
Bayesian Biosurveillance of Disease Outbreaks

Gregory F. Cooper
RODS Laboratory

Center for Biomedical Informatics
University of Pittsburgh

gfc@cbmi.pitt.edu

Denver H. Dash
Intel Research

Santa Clara
denver.h.dash@intel.com

John D. Levander, Weng-Keen Wong, 
William R. Hogan, Michael M. Wagner

RODS Laboratory
Center for Biomedical Informatics

University of Pittsburgh

Abstract

Early, reliable detection of disease outbreaks is a 
critical problem today. This paper reports an 
investigation of the use of causal Bayesian 
networks to model spatio-temporal patterns of a 
non-contagious disease (respiratory anthrax 
infection) in a population of people. The number 
of parameters in such a network can become 
enormous, if not carefully managed. Also, 
inference needs to be performed in real time as 
population data stream in. We describe techniques 
we have applied to address both the modeling and 
inference challenges. A key contribution of this 
paper is the explication of assumptions and 
techniques that are sufficient to allow the scaling 
of Bayesian network modeling and inference to 
millions of nodes for real-time surveillance 
applications. The results reported here provide a 
proof-of-concept that Bayesian networks can 
serve as the foundation of a system that 
effectively performs Bayesian biosurveillance of 
disease outbreaks.

1   INTRODUCTION

Early, reliable detection of outbreaks of disease, whether 
natural (e.g., West Nile virus and SARS) or bioterrorist-
induced (e.g., anthrax and smallpox), is a critically 
important problem today. We need to detect outbreaks as 
early as possible in order to provide the best response and 
treatment, as well as improve the chances of identifying the 
source, whether natural or bioterroristic. An analysis of one 
bioagent release scenario estimated that as many as 30,000 
people per day could die. The induced long-term economic 
costs were estimated to be as high as 250 million dollars 
per hour of the outbreak (Kaufmann 1997, Wagner 2001). 
Early detection could dramatically reduce these losses. 

Outbreaks often present signals that are weak and noisy 
early in the event. If we hope to achieve rapid and reliable 
detection, it likely will be necessary to integrate multiple 
weak signals that together provide a relatively stronger 
signal of an outbreak. Combining spatial and temporal data 
is an important instance of such integration. For example, 

even though the number of patients in a given city with 
fever, who were seen in emergency departments in the past 
24 hours, may not be noticeably higher than average, 
nonetheless, for the past 12 hours it may be significantly 
higher for a given neighborhood of the city. 

Because of the noise in signals early in the event, early 
detection is almost always detection under uncertainty. In 
the research reported here, we use probability as a measure 
of uncertainty. A well-organized probabilistic approach 
allows for the rational combination of multiple, small 
indicators into a big-picture. Since the modeling of risk 
factors, diseases, and symptoms often is causal, we use 
causal Bayesian networks as our probabilistic modeling 
method. Bayesian networks comprise an established, 
unifying framework that is already recognized in the field 
of epidemiology (Greenland 2000) as a promising 
approach to epidemiological modeling, although to our 
knowledge there are no reports in the literature of Bayesian 
networks that have been applied to perform Bayesian 
biosurveillance.

This paper describes an approach in which a causal 
Bayesian network is used to model an entire population of 
people. We concentrate on modeling non-contagious 
outbreak diseases, such as airborne anthrax or West Nile 
encephalitis that is transmitted by mosquitoes. Modeling an 
entire population of people in just one city-wide area leads 
to a Bayesian network model with millions of nodes. For 
example, the model reported here contains approximately 
20 million nodes. Each individual in the population is 
represented by a 14-node subnetwork, which captures 
important syndromic information that is commonly 
available for health surveillance (such as emergency 
department chief complaints), while avoiding any 
information that could personally identify the individual 
(e.g., name, social security number, and home street 
address). 

