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Abstract

Detecting and counting overdensities in data is a common problem
in the physical and geographic sciences. One of the most successful
of recent algorithms for the counting version of the problem was
introduced by Cuevas, Febrero and Fraiman [Cuevas et al., 2000],
which will be referred to as the CFF algorithm. This algorithm first
determines the subset of data points that are in high density regions
using a non-parametric density estimator. A clustering step follows
where such high density points are agglomerated. While this algo-
rithm was originally intended to estimate the number of clusters,
it can also be used to perform non-parametric clustering against a
noisy background. However, the algorithm proposed by CFF is too
computationally expensive to work on large datasets with greater
than two dimensions. We propose an alternative implementation of
the CFF algorithm producing exactly the same results but address-
ing the computational problems in both the density estimation and
in the agglomeration step. We will then illustrate the effectiveness
of our approach on large multi-dimensional astrophysics datasets.

1 Introduction

The most common kinds of clustering algorithms tend to fall into two categories —
mixture models and graph theoretic approaches such as hierarchical single linkage
clustering. The best choice is task and data dependent. However, cases do exist
where both of these styles perform poorly, such as in Figure 2, which has too much
noise for the clustering algorithms to find the appropriate clusters. When single
linkage clustering was asked to find five clusters in the example dataset, it joined
together nearly all the points, as shown in Figure 3. A mixture of Gaussians,
optimized by EM, was also unsuccessful, as the results in Figure 4 indicate. Even
though we permitted a uniform background component and started the iteration
with hand picked Gaussians, EM was unable to correctly model the shape of the
overdense area. Furthermore, seven Gaussians were required by EM, which is more
than the three clusters that make up the region of overdensity. On the other hand,
the Cuevas-Febrero-Fraiman algorithm, to be described shortly, successfully finds
the correct number of clusters as shown in Figure 5.
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Figure 3: Clusters as found by Single
Linkage Clustering. All points marked
with a square are in one big cluster.
Clusters 2 through 5 are tiny and not
in useful places
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Figure 5: Clusters as found by CFF
algorithm



Figure 6: A dataset of galaxies from Figure 7: The seven clusters found by
the Sloan Digital Sky Survey CFF and manually circled

Situations with a combination of noisy backgrounds and clusters that can not be
modeled by parametric forms such as Gaussians are common enough in the physical
sciences, such as astrophysics [Reichart et al., 1999], that a new approach is needed.
As an example, consider the dataset shown in Figure 6. This dataset is a two di-
mensional projection taken from the Early Data Release of the Sloan Digital Sky
Survey [Sloan Digital Sky Survey, 2000]. Each point is a galaxy containing many
billions of stars. Astrophysicists are interested in clustering galaxies, but a noisy
background of field galaxies interferes with traditional clustering techniques. Figure
7 demonstrates the clusters found by using the Cuevas-Febrero-Fraiman algorithm.
Other examples include detection of minefields [Dasgupta and Raftery, 1998], de-
tection of seismic faults [Dasgupta and Raftery, 1998], robust estimation of covari-
ance [Byers and Raftery, 1998], and identification of foci of activation in the brain
[Pereira et al., 2001].

The algorithm proposed by Cuevas, Febrero and Fraiman [Cuevas et al., 2000],
while originally developed to estimate the number of clusters, can also be applied
to the problem of finding clusters against a noisy background as we will show. We
will hereafter abbreviate the Cuevas, Febrero and Fraiman algorithm to be the CFF
algorithm.

2 The CFF Algorithm

One common definition, originated by Hartigan [Hartigan, 1975], of the number
of clusters in a dataset is the number of connected components of the level set
{f > c}, where f is a density function on R®¢ and c is a positive constant. In
[Cuevas et al., 2000], CFF describes a two step algorithm that takes three parame-
ters, a bandwidth h, a density threshold ¢, and a link-length e:

e Step One: Find the set of high density datapoints {X; e Dataset |
fr(X;) > ¢}, where f}, is a kernel density estimator of f with bandwidth h.

e Step Two: Construct the graph in which the vertices are the high density
datapoints and in which the nodes X; and X; are linked together if and
only if | X; — X;| <e, where |X; — Xj| is the Euclidean distance. Find the
connected components of this graph.



The second step forms a set of spanning trees with the X;s in which the edges
are of length € or less. In fact, the algorithm proposed by CFF forms a Minimum
Spanning Tree since in that algorithm the next point to be considered is the closest
point to the members of the current connected component.

