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Abstract
Activity recognition from sensor data has spurred
a great deal of interest due to its impact on health
care. Prior work on activity recognition from
multivariate time series data has mainly applied
supervised learning techniques which require a
high degree of annotation effort to produce train-
ing data with the start and end times of each ac-
tivity. In order to reduce the annotation effort, we
present a weakly supervised approach based on
multi-instance learning. We introduce a genera-
tive graphical model for multi-instance learning
on time series data based on an auto-regressive
hidden Markov model. Our model has a number
of advantages, including the ability to produce
both bag and instance-level predictions as well
as an efficient exact inference algorithm based on
dynamic programming.

1. Introduction
Modern wearable sensors, such as accelerometers, have
provided an unobtrusive and cost-effective way to accu-
rately measure body movement. In a “free-living” envi-
ronment (i.e. outside a controlled laboratory environment),
the individual wearing the sensor performs a diverse set of
variable-length activities during their daily routine and the
data from these activities is collected. Typically, this data
is in the form of a continuous multivariate time series. This
data can then be used to perform physical activity recog-
nition (PAR), which involves segmenting the time series
into individual activities and then identifying the individ-
ual activities. PAR is an important task in health surveil-
lance and epidemiological research (Bauman et al., 2006)
as well as in assistance of individuals with cognitive disor-
ders (Popescu & Mahnot, 2012).

Prior approaches to PAR have mainly employed supervised
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Figure 1. (Top) A synthesized sample of 3 dimensional ac-
celerometer data created from the Opportunity data set (Chavar-
riaga et al., 2013). Each activity in this sequence is labeled, along
with its start and end times. The data from each axis is shown in a
different color. (Bottom) An example of a positive and a negative
bag in multi-instance learning applied to PAR, with “Drink from
Cup” as the activity of interest.

learning techniques (see Section 2). These approaches re-
quire labeled sensor data for training, with the labels iden-
tifying the activity as well as the start and end times of each
activity as shown in Figure 1 (top). A viable annotation ap-
proach under free-living conditions is experience sampling
(Froehlich et al., 2007), which periodically prompts the
user to annotate their activities since their previous prompt.

In order to reduce annotation effort in experience sampling,
(Stikic et al., 2011) proposed a weakly supervised approach
based on multi-instance learning (MIL) (Dietterich et al.,
1997). In MIL, instead of labeling all instances, the an-
notator only needs to label bags of instances. A bag is la-
beled positive if and only if there is at least one positive
instance in the bag. The ambiguity of the positive bags
reduces the labeling effort but puts the burden of resolv-
ing the ambiguity on the learning algorithm. When MIL
is applied to activity recognition data, the bags correspond
to data in the time interval between experience sampling
prompts. Although these intervals (bags) typically contain
multiple activities, under a MIL setting, the bags are la-
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beled as positive or negative. The meaning of the bag label
can vary depending on the bag labeling scheme. For in-
stance, a bag could be given a positive label if the majority
of the time interval is spent doing a specific activity of in-
terest (e.g. “Drink from Cup”), as shown in Figure 1 (bot-
tom). We adopt this majority labeling scheme in our work.
Other bag labeling schemes were proposed in (Stikic et al.,
2011). Note that the length of the interval between experi-
ence sampling prompts plays an important role in the MIL
setting. With longer intervals, the user needs to provide
fewer labels. However, the bags will contain more data and
the ambiguity in the labeling also increases.

We build on the work by (Stikic et al., 2011) and propose a
novel MIL model for offline activity recognition from mul-
tivariate time series data. Our model is a generative graph-
ical model based on an Auto-Regressive Hidden Markov
Model (ARHMM), which improves on the approach by
(Stikic et al., 2011) by modeling the temporal dynamics of
the time series. Since the model is generative, we can pre-
dict both bag labels as well as instance labels. Finally, we
remedy a naive approach to training our model that results
in a run time that is exponential in the number of instances
in a bag. We show how to use dynamic programming to re-
duce the time complexity to be quadratic in the number of
instances in a bag. We evaluate our approach on real-world
multivariate sensor data sets and show that it consistently
performs well compared to other approaches.