Given current data about individuals in the population, we 
use a Bayesian network to infer the posterior probabilities 
of outbreak diseases in the population. To provide timely 
detection, inference needs to be performed in real time, 
such that the biosurveillance system “keeps up” with the 
data streaming in. Once the probability of an outbreak 
exceeds a particular threshold, an alert is generated by the 



Bayesian-network-based biosurveillance system; this alert 
can serve to warn public health officials

Using such a large Bayesian network presents both 
modeling and inference challenges. To help make 
modeling more tractable in terms of computational space, 
we use the following approach: if some groups of people 
are indistinguishable, according to the data being captured, 
we model them with a single subpopulation subnetwork. 
To speed up inference, we use a method that need only 
update the network state based on new information about 
an individual in the population (such as newly available 
clinical information, based on the person visiting an 
emergency department in seeking care).

A key contribution of this paper is the explication of 
assumptions and techniques that are sufficient to allow the 
scaling of Bayesian network modeling and inference to 
millions of nodes for real-time surveillance applications, 
thus providing a proof-of-concept that Bayesian networks 
can serve as the foundation of a system that effectively 
performs Bayesian biosurveillance of disease outbreaks. 
With this foundation in place, many extensions are 
possible, and we outline several of them in the final section 
of the paper.

In remainder of this paper, we first outline our general 
approach for using causal Bayesian networks to represent 
non-contagious diseases that can cause outbreaks of 
disease. Next, we introduce the specific network we have 
constructed to monitor for an outbreak caused by the 
outdoor release of anthrax spores. We then describe an 
experiment that involves injecting simulated cases of 
patients with anthrax (which were generated from a 
separate model) onto background data of real cases of 
patients who visited emergency departments during a 
period when there were no known outbreaks of disease 
occurring. We measure how long it takes the Bayesian 
network system to detect such simulated outbreaks. 
Finally, we discuss these results and suggest directions for 
future research.

2  METHODOLOGY

In this section, we present a methodology that is sufficient 
to allow explicit modeling of a large population of 
individuals in a real-time setting. In Section 2.1 we detail 
the modeling assumptions that we use, and in Section 2.2 
we show how those assumptions can be exploited to 
perform fast real-time inference.

2.1  MODELING

Our methodology uses Bayesian networks (BNs) to 
explicitly model an entire population of individuals. Since 
in this paper we are specifically interested in disease 
outbreak detection from syndromic information, we will 
refer to models of these individuals as person models, 
although obviously the same ideas could be applied to 
model other entities that might provide information about 

disease outbreaks, such as biosensors and livestock. From 
an object-oriented perspective, each person model can be 
viewed as a class; using a class to represent a particular 
person creates an object (Koller 1997).

We explicitly model each person in the population, and
thus in our BN there will exist (at least conceptually) an 
object Pi for each person. An example of a complete model 
for four people is shown in Figure 1, where each person in 
the population is represented with a simple six-node 
network structure. In this particular example, there is only 
one person model (class), but our methodology can allow 
for more. 

In this paper, we restrict our methodology to model non-
contagious diseases. We partition all the nodes X in the 
network into three parts: 

1. A set of global nodes G, 
2. A set of interface nodes, I, and 
3. A set of person  subnetworks P = {P1,P2,…,Pn}.

The set G, defined as G = X\{IP}, contains nodes that 
represent global features common to all people. For the 
example in Figure 1, G consists of two nodes: Terror Alert 
Level (having states Green, White, Yellow, Orange, and 
Red), and Anthrax Release (having states Yes and No). Set 
I contains factors that directly influence the status of the 
outbreak of disease in people in the population. Each Pi

subnetwork (object) represents a person in the population.

Structurally, we make the following two assumptions.

Assumption 1: The interface nodes, I, d-separate the 
person subnetworks from each other, and any arc between 
a node I in I and a node X in some person subnetwork Pi is 
oriented from I to X.

Thus, we do not allow arcs between the person models. 

Assumption 2: The interface nodes, I, d-separate the nodes 
in G from the nodes in P, and any arc between a node G in 
G and a node I in I is oriented from G to I.

Figure 2 presents the above two assumptions in 
diagramatic form. 

For non-contagious diseases that may cause outbreaks, 
Assumptions 1 and 2 are reasonable when I contains all of
the factors that significantly influence the status of an
outbreak disease in individuals in the population. In the 
case of bioterrorist-released bioagents, for example, such 
information includes the time and place of release of the 
agent. Key characteristics of nodes in I are that they have 
arcs to the nodes in one or more person models, and they 
induce the conditional independence relationships 
described in Assumptions 1 and 2. Often the variables in I
will be unmeasured. It is legitimate, however, to have 
measured variables in I. For example, the regional smog 
level (not shown in Figure 1) might be a measured variable 
that influences the disease status of people in the 
population, and thus it would be located in I.



