
Optimal Reinsertion: A new search operator for accelerated and more accurate
Bayesian network structure learning

Andrew Moore AWM@CS.CMU.EDU

Weng-Keen Wong WKW@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract
We show how a conceptually simple search oper-
ator called Optimal Reinsertion can be applied to
learning Bayesian Network structure from data.
On each step we pick a node called the target. We
delete all arcs entering or exiting the target. We
then find, subject to some constraints, the glob-
ally optimal combination of in-arcs and out-arcs
with which to reinsert it. The heart of the pa-
per is a new algorithm called ORSearch which
allows each optimal reinsertion step to be com-
puted efficiently on large datasets. Our empiri-
cal results compare Optimal Reinsertion against
a highly tuned implementation of multi-restart
hill climbing. The results typically show one to
two orders of magnitude speed-up on a variety of
datasets. They usually show better final results,
both in terms of BDEU score and in modeling of
future data drawn from the same distribution.

1. Bayesian Network Structure Search
Given a dataset of R records and m categorical attributes,
how can we find a Bayesian network structure that provides
a good model of the data? Happily, the formulation of this
question into a well-defined optimization problem is now
fairly well understood (Heckerman et al., 1995; Cooper
& Herskovits, 1992). However, finding the optimal solu-
tion is an NP-complete problem (Chickering, 1996a). The
computational issues in performing heuristic search in this
space are also severe, even taking into account the numer-
ous ingenious and effective innovations in recent years (e.g.
(Chickering, 1996b; Friedman & Goldszmidt, 1997; Xiang
et al., 1997; Friedman et al., 1999; Elidan et al., 2002; Hul-
ten & Domingos, 2002)), discussed in Section 4.

Problem: From fully observed categorical data find an
acyclic structure and tabular conditional probability tables
(CPTs) that optimize a Bayesian Network scoring criterion.
Assume no initial knowledge of the node ordering.

The operation we need to perform is

argmaxD DagScore�D� (1)

where D is a directed acyclic graph (DAG) and DagScore
is a complexity-penalized measure of how well the DAG
explains the data. Common versions of DagScore can be
broken into a sum of terms: one for each node in the DAG.

DagScore�D� �
m

∑
i�1

NodeScore�Parents�i�� i� (2)

where Parents�i� is the set of parents of attribute i in the
DAG, and NodeScore�Parents�i� � i� scores the degree
that these parents predict the conditional distribution of i
given the parents (while penalizing for model complexity).
Examples of NodeScore function that have been proposed
are BIC (Schwartz, 1979), BD (Cooper & Herskovits,
1992), BDE (Heckerman et al., 1995) and BDEU (Bun-
tine, 1991). The algorithms of this paper can be applied
irrespective of the choice of NodeScore function.

1.1. Performing the optimization
The most common algorithm for optimizing DagScore�D�
is a hill climbing algorithm which begins with an initial
structure and then considers a finite set of tweaks to it. The
tweaks usually include some or all of “Add arc”, “Delete
arc” and “Reverse arc”, subject to never attempting a move
that would introduce a cycle. Hill climbing proceeds by
finding the best tweak and applying it. Then it finds the best
tweak for the new DAG structure. This process continues
until no more tweaks improve the structure. In practice it
is well worth attempting to jump out of local minima. This
is usually done by a combination of multiple restart hill
climbing, simulated annealing and TABU search.

1.2. Optimal Reinsertion Overview
In this paper we introduce a new, much larger-scale, search
operator called Optimal Reinsertion and (more impor-
tantly) show how to compute it efficiently.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.



T

Select
Target

T T

??
?

? ? ?
?

?

Efficiently
find new 

in/out arcs
arcs adjacent

to T

D: Remove
D

Old

Choose the
best: DNew

Figure 1. Optimal Reinsertion

Given a start structure Dold (Figure 1), pick one node
(called the Target, T ) and sever all connections in and out.
Then find, subject to some constraints, the optimal set of
in-arcs and out-arcs with which to reinsert it. This proce-
dure continues, running through repeated cycles in which
all nodes take turns at being the target, until no step changes
the DAG structure. Each move in this search space finds the
best of (typically) billions of changes to the current DAG,
and so we can hope for faster and less local-optimum-prone
search. With the algorithms described in subsequent sec-
tions each step finds the optimal reinsertion very quickly.

