after morphological operation and
filtering to remove noise spot and small holes.

Shape Representation by Signed Distance Function: We
parameterize shape contour using signed distance function
with limitation of maximum distance value for robust shape
representation in learning and matching shape contour. Im-
plicit function z(x) at each pixel x such that z(x) = 0 on
the contour, z(x) > 0 inside the contour, and z(x) < 0 out-
side the contour is used, which is typically used in level-set
methods (Osher & Paragios, 2003). We add a threshold
value as well

z(x) =





dT Hp
c dc(x)≥ dT Hp

c
dc(x) x inside c
0 x on c
−dc(x) x outside c
−dT Hn

c −dc(x)≤−dT Hn
c

, (6)

where the dc(x) is the distance to the closest point on the
contour c with a positive sign inside the contour and a neg-
ative sign outside the contour. We threshold distance value
dc(x) by dT Hp

c and−dT Hn
c as the distance value beyond cer-
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tain distance does not contain meaningful shape informa-
tion in similarity measurements. Such shape representation
imposes smoothness on the distance between shapes and
robustness to noise and outlier. In addition, by changing
threshold values gradually, we can generate mask to repre-
sent inside of the shape for hole filling. Given such repre-
sentation, input shape images are points in a d dimensional
space, yi ∈ Rd , i = 1, · · · ,N where all the input shapes are
normalized and registered, d is the dimensionality of the
input space, and N is the number of frame in the sequence.

3.2. Hole Filling

We fill holes in the background-subtracted shape to attain
more accurate shape representation. When the foreground
color and the background color are the same, most of the
background subtracted shape silhouettes have holes inside
the extracted shape. This causes inaccurate description of
shape in signed distance function. Hence holes inside shape
result in inaccurate estimation of the best fitting shape. It
can also induce misalignment of shape as the hole can shift
center of gravity for the horizontal axis alignment.

From the signed distance representation, we can generate
a mask to represent inside of the shape for estimated style,
view, and body pose parameters. We can use the mask to
fill holes for the original shape. The mask can be generated
by thresholds generated from signed distance shape repre-
sentation like

h(x)hole mask =
{

1 dc(x)≥ dT Hhole
c

0 otherwise
, (7)

where dT Hhole
c ≥ 0 is the threshold value for inner shape to

create mask for hole filling. If the threshold value is zero,
the mask will be the same as the silhouette image generated
by dynamic shape model given style, view and configura-
tion. As we don’t know the exact shape style, view and con-
figuration at the beginning, and the hole causes misalign-
ment, we start from large threshold value, which generates
a small mask of inner shape area and robust to misalign-
ment. We reduce the threshold value as estimated model
parameters get more accurate.

The hole filling operation can be described by yhole f illing =
z(bin(y)⊕h(yest)), where⊕ is logical OR operator to com-
bine extracted foreground silhouette and mask area, bin(·)
converts signed distance shape representation into binary
representation, and z(·) convert binary representation into
signed distance representation with threshold. Fig. 3 shows
initial shape normalized silhouette with holes (a), the best
estimated shape model (b) which is generated from the gen-
erative model with style and view estimation and config-
uration search, and the hole mask (c) when dT Hhole

c = 3,
and new shape after hole filling (d). We can improve the
best matching shape by excluding mask area in the compu-

tation of similarity measurement for generated samples in
searching the best fitting body pose. Re-alignment of shape
and re-computation of shape representation after hole fill-
ing provide better shape description for next step.

3.3. Carrying Object Detection

Carrying objects are detected by estimating outlier from
best matching normal dynamic shape and given input
shape. The outlier of a shape silhouette with carrying ob-
jects is the mismatching part in input shape compared with
best matching normal walking shape. Carrying objects
are the major source of mismatching when we compare
with normal walking shape even though other factors such
as inaccurate shape extraction for background subtraction,
shape misalignment also cause mismatches. For accurate
detection of carrying object from outlier, we need to re-
move other source of outlier such as hole and misalignment
in shape. Hole filling and outlier removal are performed it-
eratively to improve shape representation for better estima-
tion of the matching shape.

We gradually reduce threshold value for outlier detection
to get more precise estimation of outlier progressively. The
mismatching error e(x) is measured by Euclidian distance
between signed distance input shape and best matching
shape generated from the shape model,

ec(x) = ||zc(x)− zest
c (x)|| . (8)

The error e(x) increases linearly as the outlier goes away
from the matching shape contour due to signed distance
representation. By thresholds the error distance, we can
detect outlier.

O(x)outlier mask =
{

1 ec(x)≥ eT Houtlier
c

0 otherwise
, (9)

At the beginning, we start from large eT Houtlier
c value and

we reduce the value gradually. Whenever we detect out-
lier, we remove the detected outlier area and perform re-
alignment to reduce misalignment due to the outlier. In
Fig. 3, for given signed distance input shape (e), we mea-
sure mismatching error (f) by comparing with best match-
ing shape (b). Outlier is detected (g) with given threshold
value eT Houtlier

c = 5, and new shape for next iteration is gen-
erated by removing outlier (h). This outlier detection and
removal procedure is combined with hole filling as both of
them help accurate alignment of shape and estimation of
best matching shape.