Let T be a variable in G that represents a disease outbreak. 
In Figure 1, T is the node Anthrax Release. The goal of our 
biosurveillance method is to continually derive an updated 
posterior probability over the states of T as data about the 
population streams in.

We consider spatio-temporal data in deriving the posterior 
probability of T. For example, we consider information 
about when patient cases appear at the emergency 
department (ED), as well as the home location (at the level 

of zip codes) of those patients. In our current 
implementation, spatio-temporal information is explicitly 
represented by nodes in the network, such as Location of 
Release, Time of Release, and patient Home Zip. We note 
that in Figure 1, the Disease Status nodes contain values 
that indicate when the disease started (if ever) and ended. 
This temporal representation has the advantage (over, for 
example, dynamic Bayesian networks (DBNs)) of being 
relatively compact. The method allows us to create a 
network with fewer parameters than the corresponding 
DBN, and simplifies our method for performing real-time 
inference.

2.2  INFERENCE

When performing inference for biosurveillance, our goal is 
to continuously monitor target variable T by deriving its 
updated posterior probability as new data arrives. At any 
given time, there are two general sources of evidence we 
consider:

1. General evidence at the global level: 
g = { G = g: G  G}, and 

2. The collective set of evidence e that we observe 
from the population of people: e = {X = e: X  Pi, 
Pi  P}.

In our application, g might consist of the observation that 
the Terror Alert Level = Orange, and e might include 
information about the patients who have visited EDs in the 
region in recent days, as well as demographic information 
(e.g., age, gender, and home zip code) for the people in the 
region who have not recently visited the ED. 

Given e and g, our goal is to calculate the following:

   )|(),|(),|( ggege TPTPkTP  ,                          (1)

G I

P1

Pn

Figure 2: The closed regions represent Bayesian 
subnetworks. The circles on the edges of the 
subnetworks denote nodes that are connected by arcs 
that bridge the subnetworks. Only two such “I/O” 
nodes are shown per subnetwork, but in general there 
could be any number. The arrows between 
subnetworks show the direction in which the 
Bayesian-network arcs are oriented between the 
subnetworks. The braces show which nodes can 
(possibly) be connected by arcs. In subnetwork  I, the 
I/O nodes on the left and those on the right are not 
necessarily distinct.
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Figure 1: A simplified four-person model for detecting an outbreak of anthrax. Each person Pi in the population is 
represented explicitly by a six-node subnetwork. Observed variables are marked with a ground symbol.



where the proportionality constant is 

 
T

TPTPk )|(),|(1 gge .

Since T and g are in G, it follows from Assumptions 1 and
2 that the term P(T | g) in Equation 1 can be calculated 
using Bayesian network inference on just the portion of the 
model that includes G. Performing BN inference over just 
the nodes in G is much preferable to inference over all the 
nodes in X, because in the model we evaluated the number 
of nodes in X is approximately 107.

The term P(e | T, g) in Equation 1 can be derived as 
follows:

because by Assumption 2 the set I renders the nodes in P
(including e) independent from the nodes in G (including T
and g). The above summation can be very demanding 
computationally, because e usually contains many nodes; 
therefore, we next discuss its computation in greater detail.

We first show an example from Figure 1. Here we are 
modeling exactly four people in the population. The two on 
the left have identical attributes, as do the two on the right. 
We want to calculate the probability of this configuration 
of evidence, given the interface nodes. For this example, 
we have two distinct sets of evidence, e1 = {Home 
Zip=15213, Age=20-30, Gender=M, Date 
Admitted=never1, Respiratory symptoms=unknown} and e2

= {Home Zip=15260, Age=20-30, Gender=F, Date 
Admitted=today, Respiratory symptoms=yes}. We need to 
calculate:

     )|,,,()|( 24231211 IePePePePIe  PP .