2. Algorithms for Optimal Reinsertion
2.1. The maxParams Parameter
During each Optimal Reinsertion step we forbid certain
structures. We do not allow any of the conditional proba-
bility tables to contain more than maxParams non-zero en-
tries. We make this restriction for its computational benefit:
we can control the total number of CPTs we will ever need
to look at. We can hope that the effects of this approxi-
mation will be mitigated by the fact that large CPTs will
receive large penalties in the scoring function and so would
not be part of the optimal solution in any case. We will re-
sort to empirical studies to see the actual consequences. In
practice we typically set maxParams between 10 and 100,
and usually a target node has somewhere between thou-
sands up to millions of possible parent sets.

2.2. Cached Node Scores
In the algorithm that follows, it will be necessary to quickly
look up the NodeScore�PS � T � value for a wide variety
of Parent-Sets PS and all possible target nodes T . Let us
use the convention that given a dataset with m attributes,
the attributes (and hence the corresponding nodes in the
DAG) are identified by integers 1�2� ���m respectively. A
parent-set PS is thus a subset of the integers 1 through m.
Similarly, a target node T is an integer between 1 and m.

We create a cache of NodeScore�PS � T � values, so that
once the cache is constructed any lookup may occur in time
independent of R (the number of records) or m (the total
number of attributes). We only cache NodeScore�PS� T �
combinations that produce conditional probability tables
with maxParams or fewer parameters.

Creating this cache looks expensive. With maxParams� 2k

and m binary-valued attributes, there are
�m�1

k

�
CPTs for

each of the m target nodes, meaning m
�m�1

k

�
tables in total,

each needing O�R� work to construct naively.

Constructing all these tables is a job suited for AD-search,
introduced in (Moore & Schneider, 2002) and an extension
of AD-trees (Moore & Lee, 1998). There is no space to
review AD-search here, except to mention costs. Search-
ing all contingency tables of dimension k would normally
require R

�m
k

�
operations. In contrast, AD-search requires

R
k

∑
j�0

λ j
�

m
j

�
(3)

operations, where λ is a dataset-specific quantity that is al-
ways in the range �0�0�5�, and is smaller for datasets with
larger degrees of inter-dependence between attributes. Em-
pirically, λ is usually between 10�2 and 10�1.

2.3. Searching for the Optimal Reinsertion
Let Dold � DAG before the Optimal Reinsertion of T .
Let D � Dold with all arcs into and out of T removed.
Let Dnew � D after Optimal Reinsertion (see Figure 1).

2.3.1. LEGAL SUPPLEMENTS OF A PARENT-SET.

We search over parent-sets of T . During search, if our
current parent-set is PS, then the next sets to be in-
spected will be defined as LegalSupplements�PS� where
Supplements�PS� � �PS � �q � 1��PS � �q � 2�� ���PS �
�m��with q �max�PS� (e.g. if PS � �2�4��max�PS� � 4)
and LegalSupplements�PS� defined as those members of
Supplements�PS� that produce a CPT with maxParams or
fewer parameters. Define q � 0 if PS � ��.

2.3.2. ALL SPECIALIZATIONS OF A PARENT SET.

One final definition concerns the complete set of legal spe-
cializations of PS. This set of legal specializations, called
Specializations�PS� are those parent sets that are supple-
ments, supplements of supplements, or supplements to the
nth degree of PS. Formally, Specializations�PS� is the clo-
sure of LegalSupplements�PS�: PS’ � Specializations�PS�
if and only if PS’ � PS or PS’ � Specializations�PS”� for
some PS” � LegalSupplements�PS�.

Assume that �3�5���3�5�6� and �3�4�5� all produce fewer
than maxParams parameters. Note that �3�5�6� �
Specializations��3�5�� but �3�4�5� �� Specializations��3�5��
(because supplements of a PS involve only nodes denoted
by a higher index than is currently in PS). A further exam-
ple is given in part of Figure 2.