While the algorithm is conceptually simple, it suffers from computational issues,
especially when there are many datapoints and more than one dimension. Non-
parametric density estimation is expensive. Euclidean Minimum Spanning Trees
(EMSTs) can be determined in O(nlogn) time in two dimensions using Delauney
triangulations [Preparata and Shamos, 1985], where n is the number of datapoints.
However, this technique does not scale well as the dimensionality increases. We
propose a fast version of the CFF algorithm by addressing the computational issues
in both of these steps.

2.1 Scaling Step One: Nonparametric Density Estimation

This paper will pay relatively little attention to Step One for two reasons. First,
although it is critical to the scalability of the method, it can be addressed us-
ing technology to be reported in a separate paper [Gray and Moore, 2002]. That
paper describes how two ideas can allow near linear time detection of high den-
sity points. The first idea uses a dual tree algorithm similar to that described
in [Gray and Moore, 2001] while the second idea cuts off the search early without
computing exact densities in a manner similar to the single ball-tree approach of
[Moore, 2000]

The second reason we will pay no more attention to Step One is that frequently the
CFF algorithm is executed with a sequence of hundreds of different values of ¢ and
€ but with the same bandwidth h and thus the same density estimate f. For this
scenario the speed of Step One is much less critical than Step Two, since provided
we can obtain numerical density estimates for all datapoints (again, using a new
all-kernel algorithm to be described in [Gray and Moore, 2002]), we must run Step
2 hundreds of times for each execution of Step One.

2.2 Scaling Step Two: Connected Components

The CFF algorithm for finding connected components does not address the issue
of obtaining the distances between points when forming the Minimum Spanning
Tree. The initial improvement over the CFF method is straightforward. We simply
exploit recent results in computational geometry for efficient EMSTs. This is based
on the GeoMST2 algorithm described in [Narasimhan et al., 2000]. One of the
key concepts behind GeoMST?2 is the use of Well-Separated Pair Decompositions,
which were developed by Callahan [Callahan, 1995], [Callahan and Kosaraju, 1995].
We will now outline the GeoMST2 algorithm, after which we will introduce two
additional speedups that are specific to the CFF algorithm and gain at least one
extra order of magnitude speed, especially in higher dimensions.

3 Well-Separated Pair Decomposition

Figure 14 illustrates a Well-Separated Pair. Let A and B be point sets in ¢
with bounding hyper-rectangles R4 and Rp respectively. The notation Diam(R,4)
indicates the diameter of the hyper-rectangle R4. MargDistance(A,B) is defined
to be the minimum distance between the hyper-rectangles R4 and Rg. The point



sets A and B are considered to be well-separated [Callahan and Kosaraju, 1995] if
MargDistance(A,B) > max{Diam(R4), Diam(Rg)} [Narasimhan et al., 2000]. The
interaction product between two point sets A and B is defined as:

A®B={{p,p'}peAp eB, andp# p'}

A set of pairs (A1, B1),...,(Ak, Bg) is said to be a well-separated realization of
A ® B if the following properties [Callahan, 1995] hold:

1. A;CAand B;CBforalli=1,...,k.

2. AinB;=0foralli=1,... k.

3. (Ai ® B;) N (4; ® B;) =0 for all 4, j such that ¢ # j
4. AoB=Ur A, ®B;

5. A; and B; are well-separated for all i = 1,...,k.

Notice that A; ® By, ..., A ® By, is a partitioning of the large set consisting of all
pairs of points (a € A,b € B). Every pair of points exists in exactly one (A;, B;).
And in addition, every (A;, B;) has the property of being well-separated.

If P is a point set in $¢ then a Well-Separated Pair Decomposition, hereafter ab-
breviated to WSPD, of P is a set of pairs (A;, B;),..., (A, Bx) which is a well-
separated realization of P ® P. Somewhat astonishingly, a WSPD of a point set P
of size n can be constructed with only O(n) elements and in only O(nlogn) time
[Callahan and Kosaraju, 1995]. This decomposition is performed using a fair split
tree [Callahan and Kosaraju, 1995], which is essentially a k-d tree.

Figures 9 to 12 illustrate a WSPD of the data set with five datapoints shown in
Figure 8. This decomposition was formed using a fair split tree. The WSPD contains
four pairs. The members in each pair of the WSPD are drawn using a large black
circle and a light gray circle. The bounding hyper-rectangles of the pairs in the
WSPD are also shown.