By Assumption 1, I d-separates each person model from 
each other, so this equation can be factored as follows:
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It follows from Assumptions 1 and 2 that we can derive 
each quantity )|( iIeP  jiP  via BN inference using just 

the model fragment defined over the set of nodes in Pi  I. 
However, this quantity must be calculated for all 
configurations I = i of the interface nodes. Performing this 
calculation for each of millions of person models would be 
infeasible within the time limits required for real-time 
biosurveillance. We could cache these conditional 
probability tables so that at run-time they amount to a 
constant-time table lookup. This technique is problematic, 
however, because it requires caching of a conditional 
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“Never” means the person is in the population at large and has not 
recently been admitted to the ED.

probability table for all configurations of I and for all 
possible states of evidence ei. Such a table would be 
infeasibly large. As described in the next two sections, we 
use two techniques to deal with the large size of the 
inference problem: Equivalence Classes and Incremental 
Updating. Using Equivalence Classes saves both space and 
reduces inference time. Using Incremental Updating also 
reduces inference time, often dramatically so.

2.2.1  Equivalence Classes

If some person subnetworks are identical in structure and 
parameters, and they are instantiated to the same evidence, 
then fewer calls to the inference engine are needed. 
Equation 2 can be written as: 

    2
23

2
11 )|()|()|( IePIePIe  PPP .

We define an equivalence class j
iQ  as a pair 

 ji
j

iQ eP , , where Pi is a person model and ej is a 

(possibly incomplete) set of evidence over the variables in 
Pi.

2 A given evidence state e for the entire population 
corresponds to a unique set   of equivalence classes and 
the instance count of each class. Using this set, the general 
expression for the quantity P(e | I) is as follows:

                   



j

i

ij

Q

N
jjPP )|()|( IeEIe ,                (3)

where Nij is the instance count of equivalence class j
iQ ,

that is, it is the number of people for whom we model with 
person model  Pi and for which the evidence is Ej = ej. 

If the person model is relatively simple, then there could be 
many fewer equivalence classes than there are members in 
the population. For our example, since all person models 
are identical, the number of equivalence classes is equal to 
the number of possible ways to instantiate the variables of 
the person model (including not observing the state). In 
this case, we would have at most (101 zip codes)  (2 
genders)  (10 age ranges)  (4 relative dates of admission) 
 (3 respiratory states) = 24,240 states. In practice, the 
actual number of equivalence classes present at any one 
time would probably be smaller, since rarer equivalence 
classes may not appear.

In previous work, object-oriented Bayesian networks 
(Koller 1997) and related work (Srinivas 1994; Xiang 
1999) have been used to improve the efficiency of BN 
inference. The method we have described in this section 
takes advantage of those computational savings, as well as 
the savings that accrue from performing inference only 
once for objects of a given class that share the same 
evidence.
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We abuse notation somewhat by using Pi here to denote a class, whereas 
previously it has been used to denote an object.
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2.2.2  Incremental Updating

When we apply this technique to a population of millions 
of people, calculating P(e | I) will be a time-consuming 
task, even with the savings that results from using 
equivalence classes. Since we would like to perform this 
calculation very frequently (e.g., every hour as ED patients 
are coming into EDs throughout the modeled region), it is 
important to avoid re-calculating P(e | I) for the entire 
population every hour. To do so, we use the fact that as a 

single person moves from one equivalence class j
iQ  to 

another k
iQ , P(e | I) can be updated to P(e | I) as follows: 
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When biosurveillance monitoring is begun, the set of 
evidence e represents background information about the 
population. Currently, as background information, we use 
U.S. Census information to provide the age, gender, and 
home zip code for the people in the region being monitored 
for disease outbreaks. 

After P(e | I) is calculated once for the entire population, 
we can apply Equation 4 and update this quantity 
incrementally as we observe people enter the ED in real-
time. As we observe a person from equivalence class 

k
iQ enter the ED, we find the class j

iQ that this person 

must have originated from in the background population. 
For example, if we observe a patient in the ED with the 

following attributes: k
iQ ={Home Zip=15260, Age=20-30, 

Gender=F, Date Admitted=today, Respiratory symptoms
=yes}, then we know that she originated from the 

background class j
iQ = {Home Zip=15260, Age=20-30, 

Gender=F, Date Admitted=never, Respiratory symptoms
=unknown}.