Note that depth first traversal through the space of all parent
sets, beginning at �� and using LegalSupplements as the
search operator, will visit each legal parent set exactly once.



2.3.3. THE ORSEARCH ALGORITHM

The search algorithm could be of this form:

For all possible �PS�CS� pairs, consider a ver-
sion of D in which T is given PS as its parents
and CS as its children...

In fact, Section 2.1 added the restriction

...disallowing �PS�CS� pairs in which any CPT
has more than maxParams non-zero parameters.

Even with this restriction there are many �PS�CS� pairs to
consider, sometimes trillions. Happily, we can make the
search tractable with two steps. First, by analytically com-
puting the optimal CS to associate with each PS. Second,
by pruning the search tree over parent sets in cases where
we can prove no specialization can be better.

2.3.4. CHOOSING CHILD SETS

In Figure 2 we are considering parent-set �2�4�. Without
introducing cycles in the presence of this parent set, the
potential children of T are SafeNodes�PS� � �3�6�7�8�.
In general define that i � SafeNodes�PS� if and only if (a)
there is no directed path from i to T in D �, and (b) adding T
to the parents of i would not cause more than maxParams
parameters for node i.

Each node in SafeNodes�PS� can independently consider
whether there is benefit in adding a T � i link. We can
thus define the optimal Child Set to associate with Parent
Set PS as �i� SafeNodes�ps� : NodeScore�Pi��T�� i��
NodeScore�Pi � i�� where Pi are the original parents of i
in DAG D.

2.3.5. BRANCH-AND-BOUND OVER PARENT SETS

ORSearch takes four parameters:

� D, the current DAG (in which T has no in-arcs and no
out-arcs).

� T , the current target node.
� PSin, a parent set.
� PSknown, another parent set: the best set found so far

in the search.

Define ORScore�PS� to be the score obtained with PS as
the parents of T and OptChildren�PS� as T ’s children. The
ORSearch procedure outputs PSout defined as:

argmax
PS � �PSknown �Specializations�PSin��

ORScore�PS�

Table 1 gives the implementation of ORSearch. In Step
3, we compute ORScore�PS�. In Step 4, we compute the
best possible score of any of the legal specializations of PS.
This requires us to obtain bestNodeScore�PS� T �, defined
as:

1

T

2

3

6

4

7

8

5

PS � �2�4�

LegalSupplements�PS� � ��245��246��247��248��

Specializations�PS� � ��24��245��246��2456�

�247��2457��2467��24567��248��2458�

�2468��24568��2478��24578��24678��245678�

SafeNodes � �3�6�7�8��

Figure 2. An illustration of LegalSupplements, Specializations
and SafeNodes for the illustrated parameter set. We assume that
maxParams is sufficiently large that no parent-sets are discounted
for producing too many parameters.

max
PS’ � Specializations�PS�

NodeScore�PS’� T � (5)

This information is computed once, with one pass over
the cache immediately after the cache of NodeScores is
created, so is a constant-time lookup during execution of
ORSearch.

Step 5 is our opportunity to abort this portion of the recur-
sive search. If the condition is satisfied we have proved
that there is no point in looking at any specialization of PS.
Note how the decision to bound the search is dependent on
the structure of the rest of D: depending on the structure
we may or may not abort because PS may or may not cause
loops that lose us the benefit of some of our children.

Step 7 is the recursive call. We look at the immediate legal
supplements of the current parent-set, each time possibly
improving PS�. Notice that by passing PS� (the best parent
set so far) as the fourth argument we give as much oppor-
tunity as possible for recursive calls to prune.

At all points in the algorithm the NodeScore value,
NodeScore values, ChildBenefit values, DagScore values
and bestNodeScore values can all be obtained in constant
time from the cached NodeScore tables, or by recalling val-
ues computed earlier on in the search. The original dataset
is neither needed nor accessed.

We omit the elementary inductive proof of the correctness
of the procedure. ORSearch is initially called with pa-
rameters: ORSearch�D�T�������. It thus returns the best



ORSearch�D�T�PSin�PSknown�

1. Let D� � D supplemented with k � T for all k � PSin and T � i for all i � OptChildren�PSin�.

2. Let ChildBenefit be the change in the score of D that is due to the positive benefit of the children derived from PS in.
ChildBenefit � ∑i�OptChildren�PSin�

NodeScore�Pi��T�� i��NodeScore�Pi � i�

where Pi are the current parents of node i in DAG D.