2. Related Work
Prior work on PAR from time series data has mostly taken
a supervised learning approach, which assumes the train-
ing data is fully labeled with the start and end times of
each activity. A common strategy is the sliding window
approach (Dietterich, 2002), which slides a window along
the time series and converts the data in the window into a
feature vector. Common feature representations that have
been used include statistical features of the raw signal (e.g.,
mean and variance) and frequency domain features. With
this new representation of the data, a standard supervised
learning algorithm can be then applied (e.g., see (Bao &
Intille, 2004; Ravi et al., 2005; Zheng et al., 2013)). Other
techniques applied to PAR include sequential learning al-
gorithms capable of modeling sequential relationships (e.g.
(Lester et al., 2005; van Kasteren et al., 2008; Wu et al.,
2009)) and approaches that discover subsequences of the
original time series that are predictive of the class label (Ye
& Keogh, 2009; Hu et al., 2013). All of these techniques
have been developed for a standard supervised learning set-
ting rather than a MIL setting and thus require a high degree
of annotation effort by the user to produce fully labeled
training data.

2.1. Multi-instance Learning

MIL (Dietterich et al., 1997) provides a weakly super-
vised alternative that can alleviate the annotation burden
on the user. In MIL, the training data consists of B bags.
The bth bag can be represented as a tuple (Xb, Yb), where
Xb = {X1

b , . . . ,X
Nb

b } is a set of Nb instances and Yb is
the bag-level label (positive or negative). Note that an in-
stance is represented in boldface because it is represented
as a multivariate feature vector. Each instance has an as-
sociated instance-level label (positive or negative) that is
considered hidden. Under the standard “presence-based”
assumption (Weidmann et al., 2003), a bag is labeled posi-
tive if there is at least one instance that is positive and nega-
tive if none of the instances are positive. The main task of a
MIL algorithm is to predict the bag-level label given the in-
stance level features and without being given the instance-
level labels.

The literature on MIL is extensive and we focus on the most
directly related work in this section. Several approaches
have proposed using graphical models (e.g., (Adel et al.,
2013; Hajimirsadeghi et al., 2013)) for MIL. The most
related work are by (Foulds & Smyth, 2011) and (Kan-
demir & Hamprecht, 2014). Both approaches use a mixture
model to discover mixture components that are predictive
of the bag label. However, unlike in our work, the instances
are assumed to be i.i.d. feature vectors and they do not
model relationships between mixture components.

To our knowledge, the first work that has applied MIL to
activity recognition from time series data was by (Stikic
et al., 2011). In their work, they applied a sliding win-
dow to a time series to create instances, which were pro-
duced by converting the data within the window to a fixed-
length feature vector consisting of statistical features of
the raw signal and FFT coefficients. The mi-SVM algo-
rithm (Andrews et al., 2003) was trained on these bags.
Recently, MIL algorithms have been developed for struc-
tured data, capturing relationships between instances (Zhou
et al., 2009; Warrell & Torr, 2011), relationships between
bags (Zhang et al., 2011), or relationships between in-
stances in different bags (Deselaers & Ferrari, 2010). Our
approach is the first to model the temporal dynamics be-
tween instances in a bag.

2.2. Autoregressive Models

Autoregressive (AR) models (Hamilton, 1994) capture the
temporal structure of time series data by assuming that the
current observation xt is a weighted linear combination
of the previous p observations xt−p, . . . , xt−2, xt−1 (or
x(t−p):(t−1) in shorthand notation). The Vector AR (VAR)
model is a generalization of the univariate AR model to
multivariate observations. The d-dimensional observation
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of a VAR model of order p, which we denote as Xt follows

Xt = A0 +

p∑
i=1

AiX
t−i + εt (1)

where A0 is a d-dimensional intercept vector, Ai’s are d×d
matrices corresponding to the weights in the linear com-
bination of past observations, and εt is a d-dimensional
white noise term drawn from N (0,Σ). Alternatively, we
can write Xt|X(t−p):(t−1) ∼ N (A0 +

∑p
i=1 AiX

t−i,Σ).
The dependence on p past values of the process allows for
a convenient graphical model representation.

2.3. Mixture of AR processes

A K-component mixture of VAR models (MAR) can be
created from K separate VAR models by randomly select-
ing the output of one component following a discrete dis-
tribution with parameters (ψ1, . . . , ψK) which represent the
mixture weights (Wong & Li, 2000). We compute the con-
ditional probability of Xt given the previous p readings as:

P (Xt|X(t−p):(t−1)) =

K∑
k=1

ψkN (Ak0 +

p∑
i=1

AkiX
t−i,Σk)

where ψ1 + . . .+ ψK = 1 and ψk > 0, for k = 1, . . . ,K.
MAR can be fit to data using Expectation-Maximization
(EM) (Dempster et al., 1977).