4 GeoMST?2

The GeoMST?2 algorithm [Narasimhan et al., 2000] is an improvement on the Ge-
oMST algorithm [Callahan and Kosaraju, 1993] and [Eppstein, 1999]. Both algo-
rithms use WSPDs in order to address the issue of forming EMSTs in higher dimen-
sions. GeoMST?2 differs from its predecessor by reducing the number of Bichromatic
Closest Pair (BCP) distance calculations. The BCP distance of two point sets A;
and B; is defined to be the shortest distance between a and b where a € A; and
b € B;. GeoMST2 has an expected running time of O(nlogn).

The algorithm is best explained by looking at the pseudocode in Figure 13. Line
1 forms the WSPD of a point set S. The edges of the final EMST are selected
from among the pairs of the WSPD. In lines 3-5, GeoMST2 inserts each pair of the
WSPD into a priority queue, using the MargDistance as the priority. In order to
form a EMST correctly, lines 6-14 must remove the pairs of the priority queue in
the order of ascending BCP distance. However, in line 4, the priority used for the
queue is the MargDistance, which is a lower bound for the BCP distance and it is



Figure 8: The original dataset

Figure 9: WSPD Pair 1

Figure 11: WSPD Pair 3
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Figure 10: WSPD Pair 2

Figure 12: WSPD Pair 4



0...... GeoMST2(S)

1...... {(A1,B1),..., (Am,Bm)} = WSPD(S)
2,000 E=0,PQ=0

... for i =1 to m do

4...... PQ.Insert(i,MargDistance(Ai,Bi))
5...... ComputedBCP[i] = FALSE

6...... while(not PQ.Empty()) do

Teeennn i = PQ.ExtractMin()

8...... if ( Ai and Bi are not connected )
9...... if ( ComputedBCP[i] )

10..... E = E Union {(ai,bi)}
11..... else

12..... {ai,bi,D} = BCP(Ai,Bi,Infinity)
13..... PQ.Insert(i,D)

14..... ComputedBCP[i] = true
15..... T = (S,E)

16..... return T

Figure 13: The GeoMST2 algorithm

also much cheaper to compute. We will shortly explain how GeoMST2 does indeed
produce a EMST.

Let the element currently removed be the pair (A;, B;). Line 8 determines if A;
and B; are already connected. If they are connected, then the pair is ignored and
we have possibly saved ourselves a BCP calculation. Otherwise, line 9 determines
if the BCP distance has been calculated. In the case that the BCP distance has
not been computed, Lines 12-14 calculate the BCP pair and distance. The Well-
Separated Pair is reinserted into the priority queue with the actual BCP distance
as the priority. Line 14 flips the ComputedBCP flag to be true for that pair. If the
BCP distance has been computed, as shown in line 10, an edge is formed between
the element a € A; and the element b € B; that yields the BCP distance.

There are two crucial points for the correctness of GeoMST2. First of all, Line 13
reinserts a pair into the priority queue when the BCP distance has been calculated;
this BCP distance will be at least as large as the MargDistance. Secondly, an edge
is only added to the MST if the actual BCP distance has been computed. These
two points guarantee that an edge is added to the EMST only when all shorter
edges have already been handled.

4.1 CFF-specific optimizations

A naive implementation would use GeoMST2 to calculate the minimum spanning
tree until the distance obtained from the priority queue was greater than e. This is
wasteful for us because all we need are e-clusters, i.e. clusters formed by joining all
points that are within e distance or less from each other. A point may be joined to
a cluster through any link of length less than e—not necessarily the link that would
appear in the EMST. This observation can be exploited by modifying the step that
finds the WSPD while leaving the rest of the GeoMST2 algorithm intact. If we can
reduce the number of pairs that are in the WSPD, then GeoMST2 will be much
faster due to less elements in the priority queue, as will be shown in Figures 18 and
19.

4.1.1 Optimization 1: Ignoring links that are > ¢

The main purpose of the WSPD is to reduce the number of edges under consider-
ation when forming the MST. Every pair (A;, B;) in the set of pairs of the WSPD



becomes an edge in the EMST unless it joins two already connected components.
If the minimum distance separating the bounding hyper-rectangles of the sets A;
and B; is greater than e, as illustrated in Figure 15, then an edge of length € or less
cannot possibly exist between a point in A; to a point in B;. While forming the
WSPD, we need not include any (A;, B;) IPs with separation distance greater than
€.

4.1.2 Optimization 2: Joining all elements that are within ¢ distance
of each other

If the maximum distance separating the bounding hyper-rectangles of A; and B; is
less than €, then the points in A; and B; must belong to the same e-cluster. We
can simply join all the points in A; and B; if they are not already connected. Since
we need not form a EMST, we can connect the points in any order. Furthermore,
we need not add such pairs that have this property to the WSPD.

