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Abstract 

In this paper we describe eBird, a citizen-science project that 
takes advantage of human observational capacity and machine 
learning methods to explore the synergies between human com-
putation and mechanical computation. We call this model a Hu-
man/Computer Learning Network, whose core is an active learn-
ing feedback loop between humans and machines that dramatical-
ly improves the quality of both, and thereby continually improves 
the effectiveness of the network as a whole. Human/Computer 
Learning Networks leverage the contributions of a broad recruit-
ment of human observers and processes their contributed data 
with Artificial Intelligence algorithms leading to a computational 
power that far exceeds the sum of the individual parts.  
 

 
Introduction   

 
 The transformational power of todays computing, to-
gether with information and communication technologies, 
are providing new opportunities to engage the public to 
participate in and contribute to a myriad of scientific, busi-
ness and technical challenges. For example, citizen-science 
projects such as Galaxy Zoo, eBird, and Foldit demonstrate 
the power of crowdsourcing for investigating large-scale 
scientific problems. These and similar projects leverage 
emerging techniques that integrate the speed and scalabil-
ity of mechanical computation, using advances in Artificial 
Intelligence (AI), with the real intelligence of human com-
putation to solve computational problems that are beyond 
the scope of existing algorithms [1]. 
 Human computational systems use the innate abilities of 
humans to solve certain problems that computers cannot 
solve [2].  Now the World Wide Web provides the oppor-
tunity to engage large numbers of humans to solve these 
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problems. For example, engagement can be game-based 
such as FoldIt, which attempts to predict the structure of a 
protein by taking advantage of humans’ puzzle solving 
abilities [3]; or Galaxy Zoo, which has engaged more than 
200,000 participants to classify more than 100 million gal-
axies [4]. Alternatively, the Web can be used to engage 
large numbers of participants to actively collect data and 
submit it to central data repositories. Projects such as 
eBird, engage a global network of volunteers to report bird 
observations that are used to generate extremely accurate 
estimates of species distributions [5].  
 Now systems are being developed that employ both hu-
man and mechanical computation to solve complex prob-
lems through active learning and feedback. These Hu-
man/Computer Learning Networks (HCLN) can leverage 
the contributions of broad recruitment of human observers 
and process their contributed data with AI algorithms for a 
resulting total computational power far exceeding the sum 
of their individual parts. This combination can be deployed 
in a variety of domains and holds enormous potential to 
solve complex computational problems. 
 A key factor in the power of an HCLN is the manner in 
which the benefits of active learning are cyclically fed 
back among the human participants and computational sys-
tems. We use “active learning” in both of its commonly 
used senses: the machine learning sense as a form of itera-
tive supervised learning, and the human sense in which 
learners (our volunteers) are actively and dynamically 
guided to new levels of expertise.  The role of active learn-
ing in a HCLN is illustrated in figure 1. In our example, 
broad networks of volunteers act as intelligent and traina-
ble sensors to gather observations.  AI processes dramati-
cally improve the quality of the observational data that 
volunteers provide by filtering inputs based on aggregated 
historical data and observers’ expertise.  By guiding ob-
servers with immediate feedback on observation accuracy 



AI processes contribute to advancing observer expertise. 
Simultaneously, as observer data quality improves, the 
training data on which the AI processes make their deci-
sions also improves. This feedback loop increases the ac-
curacy of the analysis, which enhances the general utility 
of the data for scientific purposes. 

 A successful HCLN must be able to address the 4 fol-
lowing challenges. First, a task must be identified that hu-
man computational systems can complete but mechanical 
computational systems cannot [1]. Second, the task must 
be sufficiently straightforward and incentivized to maxim-
ize participation [6]. Third, the complimentary abilities of 
both humans and machines must be clearly identified so 
that they can be leveraged to increase the accuracy and ef-
ficiency of the network [7]. Finally novel methods for ex-
tracting biological insights from the noisy and complex 
outputs provided by multiple human computers must be 
employed [8]. In this paper we use our experience with 
eBird as a model to describe a functional HCLN, by ex-
plaining how we addressed these 4 primary HCLN chal-
lenges.  