3. Methodology
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Figure 2. The graphical model representation of the ARHMM-
MIL model

Figure 2 shows the Auto-Regressive Hidden Markov
Model for Multiple Instance Learning (ARHMM-MIL) as
a graphical model. For illustrative simplicity, we depict
the ARHMM-MIL Model with an AR process of order 2.
We assume that bags (i.e. time series) are independent and
that each time-series is obtained by the following genera-
tive model.

Mixture Components. For time series (bag) b, at each time-
instance t = p + 1, . . . , Tb, a mixture component index
Zt
b ∈ {1, 2, · · · ,K} is generated according to a chain

model described by the following two steps. First an ini-
tial mixture component index Zp+1

b is generated following
the discrete probability model

P (Zp+1
b = j|π) = πj , (2)

where πj ≥ 0 and
∑

j πj = 1. Then, the remaining values
of Zt

b for t = p + 2, . . . , Tb are generated in a recursive
fashion according to the following transition probability:

P (Zt
b = j|Zt−1

b = i,M) =Mij , (3)

where M is a transition probability matrix satisfying
Mij ≥ 0 and

∑
j Mij = 1. The ARHMM-MIL model

takes the transition between the hidden states Zt
b into

account, encouraging the consistency in adjacent hidden
states. We consider both M and π to be random vectors.
The vector π and the rows of M are probability vectors
that are generated from a Dirichlet distribution with hyper-
parameter vector β. Rather than learn the hyperparameter
β from data, we assign it a relatively small value so that
the resulting Dirichlet distribution will place the majority
of the probability mass around a few mixture components.

Auto-regressive observation model. Given the mixture
component Zt

b = k, the corresponding time-series obser-
vation vector Xt

b is generated following a VAR(p) model
parametrized by the kth component AR coefficients, i.e.,

Xt
b|X

(t−p):(t−1)
b , Zt

b = k ∼ N (Ak0 +

p∑
i=1

AkiX
t−i
b ,Σk),

(4)

for t = p + 1, . . . , Tb, where Ak0 is a d-dimensional
intercept vector for the kth mixture component, Aki a
d × d weighting matrix corresponding to the ith past vec-
tor for the kth mixture component, and Σk is the d × d
covariance matrix for the kth mixture component. Here,
we assume that the first p observations X1

b , . . . ,X
p
b fol-

low a joint distribution, P (X1
b , . . . ,X

p
b) that is indepen-

dent of any of parameters of the proposed model. We de-
note the set of linear coefficient matrices for the kth com-
ponent as Ak = {A0k, . . . ,Apk}. Likewise, we denote
A = {A1, . . . ,AK} and Σ = {Σ1, . . . ,ΣK}. Thus, the
Zt
b and Xt

b layers form an Auto-Regressive HMM (Juang
& Rabiner, 1985).

Label generation Given the mixture component index Zt
b,

an instance-level label Itb ∈ {0, 1} is Bernoulli random
variable Itb|Zt

b = k ∼ Bernoulli(θk), i.e.,

P (Itb = l|Zt
b = k,θ) = θlk(1− θk)1−l, (5)
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where θk denotes the probability that the label of the kth
component is positive. The parameter θk is a random vari-
able which has a Beta prior parameterized by ζ. As with
β, we assign hyperparameter ζ a pre-determined value that
sets all of its entries to a low value to encourage a high
probability for either label value 0 or 1.

Our proposed model relaxes the union rule (Foulds &
Frank, 2010) or the presence-based assumption (Weid-
mann et al., 2003) using the following probabilistic relation
between the bag label and the instance labels. Based on
a variant of the soft-max function used in (Maron, 1998),
given all instance level labels Ip+1

b , . . . , ITb

b , the observed
bag-level label Yb is generated by:

P (Yb = 1|Ib) =
∑Tb

t=p+1 I
t
b exp(ωI

t
b)∑Tb

t=p+1 exp(ωI
t
b)

, (6)

where ω is a model parameter. When ω → ∞, the bag
label is positive if at least one instance in the bag is positive
and the bag is negative if all of the instances are negative.
When ω → 0, the probability that the bag label is positive
increases as the proportion of positive instances in the bag
increases.