3.4. Iterative Estimation of Outlier with Hole Filling

Iterative estimations of outlier, hole filling, outlier removal,
and estimation of shape style, view and configuration are
performed with threshold value control. The threshold
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3. Hole filling using mask from best fitting model : (a) Initial normalized shape with hole. (b) Best matching shape from
generative model. (c) Overlapping with initial silhouette and mask from best matching shape by threshold. (d) New shape with reduced
hole. (e) Initial normalized shape for outlier detection with signed distance representation. (f) Euclidian distance between best matching
model from the generative model and input shape with signed distance representation. (g) Detected outlier with threshold value e(x)≥ 5.
(h) New shape after removing outlier.

value for hole filling and the threshold value for outlier
detection need to be decreased to get more precise in the
outlier detection and hole filling in each iteration. In addi-
tion, we control the number of samples to search body pose
for estimated view and shape style. At the initial stage,
as we don’t know accurate shape style and view, we use
small number of samples along the equally distant mani-
fold points. As the estimation progress, we increase ac-
curacy of body pose estimation with increased number of
samples. We summarize the iterative estimation as follows:

Input: image shape yi, estimated view v, estimated style s, core
tensor A

Initialization: • initialize sample num Nsp

• initialize dT Hhole
c , eT Houtlier

c

Iterate: • Generate Nsp samples ysp
i bi, i = 1, · · · ,Nsp

– Coefficient C = A × s× v
– embedding bi = g(βi), βi = i

Msp

• Generate hole filling mask hi = h(ysp
i )

• Update input with hole filling yhole f illing =
z(bin(y)⊕hi(yest))

• Estimate best fitting shape with hole filling mask: 1-D
search for yest that minimizes E(bi) = ||yhole f illing −
hi (Cψ(bi)) ||

• Compute outlier error ec(x) = ||yhole f illing− yest(x)||
• Estimate outlier ooutlier(x) = ec(x)≥ eT Houtlier

c

Update: • reduce dT Hhole
c , eT Houtlier

c
• increase Nsp

Based on the best matching shape, we compute the outlier
from the initial source after re-centering initial source.

4. Experimental Results
We evaluated our method using two gait-database. One is
from CMU Mobo data set and the other is our own data set

for multiple view gait sequence. Robust outlier detection
in spite of hole in the silhouette images was shown clearly
in CMU database. We collected our own data set to show
carrying object detection in continuous view variations.

4.1. Carrying Ball Detection from Multiple Views

The CMU Mobo database contains 25 subjects with 6 dif-
ferent views walking on the treadmill to study human loco-
motion as a biometric (Gross & Shi, 2001). The database
provides silhouette sequence extracted based on one back-
ground image. The background subtracted silhouettes in
most of the sequences have holes. We collected 12(= 4×3)
cycles to learn dynamic shape models with view and style
variations from normal slow walking sequences of 4 sub-
jects with 3 different views. For the training sequences,
we corrected holes manually. Fig. 4 shows detected car-
rying objects in two different views from different people.
The initial normalized shape has holes with a carrying ball
(a)(e). Still the best fitting shape models recover correct
body poses after iterative estimations of view and shape
style with hole filling and outlier removal (b)(f). Fig. 4
(c)(g) show examples of generated masks during iteration
for hole filling. Fig. 4 (d) (h) show detected outlier after
iteration. In Fig. 4 (h), the outlier in bottom right corner
comes from the inaccurate background subtraction outside
the subject, which cannot be managed by hole filling. The
verification routine based on temporal characteristics of the
outlier similar to (BenAbdelkader & Davis, 2002) can be
used to exclude such a outlier from detected carrying ob-
jects.

4.2. Carrying Object Detection with Continuous View
Variations

We collected 4 people with 7 different views to learn the
pose preserving shape model of normal walking for de-
tection of carrying object in continuous view variations.
In order to achieve reasonable multiple view interpolation,
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Outlier detection in different view: (a) Initial normalized shape for outlier detection. (b) The best fitting model from the
generative model. (c) Overlapping initial input and hole filling mask at the last iteration. (d) Detected outlier. (e) (f) (g) (h) : Another
view in different person

we captured normal gait sequence on the treadmill with
the same height camera position in our lab. The test se-
quence is captured separately in outdoor using commercial
camcorder. Fig. 5 shows an example sequence of carry-
ing object detection in continuous change of walking di-
rection. The first row shows original input images from
the camcorder. The second row shows normalized shape
after background subtraction. We used the nonparametric
kernel density estimation method for per-pixel background
models (Elgammal et al., 2002). The third row shows best
matching shape estimated after hole filling and outlier re-
moval using dynamic shape models with multiple views.
The fourth row shows detected outlier. Most of the domi-
nant outlier comes from the carrying object.

5. Conclusions
We presented shape outlier detection using pose preserving
dynamic shape model especially for carrying objects detec-
tion for given silhouette images. The proposed model may
be used for shadow detection and abnormal body pose de-
tection, which is important human motion recognition and
event detection. In the carrying object detection, the signed
distance representation of shape helps robust matching in
spite of small misalignment and holes. To enhance the ac-
curacy of alignment and matching, we preformed hole fill-
ing and outlier detection iteratively with threshold change.
In our experiment, we controlled threshold for gradual dis-
criminative estimation of outlier and holes. More expert
knowledge, such as temporal constraints in body pose tran-
sition, periodic characteristics in body limb can be used to
enhance outlier detection and identification. Experimental
results from CMU Mobo data set show accurate detection
of outlier in multiple fixed views. We also showed the es-
timation of outlier in continuous view variations from our
collected data set. The removal of outlier or carrying ob-
ject will be useful for gait recognition as it helps recovering
high quality original silhouette, which is important in gait
recognition. We plan to apply the proposed method to test
gait recognition with carrying objects and abnormal motion

detection.
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