Challenge 1: Species Identification 
Few mechanical computational systems have been devel-
oped to classify organisms to the species level. Those that 
do exist typically can only identify a single or small group 
of species, and cannot classify a multitude of organisms. 
Only human observers can reliably identify organisms to 
the species level [9], and are capable of classifying hun-
dreds of species.  This is because identifying a species is a 
complex task that relies on a combination of factors. First, 
observers must be able to process impressions of shape, 
size, and behavior under variable observation conditions. 
As this process continues, the observer must combine these 
impressions with a mental list of species most likely to oc-

cur at that specific location and date, and constantly recali-
brate until the species is correctly identified. 
 eBird (http://ebird.org) [5] is a citizen science project 
that engages a global network of bird watchers to identify 
birds to species and report their observations to a central-
ized database. Anyone can submit their observations of 

birds to eBird via the web, and more than 83,000 individu-
als have volunteered over 4 million hours to collect more 
than 75 million bird observations; arguably the largest bio-
diversity data collection project in existence.  
 The amassed observations from eBird provide research-
ers, scientists, students, educators, and amateur naturalists 
with data about bird distribution and abundance across 
varying spatio-temporal extents.  Dynamic and interactive 
maps, graphs and other visualizations are available on the 
eBird website, and all data are free and readily accessible 
through the Avian Knowledge Network [10]. Since 2006 
eBird data have been the basis for 56 peer-reviewed publi-
cations and reports, from highlighting the importance of 
public lands in conservation [11], to studies of evolution 
[12], climate change [13] and biogeography [14]. 

Challenge 2: Maximizing Participation 
eBird is a crowdsourcing activity that engages large num-
bers of people to perform tasks that automated sensors and 
computers cannot readily accomplish [15]. This is accom-
plished through the development of straightforward rules 
for participation and incentives for contributing. eBird 
gathers data using protocols that closely match the activi-
ties of individuals when they are birding. This maximizes 
the number of participants in eBird [6]. While eBird re-
quires that participants submit sufficient effort data (see 
below) to allow the quantitative analysis of the observa-
tions, sufficient incentives are provided to reward partici-
pation. For example, eBird participants can: (i) keep track 
of their bird records; (ii) sort their personal bird lists by 

Figure 1. An HCLN example. Human observers and AI processes synergistically improve the overall quality of the entire system. 
Additionally, AI is used to generate analyses that improve as the quality of the incoming data improves. 



date and region; (iii) share their lists with others; and (iv) 
visualize their observations on maps and graphs. By 
providing these record-keeping facilities as a direct reward 
for participation eBird appeals to the competitiveness of 
participants by providing tools for determining relative sta-
tus of volunteers (e.g. numbers of species seen) and geo-
graphical regions (e.g. checklists submitted per state and 
province). This appeal to competitiveness has been suc-
cessful in many crowdsourcing projects and citizen-science 
projects. 
 A key component of eBird’s success has been the im-
plementation of a sound data management strategy, which 
reduces the risk of data loss and allows for efficient use 
and re-use of the data.  All eBird data contain the following 
information: observer identification, location, visit, and 
what was collected.  These data form the core observation-
al data model [16] and provide the opportunity for integra-
tion, visualization, experimentation and analysis.  For ex-
ample, eBird collects the name and contact information for 
every observer, which allows each observation to be at-
tributed to a specific person.  Location data such as the site 
name the coordinates where the observations were made 
and the geographic area represented by the location are 
stored with every visit to that location. Information about a 
specific visit consists of data and time of visit, amount of 
effort expended, such as distance traveled, time spent and 
area covered, and whether or not all species observed were 
reported. Species observations consist of a checklist of 
birds observed and how many individuals of each species 
were counted. These data fields form the core of the eBird 
relational database, and the foundation for which all eBird 
functionality is developed.  