3.1. Parameter Estimation

We now show how to learn the model parameters Θ =
{ω,θ,π,M,A,Σ} from a collection of training bags.
Since a prior is provided for some parameters, we solve
the problem using the maximum-a-posterior (MAP) frame-
work. Under this framework, the goal is to maxi-
mize the sum of the log-likelihood and the log of the
prior, i.e., maxΘ `inc(Θ) + logP (Θ). Since a prior
is only provided for π, M and θ, we consider a uni-
form prior over the rest of the parameters and hence
P (Θ) = P (π|β)P (M|β)P (θ|ζ). Similar to maximum
likelihood (ML), MAP can be solved using Expectation-
Maximization by replacing the incomplete log-likelihood
`inc(Θ) with the auxiliary function Q(Θ,Θ′) yielding
the following iteration: Θk+1 = argmaxθQ(Θ;Θk) +
logP (Θ). This approach can be extended to the online
setting by using the approach of (Cappé, 2011).

The auxiliary function is derived using the complete-data
log-likelihood. The observed data in our model is given by
{Xb, Yb} for b = 1, . . . , B while the complete data is given
by {Zb, Ib,Xb, Yb} for b = 1, . . . , B. The complete-data
log-likelihood is as follows:

`(Θ) =

B∑
b=1

[
logP (Yb|Ib, ω) +

Tb∑
t=p+1

logP (Itb|Zt
b,θ)

+ logP (Zp+1
b |π) +

Tb∑
t=p+2

logP (Zt
b|Zt−1

b ,M)

+

Tb∑
t=p+1

logP (Xt
b|X

(t−p):(t−1)
b , Zt

b,A,Σ)

]
, (7)

where P (Yb|Ib, ω), P (Itb|Zt
b,θ), P (Zt

b|Z
t−1
b ,M),

P (Zp+1
b |π), and P (Xt

b|X
(t−p):(t−1)
b , Zt

b,A,Σ) are given
by (2)-(6). Based on the complete-data log-likelihood in
(7), we obtain the auxiliary function Q(Θ;Θ′) by taking
the expected value of the complete data log-likelihood
`(Θ) with respect to the latent variables Z, I conditioned
on observations X, bag labels Y and the model parameters
Θ′, i.e., using P (Z, I|X, Y,Θ′):

Q(Θ,Θ′)

=

B∑
b=1

∑
I

P (Ib = I|Xb, Yb,Θ
′)

(
Yb logP (Yb = 1|Ib, ω)

+ (1− Yb) logP (Yb = 0|Ib, ω)
)

+

B∑
b=1

Tb∑
t=p+1

1∑
l=0

K∑
j=1

P (Itb = l, Zt
b = j|Xb, Yb,Θ

′)

· logP (Itb = l|Zt
b = j,θ)

+

B∑
b=1

K∑
j=1

P (Zp+1
b = j|Xb, Yb,Θ

′) logP (Zp+1
b = j|π)

+

B∑
b=1

Tb∑
t=p+2

K∑
j=1

K∑
i=1

P (Zt
b = j, Zt−1

b = i|Xb, Yb,Θ
′)

· logP (Zt
b = j|Zt−1

b = i,M)

+

B∑
b=1

Tb∑
t=p+1

K∑
j=1

P (Zt
b = j|Xb, Yb,Θ

′)

· logP (Xt
b|X

(t−p):(t−1)
b , Zt

b = j,A,Σ). (8)

Details of the derivation are in the supplementary mate-
rial. The auxiliary function Q(Θ,Θ′) decomposes into
five terms, with each term depending on a different set of
parameters allowing for a convenient estimation of the in-
dividual parameters.

3.2. M-Step

The maximization of (8) in addition to logP (Θ) w.r.t. to
each of of the terms in Θ = {ω,θ,π,M,A,Σ} yields
the update rule for each of the parameters as shown below
(with details in the supplementary material).

