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Abstract

Species distribution models play a key role
in creating reserves for species conservation,
predicting the effects of ecological change,
and testing ecological theory. Although
many methods have been developed for mod-
els of individual species, ecologists are rec-
ognizing the advantages of predicting mul-
tiple species simultaneously. This problem
of multiple species prediction can be ad-
dressed by machine learning algorithms from
the area of multi-label classification. How-
ever, to date, multi-label classification has
been applied primarily to problems in text
and image annotation. The goal of this pa-
per is to introduce species distribution mod-
eling as a new domain for multi-label classi-
fication, present preliminary results illustrat-
ing the advantages of multi-label algorithms,
and discuss new research directions presented
by this domain.

1. Introduction

Environmental change is a major challenge for re-
searchers and policymakers. Many ecologists are
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studying how species distributions respond to environ-
mental change. Species distribution modeling (SDM)
involves predicting the occurrence of a species at a
site given a set of environmental features (such as cli-
mate, elevation, vegetation, and land use) (Elith et al.,
2006). SDM plays an important role in species con-
servation (Ferrier et al., 2002), predicting the effects
of ecological change on species (Thomas et al., 2004)
and testing ecological theory (Austin, 2002). Publicly
accessible datasets for SDM, such as eBird (Munson
et al., 2009), are now available.

Much work in SDM has focused on species-level model-
ing, which predicts the distribution of a single species.
Methods for modeling individual species include Bio-
climatic Envelopes (Araujo et al., 2005), Genetic Algo-
rithms (Stockman et al., 2006), regression approaches
such as GAMs and GLMs, and machine learning ap-
proaches such as Maximum Entropy models (Phillips
et al., 2004) and Boosted Regression Trees (Elith et al.,
2008). Machine learning approaches are consistently
among the top performers for single-species models
(Elith et al., 2006). Community-level predictions,
which predict the occurrence of multiple species, or
species assemblages, may provide better ecological in-
terpretations and more accurate predictions, especially
for rare species, than single-species models (Ferrier &
Guisan, 2006). Communities may be structured by
environmental conditions or by biological interactions
among species, or both. As a result, approaches to
multi-species modeling place different priority upon as-
sembling (finding groups of co-occurring species) and
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Table 1. Species datasets used in our experiments.

Dataset Plants HJA
Moths

HJA
Birds

HB
Birds

eBird

Instances 15327 256 364 371 5985
Features 81 52 21 40 22
Labels 50 422 23 34 34

predicting (finding relationships of a species to envi-
ronmental factors). These approaches are: 1) assemble
first, predict later, 2) predict first, assemble later, and
3) assemble and predict together (Ferrier & Guisan,
2006). The assemble and predict together strategy has
the potential to reveal the relative importance of bio-
logical interactions between species compared to envi-
ronmental controls on communities, a topic of major
theoretical and practical importance in ecology. How-
ever, this strategy has received little attention, per-
haps because ecologists are unfamiliar with algorithms
for multiple response prediction.

Multiple response prediction is precisely the task ad-
dressed by multi-label classification algorithms. In
multi-label classification, the goal is to learn a clas-
sifier that maps from a vector of features x to a vector
of output labels y = (y1, . . . , yL), where each label
yl is typically binary valued. Numerous techniques for
multi-label classification have been proposed in the lit-
erature, including graphical models (Ghamrawi & Mc-
Callum, 2005), ensemble methods (Read et al., 2009),
dimensionality reduction (Ji et al., 2010) and kernel
learning (Elisseeff & Weston, 2002). Multi-label clas-
sification has been primarily applied to the task of text
labeling (Ghamrawi & McCallum, 2005) and image an-
notation (Ji et al., 2010).

Our goal is to introduce SDM as a new domain for
multi-label classification. We include empirical results
comparing multi-label algorithms versus algorithms
that predict each label independently (known as binary
relevance algorithms in the multi-label literature) on
five different species datasets. Although SDM could be
viewed as a typical multi-label classification problem,
we discuss several unique challenges in this domain,
along with directions for future work.

2. Methodology

Table 1 summarizes characteristics of the five species
datasets used in our experiments. Each data instance
corresponds to species observations at a particular site.
The features associated with each data instance con-
sist of environmental characteristics at that site. The
first four datasets in the table were collected and com-

piled by trained scientists. These four datasets in-
clude the Plants dataset from the Arthur Rylah Insti-
tute in Victoria, Australia, the HJA Moths and Birds
datasets from the H. J. Andrews Experimental Forest
in Oregon, and the HB Birds dataset from the Hub-
bard Brook Experimental Forest in New Hampshire.

The fifth dataset was from the eBird project (Munson
et al., 2009), which is a citizen science program that
allows bird watchers to upload bird species observa-
tions. Although the eBird dataset has known sources
of bias due to issues such as the expertise level of the
citizen scientists (Yu et al., 2010), we will not address
these issues in our experiments. Instead, we will use
the eBird dataset purely for evaluating multi-label al-
gorithms. In our experiments, we used a subset of
the eBird data consisting of eBird checklists from New
York state during the breeding season (May-June) in
2006-2008.