Challenge 3: Identifying the Synergies  
Between Humans and Machines 

While eBird is extremely successful in engaging a 
large community of volunteers to participate, there are 
many challenges to using eBird data for analysis. A major 
goal has been to employ HCLN processes to eBird to im-
prove data quality by addressing 3 major questions:  
 

How can we efficiently filter erroneous data be-
fore data enter the database? 

eBird has motivated thousands of volunteers to collect 
large amounts of data at relatively little cost. However, the 
public’s ability to identify or classify objects without mak-
ing errors is highly variable. Misidentification of birds is 
the major data quality concern of eBird. To address this is-
sue a network of more than 450 volunteers review records 
in eBird. The reviewers are knowledgeable about bird oc-
currence for a region, and contact those individuals who 
submitted questionable (i.e., unusual reports of birds not 

known to occur in a region) records to obtain additional in-
formation, such as field notes or photographs, in order to  

 
Figure 2. Frequency of occurrence results for Black-billed Cuckoos in up-
state New York. The Y-axis is the frequency of eBird checklists that re-
ported this species, and the X-axis is the date. Cuckoos arrive in early 
May and are detected at high frequencies because they are conspicuous 
and vocal during their mating season. But after they lay eggs, their detec-
tion probability drops dramatically. Most birds leave by mid-August. 

 
confirm unusual records. However, our challenge is that 
eBird’s success has generated an enormous volume of ob-
servations to be reviewed (e.g., more than 23 million ob-
servations were gathered in 2011). This volume is over-
whelming the network of volunteer regional reviewer. In 
order to address this issue we have implemented a data 
quality filter and screening process that automates the re-
view process, which we now describe. 

One of the most powerful calculations performed on cit-
izen-science data is the frequency of reporting a particular 
event or organism (Figure 2). Since each observation con-
tains details of where and when a bird was detected, we 
can estimate the “likelihood” of observing a specific spe-
cies at any spatial level (e.g., grid, country, state, county, 
or backyard) and for any date. Frequency of occurrence fil-
ters delineates when a species can be reported in a region 
and determines the validity of an observation.  

 The eBird database currently holds more than 75 mil-
lion bird observations. These historical records can be used 
to filter unusual observations that require review, but allow 
entry of expected species within the expected times when 
species should occur. These filters automatically emerge 
from historic eBird data. Through experimentation we have 
set the emergent filter at 10% of maximum annual fre-
quency of occurrence for every species. This provides a 
consistent limit that allows expected observations through 
the filter but flags for review unusual records. For exam-
ple, if a common species reaches a maximum frequency of 



68% then the filter would identify the date at which the fil-
ter first crosses the 6.8% threshold. Any record submitted 
on a date either prior or after the threshold limit, it is 
flagged for review. Similarly, if a rare species reaches an 
annual peak of 6.5% frequency, the threshold limit would 
be .65%. For example, we analyzed eBird data and emer-
gent filter results for 2 counties in New York State, Jeffer-
son Co. and Tompkins Co (Table 1). These 2 counties were 
selected because Jefferson Co. has relatively sparse year-
round data coverage, while Tompkins Co. is one of the 
most active regions in eBird. Currently, emergent filters 
are deployed for all counties in the United States.  

The automated emergent filter process significantly re-
duces the number of records the volunteer observer net-
work had to review. When the emergent filter is triggered 
the submitter gets immediate feedback indicating that this 
was an unusual observation (Figure 1). If they confirm they 
made the observation, their record is flagged for review, 
and one of the volunteer experts will review the observa-
tion. All records, their flags and their review history are re-
tained in the eBird database. 

The emergent filter process identifies key periods during 
a bird’s phenology, when their patterns of occurrence 
change. Figure 3 shows those records that are flagged for 
review by the emergent filter for the 2 New York Counties. 
The Chipping Sparrow is a common breeding bird in up-
state New York, but rarely occurs in winter. The emergent 
filter for each county is different, due to the variation in 
each county’s respective historic data. The triangles and 
circles are all records that are flagged for review by the 
emergent filter. Without the emergent filter it would be dif-
ficult to accurately identify arrival and departure dates of 
when a bird appears in a county. The threshold of occur-
rence established by the emergent filter allows the deter-
mination of arrival and departure and then accurately flags 
outlier observation for further processing and review.    