3. Let
myScore � DagScore�D�� � BaseScore�NodeScore�PSin � T ��ChildBenefit (4)

where BaseScore is the (static) sum of node scores for the rest of the net, thus BaseScore � ∑ j ��T NodeScore�Pj � j�.
The middle term in Equation 4 adds in the contribution from T ’s Parent Set. The rightmost term adjusts for the effect
upon new children of T .

4. Let bestDagScore � BaseScore�bestNodeScore�PS in � T ��ChildBenefit

5. If bestDagScore� ORScore�PSknown� define PSout � PSknown and return from this recursive call.

6. Let PS� be a local variable denoting the best Parent Set encountered so far within this stack frame.

If myScore � ORScore�PSknown� define PS� � PSin else define PS� � PSknown.

7. For each PS’ � LegalSupplements�PS� : PS� := ORSearch�D�T�PS’�PS��

8. PSout � PS� (the best scoring out of PSknown, PSin and the best of the results of the recursive calls).

Table 1. The ORSearch algorithm, described in Section 2.3.

available legal PS, which we then assign as the new parents
of T . The new children of T are those legal, non-cycle-
inducing nodes with strictly positive benefit.

2.4. The outer loop
We have defined a single Optimal Reinsertion operation,
but the full search consists of repeated operations. One full
pass of the outer loop consists of generating a random or-
dering of �1�2� ���m� then applying the operation to each
node in this ordering in turn. We iterate this procedure,
performing a full pass over and over again, with a newly
randomized ordering on each pass. When a full pass causes
no change to the current DAG, we terminate.

2.5. Multiple Restarts
In case the above procedure gets caught in a local mini-
mum, we run it a large number of times—50 in the fol-
lowing experiments. Each run begins with a randomly cor-
rupted version of the best DAG to date. Empirically, the use
of multiple restarts does not appear to be critical: after the
first run we have never observed a significant improvement
from the remaining runs.

2.6. Final Stage of Hill climbing
After the specified number of restarts of the Optimal Rein-
sertion procedure we finally perform an iteration of con-
ventional hill-climbing. This is in order to allow the current

DAG to tweak itself to introduce CPTs bigger than allowed
by the maxParams parameter. Thus, for this final iteration,
we no longer apply the restriction that all contingency ta-
bles must have fewer than maxParams. In some cases, if
maxParams was set to a low value, this final pass can sig-
nificantly improve the score.

2.7. Sparse Candidate Optimal Reinsertion
The sparse candidate algorithm was introduced in (Fried-
man et al., 1999). It approximates standard hill climbing,
but maintains a small set of candidate parents for each node
instead of simply allowing any parent for the node. Ini-
tially, the candidate set for node i is chosen to be the k at-
tributes best correlated with i, but the set can be refined as
the search progresses. This has the strong benefit of reduc-
ing the number of NodeScore computations needed during
hill climbing. Indeed, the first pass of hill climbing requires
only O�mk� such computations instead of O�m2�.

We have incorporated a primitive version of Sparse Candi-
date into the Optimal Reinsertion search. For datasets with
large numbers of attributes, we restrict the set of legal par-
ents of T to be those k attributes most strongly correlated
with T . In the experimental results section we use values
of k ranging between 10 to 20, depending on the number of
attributes in the dataset.



3. Empirical Results
Table 2 shows the datasets that were used.

3.1. Generation of synthetic datasets
The synthetic datasets create local-minimum-prone search
landscapes. They were generated from the structures
shown in Figure 3. All nodes were binary. Nodes with-
out parents chose their value with 50-50 probability. For
nodes with parents,

P�value = True	parents� � 0�1 if Parity(parents)=0

P�value = True	parents� � 0�9 if Parity(parents)=1

where Parity(Parents)=1 if and only if an odd number
of parents have value “True”. The nodes are thus noisy
exclusive-ors and so it is hard to learn a set of parents in-
crementally.