Applying the incremental updating rule allows us to reduce 
the number of updates that need to be processed each hour 
to dozens (= rate of patient visits to all the EDs in the 
region) rather than the millions (= the number of people in 
the regional population). 

By caching equivalence-classes and applying incremental 
updating, we can process an hour’s worth of ED patient 
cases (about 26 cases) from a region of 1.4 million people 
in only 11 seconds using a standard Pentium III PC and the 
Hugin BN inference engine v6.2 (Hugin 2004). Thus, there 
is enough computing reserve to “keep ahead” of the real 
time data, even when in the future we extend our model to 
be considerably richer in detail, and we widen the 
geographic region being monitored for a disease outbreak.

3  EMPIRICAL EVALUATION

This section describes the detection model that we 
evaluated. The model represents a preliminary prototype 

for use in detecting disease outbreaks that would result 
from outside, airborne release of anthrax spores. The 
model plus the inference algorithms constitute a Bayesian 
biosurveillance system that we call PANDA (Population-
wide ANomaly Detection and Assessment). We conclude 
this section with a description of the method we used to 
evaluate PANDA, as well as the results of that evaluation.

3.1  MODEL FOR OUTBREAK DETECTION

In our empirical tests we use a model similar to the 
example model shown in Figure 1, with two primary 
differences: (1) we do not use the Terror Alert Level node, 
and (2) we use a more complex person model. Figure 3 
shows the person model we use. The meanings of the 
nodes are as follows:3

 Time of Release: This is the day that anthrax was 
released, if ever. It has the states never, today, 
yesterday, and day before yesterday.

 Location of Release: This is the location at which the 
anthrax was released, if released anywhere. It has the 
states: nowhere, and one state for each of about 100  
zip codes being covered by the model. In the current 
model, we assume only a single point of release.

 Home Zip: This node represents the location of the 
person’s home zip code;  it can take on one of about 
100 zip codes in Allegheny county, Pennsylvania, 
which is the region being modeled. There is currently 
a “catch-all” zip code called other that represents 
patients who do not live in Allegheny county, but who 
are seen in EDs there. 

 Age Decile: This node represents the individual’s age, 
which can take one of 9 values: 0, 1…8 corresponding 
to (0-10 years), (10-20 years), …, (>80 years), 
respectively.

 Gender: This represents the gender of the individual, 
taking values female and male.

 Anthrax Infection: This node represents whether or not 
the individual has been infected with a respiratory 
anthrax infection within the past 72 hours. This node 
takes states: AAA (indicating that anthrax was absent 
for the past 3 days), AAI (indicating that within the 
past 24 hours the patient was infected with anthrax), 
AII (indicating that the patient was infected with 
anthrax between 24 and 48 hours ago and is still 
infected today), and finally, III (indicating that the 
patient was infected between 48 and 72 hours ago and 
continues to be infected today). There are in principle 
4 other states that this node could have (IAA, IIA, IAI, 
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For each variable that is underlined, its conditional probability table was 
estimated from a training set consisting of one year’s worth of ED patient 
data from the year 2000. The variables in bold were estimated from U.S. 
Census data about the region. The remaining variables had their 
respective probabilities (whether prior or conditional) assessed 
subjectively; these assessments were informed by the literature and by 
general knowledge about infectious diseases.



and AIA), however, we make the assumption that once 
a person gets anthrax, he or she maintains the disease 
for at least 3 days, so these other states have 
probability 0. In a future work, we plan to extend the 
Anthrax Infection variable (as well as other temporal 
variables described here) to model over more than 
three days.

 Other ED Disease: This variable is conceptually 
similar to Anthrax Infection, but it denotes instead 
some other disease or disorder, which by definition is 
sufficient to cause the individual to go into the ED, but 
is not anthrax. This node has the same type of states as 
Anthrax Infection. 

 Respiratory from Anthrax: Indicates that the individual 
is showing respiratory symptoms (e.g., cough) due to 
anthrax. It has states similar to those of Anthrax 
Infection.

 Respiratory from Other: Respiratory symptoms from 
ED disease other than anthrax. 

 Respiratory Symptoms: Node indicating whether or 
not the patient exhibits respiratory symptoms. It is a 
“logical OR” function of Respiratory from Anthrax
and Respiratory from Other.