	
   Tompkins Co.  Jefferson Co. 
Total Observations 704,053 78,745 

Total Flagged 50,743 6,082 
Percent Flagged 7 8 

_____________________ 
Total Flagged Expert 38,574 3,787 
Total Flagged Novice 12,170 2,295 

Percent Expert 5 5 
Percent Novice 2 3 

 

 
Table 1. Results of the Emergent Filter process applied to 2 

counties in Upstate New York (upper), and the proportion of 
flagged records submitted by experts and novices (lower). 

 
 
Figure 3. The acceptable date range (dark bars) for the occurrence 
of Chipping Sparrow in 2 counties in New York. All records that 
fall outside of the acceptable date range are plotted either as cir-
cles (novices) or triangles (experts). 

 

Can we identify observer variability in their abil-
ity to detect objects? 

eBird data are contributed by observers with a wide range 
of expertise in identifying birds. At one extreme observers 
with high identification skill levels contribute “professional 
grade” observations to eBird, whereas at the other extreme 
less-skilled participants contribute data of more variable 
quality. This inter-observer variation must be taken into 
account during analysis to determine if outlier observations 
(i.e., those observations that are unusual) are true occur-
rences of a rare species, or the misidentification of a com-
mon species. Since eBird engages a significant number of 
skilled observers who are motivated to detect rare species 
or are skilled in detecting elusive and cryptic species, being 
able to accurately distinguish their observations from those 
of less-skilled observers is crucial. This is because skilled 
observers are more likely to submit observations of unusu-
al species that get flagged by the regional emergent filters 
(i.e., skilled birders like to find rare birds). An objective 
measure of observer expertise that could classify unusual 
observations is required.  

To better understand observer variability in eBird we 
have applied a probabilistic approach called the Occupan-
cy-Detection-Experience (ODE) model to provide an ob-
jective measure of expertise for all eBird observers [17]. 
The ODE model extends existing ecological models that 
measure the viability of a site as suitable habitat for a spe-
cies, by predicting site occupancy by a particular species.  



  
 

 
 
A general form for Occupancy Detection models is 

shown in Equation 1, where  is a set of environmental 
covariates for location ,  represents the occupancy of lo-
cation  and  is the function capturing the occu-
pancy model (see Table 1 for notation description). 

 
  (1) 

 
If a species is erroneously reported to be absent at a 

site when it was in fact present at that site, then species dis-
tribution models built from such data will underestimate 
the true occupancy of that species for that site.  To address 
this issue, Mackenzie et al. [18] proposed an Occupancy-
Detection (OD) model where true occupancy of a site  is 
represented as a latent variable . Under the OD model, a 
site is visited multiple times. Each visit  results in an ob-
servation , where the observation process is influenced 
by the true occupancy of the site and by a function 

, where  are detection covariates (under the no-
tation of Mackenzie et al. [21],  and 

 ). Equation 2 summarizes the process: 
 

  (2) 
 

The OD model makes two key assumptions.  First, it 
assumes population closure in which the true occupancy of 
a site  remains unchanged over the multiple visits to that 
site.  Second, the OD model assumes that observers do not 
report false positives (i.e., an observer does not mistakenly 
report a species to be present when it is in fact absent).  

The eBird experience level of an observer, which is 
the combination of their ability in identifying birds and 

their level of participation in eBird, can also influence the 
observation process. As a result we extended the OD mod-
el with an eBird experience component resulting in the Oc-
cupancy-Detection-Experience (ODE) model. In this ex-
tension, we add a new latent variable  and associated 
function  which capture the experience level (ie. 
eBird experience rated as high or low) of the observer  
that recorded observation . 