Synth2 Synth3

Synth4

Figure 3. Syn-
thetic datasets described in
Section 3.1.

R m AA
adult 49K 15 7.7 Contributed to UCI by Ron

Kohavi
alarm 20K 37 2.8 Data generated from a standard

Bayes Net benchmark (Bein-
lich et al., 1989).

biosurv 150K 24 3.5 Anonymized, deidentified ag-
gregate information about hos-
pital admission rates

covtype 150K 39 2.8 Contributed to UCI by Jock
Blackard.

con4 67K 43 3.0 Contributed to UCI by John
Tromp

edsgc 300K 24 2.0 Data on 300,000 galaxies from
the Edinburgh-Durham Sky
Survey (Nichol et al., 2000)

synth2 25K 36 2.0 Generated from Figure 3
synth3 25K 36 2.0 Generated from Figure 3
synth4 25K 36 2.0 Generated from Figure 3
nursery 13K 9 3.6 Contributed to UCI by Marko

Bohanec and Blaz Zupan
letters 20K 17 3.4 Contributed to UCI by David

Slate
Table 2: Datasets used. R = Number of records, m = number of
attributes and AA = average arity of attributes.

3.2. Processing of the real datasets
The empirical datasets were chosen from UCI Irvine
datasets (Blake & Merz, 1998) that contained at least
10,000 records. Real valued attributes were automatically
converted to binary-valued categorical attributes by thresh-
olding them at their median value (treating real-valued vari-
ables in this way with Bayesian Nets is not generally a
good idea but it does not favor either method in this evalu-
ation). Several additional datasets of particular current in-
terest within our research lab were also used.

To our knowledge, this is a relatively large study
of a Bayesian Network structure finding algorithm—
running on 11 datasets and analyzing both optimiza-
tion performance and k-fold test set performance. The
datasets we used, including our discretizations, are at
http://www.cs.cmu.edu/
awm/optreinsert.

3.3. The Hill climbing implementation
Following the methodologies of (Elidan et al., 2002; Fried-
man & Goldszmidt, 1997; Friedman et al., 1999; Hulten &
Domingos, 2002), we benchmarked Optimal Reinsertion
against an optimized version of traditional hill climbing.
We used the same libraries and underlying efficient data
structures to implement hill climbing. We tuned the multi-
restart strategy to maximize performance and we are satis-
fied that our hill climber is highly optimized. For example,
an efficient hash table is used to ensure that hill climbing
never redundantly recomputes a NodeScore score from the
dataset that it can obtain from the results of an earlier com-
putation.

3.4. Optimizing the BDEU score: Experiments
All experiments were performed on an unloaded 2 giga-
hertz Pentium 4, with 2 gigabytes of RAM (although none
of the experiments below used more than 1 gigabyte and
most used less than 100 megabytes). The time measured
for Optimal Reinsertion includes the costs of all compo-
nents of the algorithm including the AD-search and build-
ing of the NodeScore cache.

Table 4 shows the performance of Optimal Reinsertion
search against hill climbing. Table 3 shows the number
of structures searched by Optimal Reinsertion for each
dataset. In most (but not all) cases Optimal Reinsertion
quickly finds a better solution than Hill-climbing ever finds.

3.5. Is there an acceleration?
Table 4 compares the performance of Optimal Reinsertion
when given only one thirtieth the wall-clock time of hill
climbing. It confirms that Optimal Reinsertion usually per-
forms at least as well as hill climbing when Optimal Rein-
sertion is given only 100 seconds and hill climbing is given
3000 seconds.



adult

time (secs)

0 200 400

-11.2

-11.18

-11.16

-11.14

-11.12

-11.1

alarm

time (secs)

0 200 400

-10.92

-10.9

-10.88

-10.86

-10.84

biosurv

time (secs)

0 200 400
-7.08

-7.06

-7.04

-7.02

-7

covtype

time (secs)

0 500 1000 1500 2000

-5.78

-5.76

-5.74

-5.72

-5.7

connect4

time (secs)

0 200 400

-16

-15.5

-15

edsgc

time (secs)

0 200 400 600 800 1000

-6.7

-6.68

-6.66

-6.64

-6.62

synth2

time (secs)