1. The update rule for πj is:

πj =

B∑
b=1

P (Zp+1
b = j|Xb, Yb,Θ

′) + βj − 1

K∑
j′=1

B∑
b=1

P (Zp+1
b = j′|Xb, Yb,Θ

′) + βj′ − 1

(9)
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2. Let ρijbt = P (Zt
b = j, Zt−1

b = i|Xb, Yb,Θ
′). The update

rule for the transition matrix Mij is:

Mij =

B∑
b=1

Tb∑
t=p+2

ρijbt + βj − 1

K∑
j′=1

B∑
b=1

Tb∑
t=p+2

ρij
′

bt + βj′ − 1

(10)

3. The generalization of Yule-Walker equations can be
used to estimate the AR parameters. Let ξbtj = P (Zt

b =
j|Xb, Yb,Θ

′). The update rule for A is given by the solu-
tion to the following set of linear equations:

B∑
b=1

Tb∑
t=p+1

ξbtj

[
Aj0 +

p∑
s=1

Ajs(X
t−s
b )

]

=

B∑
b=1

Tb∑
t=p+1

ξbtj(X
t
b) (11)

B∑
b=1

Tb∑
t=p+1

ξbtj

[
Aj0(X

t−k
b )′ +

p∑
s=1

Ajs(X
t−s
b )(Xt−k

b )′
]

=

B∑
b=1

Tb∑
t=p+1

ξbtj(X
t
b)(X

t−k
b )′ for k = 1, . . . , p (12)

4. Letµbtj = Xt
b−(Aj0+

p∑
k=1

AjkXt−k
b ). The update rule

for the covariance matrix of jth mixture component Σj is:

Σj =

B∑
b=1

Tb∑
t=p+1

ξbtjµbtj(µbtj)
′

B∑
b=1

Tb∑
t=p+1

ξbtj

(13)

5. Let δlbtj = P (Itb = l, Zt
b = j|Xb, Yb,Θ

′). The update
rule for θj is given by:

θj = φj/(1 + φj) (14)

where

φj =

B∑
b=1

Tb∑
t=p+1

δ1btj + ζ1 − 1

B∑
b=1

Tb∑
t=p+1

δ0btj + ζ2 − 1

.

6. Since there is no closed-form solution for updating ω, a
Newton iteration is used to update ω through the equation
ω = ω′− l′(ω′)/l′′(ω′), where l′(ω) and l′′(ω) are the first
and second derivatives of Q(Θ;Θ′) w.r.t. to ω.

To simplify the derivative computations, we define N t
b =∑t

t′=p+1 I
t′

b , which is the number of positive instances in

bag b up to the tth instance. The positive bag probability
P (Yb = 1|Ib) can be equivalently computed using:

P (Yb = 1|NTb

b ) =
NTb

b exp(ω)

NTb

b exp(ω) + Tb − p−NTb

b

(15)

We compute the first and second derivative as follows.

l′(ω) =

B∑
b=1

[
Yb −

Tb−p∑
C=0

P (NTb

b = C|X1:Tb

b , Yb)

· P (Yb = 1|NTb

b = C)

]
(16)

l′′(ω) = −
B∑

b=1

Tb−p∑
C=0

P (NTb

b = C|X1:Tb

b , Yb)

· P (Yb = 1|NTb

b = C)P (Yb = 0|NTb

b = C) (17)
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Figure 3. A graphical model representing a bag in Figure 2 with
the instance label I replaced by a counting variable N .

3.3. E-step via Efficient Message Passing

The auxiliary function (8) requires the following three
terms:

1. P (
∑Tb

t=p+1 I
t
b = C|Xb, Yb,Θ

′), this term is used to
update ω (see (16)-(17));

2. P (Itb = l, Zt
b = j|Xb, Yb,Θ

′), this term is used for
the update of θ (see (14)); and

3. P (Zt
b = j, Zt−1

b = i|Xb, Yb,Θ
′), this term is used to

update M (see (10)) as well as to derive the marginal
P (Zt

b = j|Xb, Yb,Θ
′) =

∑K
i=1 P (Z

t
b = j, Zt−1

b =
i|Xb, Yb,Θ

′), which is used in the updates of π (see
(9)) and the AR model parameters A (see (11), (12))
and Σ (see (13)).

These three probabilities are non-trivial to calculate due to
dependence between random variables created by condi-
tioning on the label Yb. To address this challenge, we first
propose a reformulation of the graphical model as a chain
by replacing the sequence Itb with its cumulative sum N t

b
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(as done in (16) and (17)). The N t
b ’s can be used to com-

pute probabilities associated with the nodes Itb using the
following relation Itb = N t

b − N
t−1
b . Using the N t

b ’s and
the Zt

b’s the three probability terms can be replaced with

1. P (N t
b = C|Xb, Yb,Θ

′), where t = Tb

2. P (N t
b −N

t−1
b = l, Zt

b = j|Xb, Yb,Θ
′), and

3. P (Zt
b = j, Zt−1

b = i|Xb, Yb,Θ
′).