As shown in Equation 3, this experience variable is a 
function of a set of covariates  that include character-
istics of the observer such as the total number of checklists 
submitted and relative to the total number of species re-
ported, and the total number of flagged records rejected. 
As shown in Equation 4, the observation process is now in-
fluenced by the true occupancy of a site and by the func-
tion  , which is now a function of the obser-
vation covariates. 

 
   (3) 

 
     (4) 

 
The ODE model relaxes the assumptions of the OD 

model by allowing false positives by the observers, for 
both levels of expertise. More details about the ODE model 
can be found in [17]. 

We can use the ODE model to distinguish the differ-
ence between expert observers, who will find more birds 
and are more likely to find them outside of the emergent 
filter limits, and novice birders, who are more likely to 
misidentify common birds. Table 1 (bottom) shows the to-
tal number of observations by experts and novices that are 
flagged. As expected, expert observers had a greater num-
ber of flagged records, because of their enhanced bird iden-
tification skills, and their desire to find unusual birds. We 
can use the ODE model results for experts in the data fil-
tering process by automatically accepting their expert ob-
servations, which dramatically reduces the total number of 
flagged records that need to be reviewed. Finally, to test 
the accuracy of the ODE model we analyzed all observa-
tions that fell outside of the emergent filter for more than a 
dozen species that easily confuse novices, and show results 
for Chipping Sparrow (Figure 2). For all species, reviewers 
as valid observations accepted more than 95% of the expert 
observations that fell outside of the emergent filters. 

We have found that the combination of the emergent 
checklist filters with the ODE model provides the best 
strategy for improving data quality in eBird. This two-step 
approach, where the emergent data filters are used to iden-
tify outliers, and the ODE model allowed us to identify 

Table 2  
Terms and notations used for the ODE models 
!! ∈ (0, 1) The occupancy of location ! by the 

species of interest. 
!! ∈ (0, 1) The detection/non-detection of the 

species of interest in observation !. 
!! ∈ (!"#. , !"#. ) The expertise of the observer  ! 

!! A vector of environmental covariates 
for location !. 

!! A vector of covariates describing the 
observation process for observation !. 

!! A vector of expertise covariates for 
observer !. 

!(!) The location of observation !. 
!(!) The observer that recorded observa-

tion ! 



valid outliers, identifies unusual records more accurately 
than previous methods. This approach establishes accurate 
occurrence probabilities and allows the quick identification 
and classification of outliers. 
 

How can we address the spatial bias in  
citizen-science projects? 

An inherent liability with many citizen-science projects is 
that observation locations are highly biased towards re-
gions with high human populations.  If this inequity is ig-
nored, the spatial bias will produce results in which regions 
with the most data have excessive influence on the overall 
results accuracy and regions with the least data are under 
represented [8].  We address this issue using an AI mediat-
ed optimization strategy to identify areas that if sampled 
would most improve eBird spatial coverage. 
 

 
Figure 4. Top: locations in New York where submissions were 
made in eBird. Bottom: Results showing areas with sufficient da-
ta density (colored regions) and those requiring more data (white 
regions). 
 
 

Machine learning algorithms can improve the predic-
tive performance of eBird by guiding the sampling process. 
Consider eBird observations for New York (Figure 3).  It is 
clear that spatial sampling biases are present as the majori-
ty of the observations come from a small subset of geo-
graphical locations.  Active learning applied to eBird im-
prove the resulting predictive models by providing a con-
text to advise participants where to sample next.  A first 

strategy, as displayed in figure 3, has been to aim for a uni-
form sampling coverage in geographical space, by concen-
trating data collection efforts to the areas of highest model 
uncertainty and low density.  This is accomplished through 
a novel active learning approach that combines density in-
formation and information-theoretic measures [19]. 

Already, our research in offering optimal sampling 
strategies is paying off. We display maps similar to Figure 
4 (bottom) on the eBird website, and provide rewards for 
individuals who report checklists from under sampled re-
gions. Eventually, such sampling trajectories will be em-
ployed within eBird, to enhance the overall birding experi-
ence.  For example, it is straightforward to propose paths 
that have the highest probability of detecting birds. Hence 
one can envision educating observers by proposing appro-
priate paths that trains their detection capabilities on spe-
cific species or increases the probability of them recording 
a species they have never observed before.  