0 200 400

-18

-16

-14

synth3

time (secs)

0 200 400

-18

-16

-14

synth4

time (secs)

0 200 400

-18

-16

nursery

time (secs)

0 500 1000 1500 2000

-9.735

-9.73

-9.725

letters

time (secs)

0 200 400 600 800 1000

-10.15

-10.1

-10.05

Figure 4. BDEU score per datapoint versus wall-clock time for hill-climbing (solid line) and three versions of Optimal Reinsertion
search (shown as dots, corresponding left-to-right with maxParams � 10, 50 and 100). This version of Optimal Reinsertion is not an
anytime algorithm which is why three dots are shown instead of three additional curves. Hill climbing was run for 3000 seconds on all
datasets, but in all cases there is no non-negligible change in BDEU score for Hill climbing after the time period shown on the graphs.
The timing for Optimal Reinsertion includes all the computation including the preprocessing, and the AD-search to generate the cached
NodeScores. A minimal vertical axis scale of 0.1 (corresponding to an average record probability change of about 10%) was used in all
cases except where the difference between AD-search and Hill climbing was too large for such a scale.

Data Set Num. Structures
adult 4�6�107

alarm 1�5�1015

biosurv 4�4�1010

connect4 7�6�1016

covtype 2�0�1015

edsgc 5�2�1010

synth2 4�1�1014

synth3 4�4�1014

synth4 3�9�1014

letters 1�7�108

nursery 2�5�105

Table 3. The number of DAG
structures maximized over dur-
ing the full Optimal Reinsertion
search. There are duplicate struc-
tures in this search but we nev-
ertheless know that billions of
unique structures are maximized
over during the majority of these
searches.

Dataset O. R. score HillClimb Winner
after 100 after 3000
seconds seconds

adult -11.094 -11.132 O. R.
alarm -10.839 -10.870 O. R.
biosurv -6.993 -7.012 O. R.
covtype -5.695 -5.714 O. R.
connect4 -14.975 -15.377 O. R.
edsgc �∞ -6.650 HC
synth2 -13.960 -16.847 O. R.
synth3 -13.993 -18.308 O. R.
synth4 -16.245 -18.588 O. R.
letters -10.030 -10.080 O. R.
nursery -9.720 -9.720 Tie

Table 4. How highly does 100 seconds of Optimal
Reinsertion search score in comparison with thirty
times the search time applied to hill climbing? In all
but two cases Optimal Reinsertion gives a better result
in one thirtieth the time. For the edsgc dataset, O. R.
had not finished within 100 seconds, and so was beaten
by default by hill climbing.

Data set Significant winner
on future data?

adult No significant winner
alarm Optimal Reinsertion
biosurv No significant winner
connect4 Optimal Reinsertion
covtype Optimal Reinsertion
edsgc Optimal Reinsertion
synth2 Optimal Reinsertion
synth3 Optimal Reinsertion
synth4 Optimal Reinsertion
letters No significant winner
nursery Hill Climbing

Table 5. Which algorithm (if any) is sig-
nificantly better at generalization to fu-
ture data, given 300 seconds of compu-
tation? This was measured by a paired
t-test at the 5% level on the results of 20-
fold cross-validation.



3.6. Assessing Statistical Benefits
The above results give empirical support to the assertion
that Optimal Reinsertion is faster and less local-minimum-
prone at optimizing DagScore. But does that matter? In
some applications it is the ability of the learned model to
generalize to likelihood estimation of future data drawn
from the same distribution that counts, and do the gains in
DagScore translate to gains in performance on such future
data? This question is not so much a test of our algorithm,
but of whether the structure scoring metric (in these tests,
BDEU) is doing its job adequately. Table 5 shows the re-
sults of 20-fold cross-validation. On each fold the left-out
data is unused until the DAG and the Bayes Net parame-
ters have been constructed from the training set. Then the
log-likelihood of each held-out data point is recorded. This
procedure is applied to both Optimal Reinsertion and Hill
climbing, which are each allowed 5 minutes of computa-
tion. Table 5 shows that frequently, Optimal Reinsertion
of BDEU has a significant generalization advantage (ac-
cording to a paired t-test) over hill climbing optimization
of BDEU.