We aim to compute P (N t
b , Z

t
b, N

t−1
b , Zt−1

b |Xb, Yb,Θ
′)

from which the above three probability terms can be com-
puted. While not obvious, the reformulated graphical
model in Figure 3 offers a chain that lends itself to an ef-
ficient forward-backward message passing approach. To
make this more obvious, we replace (N t

b , Z
t
b) with a super-

node Sb
t = (N t

b , Z
t
b), as seen in Figure 4.
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Figure 4. A simplified graphical model by representing the
(N,Z) variables pair as a supernode S.

3.3.1. MESSAGE PASSING FOR A GENERALIZED
VERSION OF A CHAIN MODEL

To aid with exposition, we first introduce the message-
passing algorithm on the simplified graphical model in Fig-
ure 4 and we omit the conditioning on the parameter set
Θ′. The message passing algorithm first sends a forward
message which is computed while traversing the graphi-
cal model from left to right. Then, a backward message
is computed while traversing the graphical model from
right to left. Finally the messages are used to form the
pairwise probability for (St

b, S
t−1
b ) conditioned on the ob-

served nodes X1
b , . . . ,X

Tb

b and Yb.

Specifically, the forward message is defined as αq
b(t) =

P (X1:t
b , St

b = q). It is initialized by computing αq
b(p+1) =

P (X1:p+1
b , St

b = q) and is computed recursively using

αq
b(t) =

∑
p

αp
b(t− 1)P (St

b = q|St−1
b = p)

· P (Xt
b|X1:t−1

b , St
b = q) for t = p+ 2, . . . , Tb.

The backward message is defined by βq
b (t) =

P (Yb,X
t+1:Tb

b |X1:t
b , St

b = q). It is initialized by setting
βq
b (Tb) = P (Yb|X1:Tb

b , STb

b = q) and is computed recur-
sively by

βq
b (t) =

∑
r

P (St+1
b = r|St

b = q)P (Xt+1
b |X1:t

b , St+1
b = r)

· βr
b (t+ 1) for t = Tb − 1, . . . , p+ 1.

As the beginning of the section suggests, the E-step neces-
sitates the computation of P (St

b = q, St−1
b = r|Xb, Yb).

To compute this conditional probability, we focus on com-
puting the joint distribution P (St = q, St−1 = r,Xb, Yb).
This joint distribution can be written in term of the forward
message, the backward message, the state transition proba-
bility, and the observation model probability as

P (St
b = q, St−1

b = r,Xb, Yb) = P (St
b = q|St−1

b = r)

· βq
b (t)P (X

t
b|X

t−p:t−1
b , St

b = q)αr
b(t− 1) (18)

Although the forward and backward messages resemble
those of an ARHMM, the sparsity of the transition matrix
between St−1 and St makes inference in our ARHMM-
MIL model a special case of message passing. With this
special case, exact inference is efficient, which we will
show in the following section.

3.3.2. MESSAGE PASSING FOR THE CHAIN BASED ON
(N t

b , Z
t
b)

We now expand the St
b nodes into the components N t

b , and
Zt
b. Full derivations for the equations below are in the sup-

plementary material. Let q = (qN , qZ) and r = (rN , rZ).
Since we assume that the first p observations X1

b , . . . ,X
p
b

follow a joint distribution that is independent of any of the
proposed model parameters, the forward message is initial-
ized for qN ∈ {0, 1} with

αqN ,qZ
b (p+ 1) = P (X1:p+1

b , Np+1
b = qN , Z

p+1
b = qZ)

= AqZ
b (p+ 1)(θqZ )

qN (1− θqZ )(1−qN )πqZP (X
1:p
b )

and zero otherwise. Then, the forward message is recur-
sively computed for t = p+ 2, . . . , Tb using

αqN ,qZ
b (t) = AqZ

b (t)
∑
rZ

∑
rN

(
I(qN = rN )(1− θqZ )

+ I(qN = rN + 1)θqZ

)
MrZ ,qZα

rN ,rZ
b (t− 1)

where πqZ = P (Zp+1
b = qZ), MrZ ,qZ = P (Zt

b =
qZ |Zt−1

b = rZ), A
qZ
b (t) = P (Xt

b|X
1:t−1
b , Zt

b = qZ)
and θqZ = P (Itb = 1|Zt

b = qZ). The summation over
rN involves only two non-zero terms (qN = rN and
qN = rN + 1), while the summation over rZ involves
K terms. Thus, the complexity of computing the recur-
sive step is O(K). For a bag b, the overall complexity for
computing all messages αqN ,qZ

b (t) for qN = 0, . . . , t − p,
qZ = 1, . . . ,K and t = p+ 1, . . . , Tb is O(K2T 2

b ).