 Respiratory when Admit: This node represents whether 
the person has respiratory symptoms at the present 
time. If the person has been admitted to the ED today, 
then we typically know the answer, otherwise we do 
not. This node has states True, False, and Unknown.

 ED Admit from Anthrax:  Indicates that the person was 
admitted to the ED due an anthrax infection.

 ED Admit from Other: Indicates that the person was 
admitted to the ED due to a disease other than anthrax.

 ED Admission: Indicates the day (if any) that the 
person was admitted to the ED within the past 72 

hours. It is a “logical OR” function of ED Admit from
Anthrax and ED Admission from Other. We currently 
do not model the possibility that a person could be 
admitted more than once. To do so, the de-identified 
data that we receive on each patient could be extended 
to include a unique integer for the patient that does not 
reveal the patient’s personal identity.

We emphasize that the current model is an initial 
prototype, which we intend to refine further.

3.2  SIMULATION MODEL

We evaluated the performance of PANDA on data sets 
produced by injecting simulated ED cases into a 
background of actual ED cases obtained from several 
hospitals in Allegheny county. In accordance with HIPAA 
regulations, all personal identifying information was 
removed from these actual ED cases. The simulated cases 
of anthrax were produced by a simulator (Hogan 2004) that 
models the effects of an airborne anthrax release using an 
independently developed Gaussian plume model of 
atmospheric dispersion of anthrax spores (Hanna 1982).

Given weather conditions and parameters for the location, 
height, and amount of the airborne anthrax release, the 
Gaussian plume model derives the concentration of anthrax 
spores that are estimated to exist in each zip code, which in 
turn determines the severity of the outbreak for that zip 
code. The output from the simulator consists of a list of 
anthrax cases, where each case consists of a date-time field 
and a zip code. The full details of the model are in (Hogan 
2004). For our experiments, we selected historical 
meteorological conditions (e.g., wind direction and speed) 
for Allegheny county from a random date as the 
meteorological input to the simulator. The height of the 
simulated release is sampled from a prior distribution, 
created using expert judgment (Hogan 2004). This 
distribution is skewed towards heights less than 1500 feet. 

Figure 3: The person model used in the evaluation. We used Hugin 
software (Hugin 2004) to implement and display this model.



Finally, the release locations are sampled from a prior 
distribution which favors release locations that would 
affect large numbers of people given the current 
meteorological conditions (Hogan 2004). 

The output of the simulator cannot be used directly by 
PANDA because a full evidence vector for a case includes
information about the patient’s age and gender. As a result, 
we  took the partially complete patient cases produced by 
the simulator and probabilistically assigned the age and 
gender fields using the person-model Bayesian network. 
The age of the patient is sampled from the conditional 
distribution of age given the home zip of the patient and 
given the fact that the patient had respiratory symptoms 
when admitted. We use a similar procedure for 
determining the gender.

The anthrax-release simulator that we used generally 
generates multiple down-wind cases of anthrax that span 
several zip codes. The simulator also includes a minimum 
incubation period of 24 hours after the release during 
which no cases of anthrax are generated. Beyond that 
minimum period, the incubation period varies, with greater 
airborne concentrations of anthrax leading to a shorter 
incubation period, in general, than lesser concentrations.

In order to evaluate the detection capability of PANDA, we 
generated data sets corresponding to simulated releases of 
anthrax of the following amounts: 1.0, 0.5, 0.25 and 
0.125.4 For each release amount, we create 96 data sets, 
each with a unique release location. For each month in 
2002, we choose 8 random release dates and times to use 
with the simulator, thus producing a total of 96 different 
anthrax-release data sets. We used only 91 data sets for the 
0.125 concentration because five of the data sets generated 
had no reported anthrax cases. PANDA was applied to 
monitor the data from each data set, starting on midnight of 
January 4, 2001 and extending through to six days after the 
simulated anthrax release occurred.