3.7. Why is Hill-climbing beaten?
The synthetic cases provide the most obvious examples:
given the XOR nodes there is no benefit in adding any one
parent individually without the others and so hill-climbing
can make no meaningful progress. We hypothesize that
similar effects occur in some of the real datasets. The prob-
lems of single link removals and additions has been stud-
ied carefully in (Xiang et al., 1997). This Optimal Rein-
sertion implementation has an additional advantage over
hill-climbing: the use of ADSEARCH means that once the
cached node scores are computed there are no subsequent
operations that require time proportional to the number of
records.

3.8. Effects of maxParams and the Sparse Candidate k
The graphs in Figure 4 illustrate that as maxParams in-
creases, so does both the time and quality of the solution.
this is as expected. Additional results (not shown) illustrate
a similar effect for the number of Sparse Candidates, k. As
k grows we take longer and sometimes achieve better final
results.

4. Related Work
We now discuss how the algorithms of this paper in the
context of the most related recent work. We also discuss
possible future developments to Optimal Reinsertion.

The Sparse Candidate Algorithm (Friedman et al., 1999).
In its original form Sparse Candidate was a method to ac-
celerate Hill climbing at the risk of a slightly lower final
score. Empirically, the acceleration was large and the score

sacrifice small. We believe that a combination of Sparse
Candidate and Optimal Reinsertion will be superior to ei-
ther alone. Our current use of a primitive Sparse Candidate
approach (described in Section 2.7) could be generalized to
a properly adaptive approach which iteratively updates its
set of candidates.

Data Perturbation (Elidan et al., 2002). This very in-
teresting new algorithm reduces local minimum problems
very impressively by learning an initial net and then learn-
ing a second net with more weight given to records that
were poorly modeled by the original. This process iterates.
We believe this clever trick is orthogonal to Optimal Rein-
sertion and we believe that promising practical future work
would implement data perturbation with Optimal Reinser-
tion as the inner loop search over the weighted data.

Massive Datasets. For truly massive datasets, many re-
searchers have observed that working with a smaller sam-
ple may produce almost equal results compared with work-
ing with the full data. Several algorithms have been in-
troduced that do this adaptively, with the algorithm dy-
namically determining from the data what sample size
will be sufficient to very probably find a good answer,
e.g. (Kaelbling, 1990; Maron & Moore, 1993; Hulten &
Domingos, 2002; Pelleg & Moore, 2002). The most rele-
vant recent example is (Hulten & Domingos, 2002) which
learns Bayesian network structure from impressively mas-
sive datasets using adaptive sampling. For massive data
the sampling algorithm uses only a tiny fraction of the
full dataset with only moderate performance degradation in
comparison to hill climbing. In methods such as this which
work on small in-memory samples, it is possible that the
increased speed and accuracy of Optimal Reinsertion meth-
ods may help their speed and accuracy even further.

Multi-link lookahead. (Xiang et al., 1997) show that a
class of probabilistic domain models cannot be learned by
algorithms that modify the network structure by a single
link at a time. They propose a multi-link lookahead search
for finding decomposable Markov Networks. This algo-
rithm iterates over a number of levels where at level i, the
current network is continually modified by the best set of i
links until the entropy decrement fails to be significant. We
plan to evaluate Optimal Reinsertion against an equivalent
multi-link lookahead algorithm for Bayesian Networks.

Searching Equivalence Classes. There are other ap-
proaches to DAG learning. One which also searches the
equivalent of very many DAGs on each step is (Chicker-
ing, 1996b). This searches an underlying space of a sub-
class of partial DAGs. Evaluations in this space can also be
accelerated by a cache of scores obtainable from a fast enu-
meration of contingency tables, such as AD-search, but it
will require further work to discover whether the equivalent
of an Optimal Reinsertion operation exists.



Structural EM. A very important problem is to learn
Bayesian network structure in datasets where some at-
tributes of some records are missing. (Friedman, 1997) and
subsequent publications have pioneered an EM approach to
this problem. The EM approach requires repeated Bayesian
Network structure optimizations and we plan to apply Op-
timal Reinsertion to this application, as one which will ben-
efit greatly from the ability to do extremely fast search.