The backward message is initialized with

βqN ,qZ
b (Tb) = P (Yb|NTb

b = qN )
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for qZ = 1, . . . ,K and qN = 0, . . . , Tb − p, where
P (Yb|NTb

b = qN ) is computed using (6). Then, the
backward message is recursively computed for t = Tb −
1, . . . , p+ 1 using

βqN ,qZ
b (t) =

∑
rZ

MqZ ,rZA
rZ
b (t+ 1)

∑
rN

(
I(rN = qN )

· (1− θrZ ) + I(rN = qN + 1)θrZ

)
βrN ,rZ
b (t+ 1)

where MqZ ,rZ = P (Zt+1
b = rZ |Zt

b = qZ), ArZ
b (t +

1) = P (Xt+1
b |X1:t

b , Zt+1
b = rZ) and θrZ = P (It+1

b =
1|Zt+1

b = rZ). The summation over rN involves only
two non-zero terms, which happens if rN = qN or rN =
qN + 1, while the summation over rZ includes K terms.
Hence, similar to the forward pass, the complexity of the
recursive step is O(K) and the total complexity for all the
backward messages for a single bag is O(K2T 2

b ).

Finally, we can use the forward/backward probabilities to
compute the pairwise state probability of (18):

P (N t
b = qN , Z

t
b = qZ , N

t−1
b = rN , Z

t−1
b = rZ ,Xb, Yb)

= βqN ,qZ
b (t)θI(qN=rN+1)

qZ (1− θqZ )I(qN=rN )MqZ ,rZ

·AqZ
b (t)αrN ,rZ

b (t− 1). (19)

In summary, the total time complexity for computing (19)
for a single bag b is O(K2T 2

b ), which is much more effi-
cient than a naive approach which would takeO(2TbKTb).

4. Experiment Results
The first dataset used in our evaluation is the Opportunity
dataset (Chavarriaga et al., 2013), which is from an activ-
ity recognition task where we used the sensor data from
a right wrist-worn accelerometer from three different sub-
jects. We chose the middle-level activities by concate-
nating the daily living and drill runs together. The other
two datasets are from the Trainspotting datasets (Berlin &
Laerhoven, 2012), which involve a task analogous to PAR.
These datasets contain raw acceleration data from a sensor
node that was deployed on two different rail tracks, with the
task of classifying the train (i.e. the activity) on the tracks.

For each dataset, we select a particular activity as the “pos-
itive” activity. Following our labeling scheme, a bag is la-
beled as positive if the majority of the observations come
from this positive class and negative otherwise. We se-
lected three activities from the Opportunity dataset (Open
Fridge, Open Door 2, Close Drawer 3), corresponding to
a frequent activity, a moderately frequent activity and an
infrequent activity. For each of the Trainspotting datasets,
we treat each type of train as the “positive activity”, and we
report results for all the three classes of trains for Trainspot-
ting 1. We exclude 3-Wagon from Trainspotting 2 because

it is very infrequent, and report two other classes of trains.
For all of our experiments, we used a bag size of 200 obser-
vations. Due to the imbalance in the number of positive and
negative bags, we report bag and instance-level area under
the ROC curve (AUC) instead of accuracy.

We compared ARHMM-MIL against three MIL algo-
rithms: miSVM (Andrews et al., 2003) (with an RBF ker-
nel), DPMIL (Kandemir & Hamprecht, 2014) and miGraph
(Zhou et al., 2009), which models the relationship between
instances in a bag. For these algorithms, we followed the
experimental setup from (Stikic et al., 2011) and converted
time series data into fixed-length feature vectors using the
sliding window approach. This conversion was necessary
because unlike ARHMM-MIL, these three algorithms do
not model the time series data directly but require fixed-
length feature vectors for the instances. We used the feature
representation of (Stikic et al., 2011), which included both
statistical and FFT features. We tuned the sliding window
size over the value of [3, 5, 7, 50, 100] to produce the best
results; note that we included larger window sizes in our
tuning range to provide more reliable estimates of the sta-
tistical and FFT features. Although miGraph (Zhou et al.,
2009) could be used for instance-level annotation by treat-
ing the entire bag as one instance, we did not include these
results as they were very poor.