4.1.3 Summary

These two optimizations speed up two crucial areas of the GeoMST algorithm. First
of all, they reduce the amount of time required to produce the WSPD. Secondly,
the number of well-separated pairs is reduced, thereby speeding up the later half of
the GeoMST?2 algorithm by reducing the size of the priority queue.
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5 Results

Experiments were conducted on a subset of data taken from the Sloan Digital Sky
Survey [Sloan Digital Sky Survey, 2000], which is a digital map of the sky. The
dataset used had 7 columns, consisting of four colors, two sky coordinates, and a
redshift value. We performed most of our experiments on the four color values.

Figure 17 compares the time taken to perform the clustering step of the CFF algo-
rithm by using Kruskal’s MST algorithm, GeoMST2, and our new implementation
called e-clustering. Modifications were made to both Kruskal’s algorithm and Ge-
oMST2 to terminate the algorithm the moment an edge that was greater than e
was encountered. The experiments were run on 4 dimensional datasets with 200 to
1000 records, in increments of 200. Since Kruskal’s algorithm is non-competitive
as the number of datapoints are above 10000, we compare the speeds of GeoMST2
and e-clustering on datasets of size 20000 to 100000, in increments of 20000 records.
These experiments were run on 3 and 4 dimensional data. Figures 18 and 19 show
the results. e-clustering outperforms GeoMST2 in all the cases.
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Figure 17: GeoMST2 vs. e-Clustering vs Kruskal in 4D
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Figure 20 shows the effects of increasing the number of datapoints on the time
taken by e-clustering. We ran experiments on datasets of size 200000 to 1000000, in
increments of 200000. The experiments were performed on data in 2 to 5 dimensions.
For certain settings of the parameters, the time increases linearly, while for others,
time appears to increase on the order of O(nlogn).

These experiments indicate that the bandwidth h, threshold ¢, and € have an im-
pact on the running time. h and c¢ affect the number of high density datapoints.
The € parameter affects the time spent in the WSPD step. If € is very large, the
WSPD step ends early as all the points in the fair split tree node can be connected.
Similarly, a small value of € results in more pairs that are separated by a distance
greater than e. Figures 21 and 22 illustrate the effect of varying e on time on a 3-
dimensional and a 4-dimensional dataset with 100000 records each. The time seems
to peak at about a value of 0.5 for € for both plots.

6 Related Work

Banfield and Raftery [Banfield and Raftery, 1993] use a mixture-model approach
to perform clustering on d-dimensional data with clutter. The data is assumed
to be generated from a mixture of Gaussians together with a homogeneous spatial
Poisson process which produces the clutter. The clusters are assumed to be highly
linear or piecewise linear, where linear means that they are concentrated along their
first principal component. Clustering is performed by maximizing the parameters
and the partitioning of the data over the classification likelihood. Their approach,
however, requires the user to provide information about the shape of the clusters
and the algorithm’s approximation of the number of clusters in the data performs
poorly when the clutter makes up a majority of the data. Dasgupta and Raftery
[Dasgupta and Raftery, 1998] extend on the work by Banfield and Raftery. The
technique proposed by [Dasgupta and Raftery, 1998] iterates over a range of possible
number of clusters for the data. In each iteration, an initial clustering is performed
using the method proposed by Banfield and Raftery. Then, an EM step follows
in which the maximized mixture likelihood is obtained upon convergence and this
value is used to compute the Bayesian Information Criterion score for the model.
The EM step is also modified to estimate the shape of the clusters from the data.
The best model, along with its clustering, is selected.

Byers and Raftery [Byers and Raftery, 1998] propose a further algorithm that is
not restricted by the shape or the number of the clusters. Once again, the clutter
is assumed to be a homogeneous Poisson point process, but the features are also
considered as a Poisson process on top of the clutter. This approach computes, for
every data point, the kth nearest neighbor distance, where k is a parameter supplied
by the user. This distance is modeled as a mixture of two gamma distributions,
one for the clutter and the other for the features. The next step of the algorithm
applies EM to estimate the parameters of the mixture. From the results of EM, a
data point can be classified as clutter if its probability of belonging to the clutter
component is higher than that of belonging to the feature component and vice versa.

7 Conclusion

e-clustering is a computationally efficient algorithm for determining the connected
components in Step 2 of the CFF algorithm. Our results show that it outperforms



GeoMST2, one of the fastest EMST algorithms, by nearly an order of magnitude
in higher dimensions. Combining e-clustering with the nonparametric density esti-
mation algorithms in [Gray and Moore, 2002] will yield an effective algorithm for
identifying clusters against a noisy background with massive amounts of data.
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