5. Conclusion
We have described and empirically examined a new search
operator for learning Bayesian Network structure from
fully observable data. The results are promising in com-
parison with hill-climbing and there is reason to believe
that Optimal Reinsertion could be combined with the work
of several other authors to eventually produce even faster
search.

Acknowledgements
Supported by DARPA award F30602-01-2-0569 and NSF
Grant 0121671. Thanks to Jeff Schneider and anonymous
reviewers for helpful comments and suggestions.

References

Beinlich, I. A., Suermondt, H. J., Chavez, R. M., & Cooper,
G. F. (1989). The alarm monitoring system: A case
study with two probabilistic inference techniques for be-
lief networks. Proc. Second European Conference on AI
and Medicine (pp. 247–256). Berlin: Springer-Verlag.

Blake, C., & Merz, C. (1998). UCI Repository of machine
learning databases. http://www.ics.uci.edu/
mlearn/
MLRepository.html.

Buntine, W. (1991). Theory Refinement on Bayesian Net-
works. Proceedings of the Seventh Conference on UAI
(pp. 52–60).

Chickering, D. M. (1996a). Learning Bayesian networks is
NP-Complete. In D. Fisher and H. Lenz (Eds.), Learning
from data: Artificial intelligence and statistics v, 121–
130. Springer-Verlag.

Chickering, D. M. (1996b). Learning equivalence classes
of Bayesian network structures. Proceedings of the
Twelfth Conference on UAI, Portland, OR (pp. 150–157).
Morgan Kaufmann.

Cooper, G., & Herskovits, E. (1992). A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9, 309–347.

Elidan, G., Ninio, M., Friedman, N., & Schuurmans, D.
(2002). Data perturbation for escaping local maxima in
learning. Proceedings of AAAI-02 (pp. 132–139).

Friedman, N. (1997). Learning belief networks in the pres-
ence of missing values and hidden variables. Proc. 14th
ICML (pp. 125–133). Morgan Kaufmann.

Friedman, N., & Goldszmidt, M. (1997). Sequential up-
date of Bayesian network structure. Proceedings of the
Thirteenth Conference on UAI (pp. 165–174).

Friedman, N., Nachman, I., & Peér, D. (1999). Learning
Bayesian network structure from massive datasets: The
“sparse candidate” algorithm. Proceedings of the Fif-
teenth Conference on UAI (pp. 206–215).

Heckerman, D., Geiger, D., & Chickering, D. M. (1995).
Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20,
197–243.

Hulten, G., & Domingos, P. (2002). Mining complex
models from arbitrarily large databases in constant time.
Proc. 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Kaelbling, L. P. (1990). Learning in Embedded Systems.
PhD. Thesis; Technical Report No. TR-90-04). Stanford
University, Department of Computer Science.

Maron, O., & Moore, A. (1993). Hoeffding Races: Ac-
celerating Model Selection Search for Classification and
Function Approximation. Advances in NIPS 6. Morgan
Kaufmann.

Moore, A. W., & Lee, M. S. (1998). Cached Sufficient
Statistics for Efficient Machine Learning with Large
Datasets. JAIR, 8, 67–91.

Moore, A. W., & Schneider, J. (2002). Real-valued All-
Dimensions search: Low-overhead rapid searching over
subsets of attributes. Conference on UAI (pp. 360–369).

Nichol, R. C., Collins, C. A., & Lumsden, S. L. (2000).
The Edinburgh/Durham Southern Galaxy Catalogue -
IX. The Galaxy Catalogue. http://xxx.lanl.gov/abs/astro-
ph/0008184.

Pelleg, D., & Moore, A. W. (2002). Using Tarjan’s Red
Rule for Fast Dependency Tree Construction. NIPS 15.
Morgan Kaufmann.

Schwartz, G. (1979). Estimating the dimensions of a
model. Annals of Statistics, 6, 461–464.

Xiang, Y., Wong, S., & Cercone, N. (1997). A microscopic
study of minimum entropy search in learning decompos-
able markov networks. Machine Learning, 26, 65–92.