In addition, we include results on a variant of the ARHMM-
MIL model that does not model the sequential relation-
ships between the AR processes. This variant removes
the arrows between the Zt

b nodes, resulting in a genera-
tive model that is a mixture of auto-regressive processes.
We call this model the Mixture of Auto-Regressive pro-
cesses Multi-Instance Learning (MARMIL) model. The
MARMIL model also uses dynamic programming for ef-
ficient inference, but the inference process is simpler than
that of ARHMM-MIL, which has the additional complex-
ity of the Hidden Markov Model layer. Further details re-
garding the MARMIL model can be found in (Guan et al.,
2015).

For our experimental results, we used a nested stratified
cross validation. Stratification was necessary to ensure
each fold had enough positive bags as there were more
negative than positive bags. The outer 10-fold cross val-
idation split the data into training and testing. The inner
cross validation was used to tune parameters by splitting
the training set into 5 folds. The parameters tuned included
the order of the AR processes ([3, 5, 7]) and the number of
components ([5, 10, 15] for Trainspotting and [10, 20, 30]
for Opportunity) in the ARHMM-MIL and MARMIL mod-
els. For SVM-based methods, we tuned the C param-
eter ([0.01, 0.1, 1])1 and also the RBF kernel parameter

1We experimented with increasing the range for the C param-
eter but it had little effect on the results.
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Figure 5. Average bag-level (top) and instance-level AUCs (bottom) for the Trainspotting1 (Inter-city, Cargo, Regional), Trainspotting2
(1-Wagon, 2-Wagon) and Opportunity (CloseDrawer3, OpenDoor2, OpenFridge) datasets. Statistically significant differences (paired
Wilcoxon signed rank test, α = 0.05) between ARHMM-MIL and all other algorithms are indicated by a star.

([0.1, 1, 10]). To reduce between-subject variability in the
Opportunity dataset, we performed subject-specific experi-
ments over subjects 1, 2 and 3 and averaged the results.

5. Discussion
Figure 5 shows the average bag-level AUC (top) and the
instance-level AUC (bottom) for the various algorithms
over all the datasets. The ARHMM-MIL model was con-
sistently among the top performing algorithms; it had the
best AUC in 6/8 datasets in terms of bag-level AUC and
7/8 datasets in terms of instance-level AUC, but the dif-
ference in AUC between ARHMM-MIL and all other al-
gorithms is statistically significant in only a few datasets.
In many cases, both ARHMM-MIL and MARMIL showed
improvements over other methods because they can di-
rectly model the time series data as an auto-regressive pro-
cess. The other algorithms are not able to do so as they op-
erate on fixed-length feature vectors which capture coarse
traits (i.e. statistics or FFT coefficients) of a window of
data. The fact that ARHMM-MIL outperformed MARMIL
in almost all cases demonstrates the benefit of modeling
the transition between the AR processes. Although the mi-
Graph algorithm can model the relationship between in-
stances in a bag, for most of the datasets in our experiments,
its graph kernel does not capture the temporal dynamics be-
tween instances as well as ARHMM-MIL.

We also highlight other important benefits of the ARHMM-

MIL model. First, the instance-level AUC is fairly high
in many of our experiments, indicating that even with am-
biguously labeled data, we can identify parts of the time
series that correspond to the activity of interest. Second,
the ARHMM-MIL model allows us to decompose a time
series intoK auto-regressive processes and we can see how
these processes transition to each other as activities occur.
This capability allows a deeper analysis of the data beyond
a simple class label prediction. Finally, the dynamic pro-
gramming approach makes exact inference tractable and
we refer the reader to the supplementary material for an
empirical comparison of running time.

6. Conclusions
The ARHMM-MIL model is a generative graphical model
that can predict both bag and instance labels through
a tractable exact inference algorithm. When compared
against state-of-the-art methods, the ARHMM-MIL model
was consistently among the best performers due to its abil-
ity to model the relationship between instances. Our model
also enables a deeper analysis of time series data by decom-
posing it into its component auto-regressive processes that
are predictive of the bag label. For future work, we will
extend our model to the multi-instance multi-label learning
setting (Zhou et al., 2012).
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