We split each dataset into training, validation, and
testing partitions. To alleviate the effects of spatial
autocorrelation, we placed a black and white checker-
board over the entire dataset. Data points falling into
white cells formed the test set while those falling into
the black cells were further divided into the training
and validation sets.

We compared the performance of two binary relevance
classifiers against their multi-label classifier exten-
sions. We applied binary relevance SVM (BR-SVM)
with a linear kernel, tuning the C parameter over the
validation set, and binary relevance boosted regression
trees (BR-BRT), tuning the number of trees and the
depth of the trees. As the multi-label algorithm, we
employed the Ensemble of Classifier Chains (ECC) al-
gorithm (Read et al., 2009). We chose ECC because
it consistently performed well on species data as com-
pared to other publicly-available multi-label classifiers.
A classifier chain in ECC is a sequence of base classi-
fiers that predict the label yj given the input feature x
and all output labels y1, . . . , yj−1 already predicted in
the chain. The ensemble of classifier chains is created
by 20 random orderings of the labels and by train-
ing each chain on a bootstrap replicate of the original
training data. We used linear SVMs and BRTs as
the base classifiers, resulting in multi-label algorithms
ECC-SVM and ECC-BRT. The base classifiers shared
the same tunable parameters, which were tuned over
the validation set. In order to report confidence in-
tervals, we generated 1000 bootstrapped samples from
the test data and computed mean and 95% bootstrap
confidence intervals for each metric.

We compared the performance of our algorithms us-
ing Hamming loss and Ranking loss, which are both
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standard multi-label metrics. We also reported two
metrics that are relevant to the SDM domain: site-
based and species-based AUC. In site-based AUC, the
AUC is computed for the present vs. absent species at
each site xi and then averaged across sites. In species-
based AUC, the AUC is computed on each species over
all sites and then averaged across species.

3. Results and Discussion

Table 2 summarizes the results of our experiments,
which demonstrate the benefit of multi-label ap-
proaches. ECC-SVM outperformed BR-SVM in all
rows while ECC-BRT outperformed BR-BRT in 13 out
of 20 rows. Since linear SVMs were unable to capture
non-linear interactions between features, the gain in
performance by ECC-SVM over BR-SVM came from
the correlation between labels. BR-BRT, on the other
hand, could capture non-linear interactions between
the input features but, being a binary relevance algo-
rithm, it was unable to exploit label correlations. How-
ever, once the label correlations were modeled by ECC-
BRT, the gains over BR-BRT were not as substantial
as the gains by ECC-SVM over BRT-SVM. Further
analysis suggested that the large gains by ECC-SVM
over BR-SVM were due to the presence/absence of
other species acting as a proxy for the non-linear in-
teractions between environmental features. In addi-
tion, for situations in which ECC-BRT outperformed
BR-BRT, we found that these gains were due to more
accurate predictions for rarer species. We are actively
investigating these findings further.

Having shown the importance of modeling interactions
between the output labels, we now discuss some of
the unique properties of species data that can produce
new research directions for multi-label classification.
Species datasets, as shown in Table 1 are fundamen-
tally different from many of the common multi-label
datasets used in the literature. Unlike text, the feature
space is dense and lower dimensional, with fewer than
50 features in a typical dataset. The output space,
on the other hand, is often large, ranging from tens
to thousands of species, and sparse, with few species
present at each site. In our experiments, we used a
subset of the species in the data. Almost none of the
current multi-label algorithms are well-suited for the
full species datasets. New algorithms need to be devel-
oped for data of this form and for accurately predicting
rarer species, which are of great interest to ecologists.

Second, in SDM, interactions between species are com-
plex, with communities of species forming due, for in-
stance, to cooperation or competition. Many of the ex-
isting multi-label algorithms only model pairwise cor-

relations between labels and are thus inadequate for
helping ecologists discover these complex interactions.
Algorithms that can discover more complex correla-
tions between labels are often focused purely on predic-
tive performance and do not produce comprehensible
models. This need for interpretability is important to
provide insight into the ecological principles governing
interactions between species. In particular, ecologists
are interested in comparing the relative importance of
two major forces that structure ecological communities
– environmental factors and biological interactions be-
tween species.

4. Conclusion

Using species distribution data, we have demonstrated
that multi-label algorithms that captured correlations
between species outperformed algorithms that pre-
dicted each species individually. These results on
species data also point to new research directions for
multi-label algorithms. These directions include de-
veloping new algorithms for datasets with sparse high
dimensional label space but lower dimensional fea-
ture space, modeling more complex interactions be-
yond pairwise label correlations, and producing com-
prehensible multi-label models. These research direc-
tions can provide valuable contributions not only to
machine learning but also to ecology.
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