Challenge 4: Species Distribution Models 
The motivation for eBird is to explore the continent-wide 
inter-annual patterns of occurrence of North American 
birds. To do this we have developed new Spatial-temporal 
Exploratory Models (STEM) of species distributions, that 
allow us to automatically discover patterns in spatiotem-
poral data [8]. We designed our statistical models specifi-
cally to discover seasonally- and regionally-varying pat-
terns in eBird data. Spatiotemporal variation in habitat as-
sociations are captured by combining a series of separate 
submodels, each describing the distribution within a rela-
tively small area and time window. The approach is semi-
parametric, yielding a highly automated predictive meth-
odology that allows an analyst to produce accurate predic-
tions without requiring a detailed understanding of the un-
derlying dynamic processes. This makes STEMs especially 
well suited for exploring distributional dynamics arising 
from a variety of complex dynamic ecological and anthro-
pogenic processes. STEMs can be used to study how spa-
tial distributions of populations respond over time to 
broad-scale changes in their environments, for example, 
changes in land-use patterns, pollution patterns, or climate 
change (Figure 5).  

The STEM visualizations are now being employed in a 
number of research and conservation initiatives. For exam-
ple, bird distribution information used in the 2011 State of 
the Birds Report by the U. S. Department of Interior, was 
based on STEM model results. Additionally, other federal 
(i.e., Bureau of Land Management and U.S. Forest Ser-
vice) and non-governmental agencies (i.e., The Nature 



Conservancy) are using STEM distribution estimates to 
study placement of wind farms for sustainable energy pro-
duction, identifying and prioritizing areas for avian conser-
vation in the southwestern United States and the Pacific 
Northwest. 

 
 

 
Figure 5. This map illustrates a  STEM  distribution  estimate  for 
 Wood Thrush,  a  migratory  songbird  that  winters  in  the  the 
tropics and  breeds  in  the  northeastern  U.S. and  eastern  Cana-
da.  The occurrence map shows the probability of encountering 
the species, with darker colors indicating higher probabilities. 
More STEM maps can be viewed on the eBird website 
(http://www.eBird.org).  

 
 
 

Conclusion 
 

In this paper, we have demonstrated the implementation of 
a novel network that links machine learning methods and 
human observational capacity to address several of the 
unique challenges inherent in a broad-scale citizen-science 
project.  By exploring the synergies between mechanical 
computation and human computation, which we call a 
Human/Computer Learning Network we can leverage 
emerging technologies that integrate the speed and scala-
bility of AI, with human computation to solve computa-
tional problems that are currently beyond the scope of ex-
isting AI algorithms.  
     Although our discussion has focused on one citizen-
science project, eBird, the general HCLN approach are 
more widely applicable. Specifically, implementing an un-
complicated protocol and providing appropriate rewards 
for participation can recruit large numbers of participants. 
Then by using adaptive learning techniques for both hu-
mans and computers we can improve the quality and scope 
of the data that the volunteers provide. Finally, new analy-

sis techniques that bridge the gap between parametric and 
non-parametric processes provide extremely accurate esti-
mates of species occurrence at continental levels.  
 In conclusion, broad-scale citizen-science projects can 
recruit extensive networks of volunteers, who act as intel-
ligent and trainable sensors in the environment to gather 
observations.  However, there is much variability in the 
observations volunteers make. Artificial Intelligence pro-
cesses can dramatically improve the quality of the observa-
tional data by filtering inputs using emergent filters based 
on aggregated historical data, and on the observers’ exper-
tise.  By guiding the observers with immediate feedback on 
observation accuracy, the Artificial Intelligence processes 
contribute to advancing expertise of the observers, while 
simultaneously improving the quality of the training data 
on which the Artificial Intelligence processes make their 
decisions.  The outcome is improved data quality that can 
be used for research and analysis. 
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