We measured the performance of PANDA using an 
AMOC curve (Fawcett 1999), which plots time to 
detection as a function of false alarms per week. The points 
on the AMOC curve are generated by determining the false 
positive rate (0 to 1) and detection time of the algorithm 
over a range of alarm thresholds, where an alarm is 
considered to be raised if the posterior probability of an 
Anthrax Release exceeds the given alarm threshold. Since 
no known releases of anthrax have ever occurred in the 
region under study, the false positive rate was measured by 
determining the fraction of monitored hours that the release 
probability exceeded the alarm threshold under 
consideration for the period starting on January 4, 2001 
and continuing until 24 hours after the simulated release 
date for the particular data set. In order to measure the 
timeliness of detection, we counted the number of hours 
that passed between the time of the simulated anthrax 
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The units of concentration are not reported here in order to avoid 
providing results that could pose some degree of security risk.

release and the time that the first anthrax-outbreak 
posterior probability (produced by PANDA) exceeded the
alarm threshold. If no alarms are raised after the simulated 
release point, the detection time is set to be 144 hours.

3.3 RESULTS

Figure 4 illustrates the AMOC curve for PANDA over the 
four anthrax concentrations. Since the incubation period of 
the simulation is set at a minimum of 24 hours, the earliest 
possible detection time is shown with a dotted line at the 
24 hour mark. As expected, the detection time decreases as 
the simulated release amount increases, since a larger 
release is more easily detected. In particular, at zero false 
positives, the detection time is approximately 132, 84, 58, 
and 46 hours for respective simulated release 
concentrations of 0.125, 0.25, 0.5 and 1.0. The maximum 
width of the 95% confidence intervals for the detection 
times at concentrations of 0.125, 0.25, 0.5 and 1.0 are +/-
5.21, 4.00, 2.67 and 1.68 hours, respectively. 
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Figure 4: An AMOC curve showing the detection 
capabilities of PANDA over different anthrax 
concentrations.

The majority of false positives with release probabilities 
over 50% occurred during a 10-hour period from January 
20, 2002, 11:00 pm to January 21, 2002, 9:00 am and also 
during a 17-hour period from midnight August 18, 2002 to 
August 19, 2002, 5:00 pm. 

We note that the model parameters were based in part on 
data from the year 2000, whereas the evaluation was based 
on using test data from 2002. So, some false positives may 
have been due to a lack of synchronization between the 
model and the test data. When tested on data from the year 
2001, there were no false alarms above the 50% level.

3.4  INCORPORATING THE SPATIAL 
DISTRIBUTION OF CASES INTO THE MODEL

In this section, we describe changes to the PANDA model 
to account for the situation in which an anthrax release 
infects people in more than one zip code. In particular, we 
added a new interface node, called angle of release, which 
describes the orientation of the airborne anthrax release 



and takes on the eight possible values of N, NE, E, SE, S, 
SW, W, or NW, as shown in Figure 5. Figure 6 depicts the 
modified person model. For computational reasons, we 
also decomposed the previous anthrax infection node into 
an exposed to anthrax node and a new anthrax infection
node.  In addition, three nodes were added to the person 
model to account for variations due to the day of week, the 
season, and the time of day.  We will refer to this modified 
version of PANDA as the spatial model and the previous 
version will be referred to as the non-spatial model.

Figure 5: The rotating rectangular regions centered at (for 
example) the centroid of zip code 15213 that are used to 
determine if a person is exposed to anthrax.

The exposed to anthrax node represents the probability that 
the person is exposed to anthrax during a release, given the 
zip code of the home location of the person, the location of 
the release, and the angle of the release. The spatial model 
assigns a probability of 1.0 for exposed to anthrax to 

anyone who has the same home zip code as the zip code of 
the hypothesized anthrax release, regardless of the angle of 
release. For people outside of the release zip code, we 
consider them to be potentially exposed to anthrax if their 
home zip code is within a rectangular region that originates 
at the centroid of the hypothesized release zip code and is 
rotated according to the angle of the release variable. As an 
example, suppose the release occurs in 15213. The two 
dots in Figure 5 represent zip code centroids. There are 8 
rectangular regions centered at the centroid of zip code 
15213. If a person has a home zip in 15132, and the angle 
of release is SE, then we would consider that person to be 
potentially exposed to anthrax. The actual probability of 
being exposed to anthrax is computed by decaying the 
value 1.0 by a half for every 3 miles of distance between 
the release zip code’s centroid  and the person’s home zip 
code centroid. The distance of 3 miles was obtained by 
tuning the model over data sets produced by the simulator; 
these datasets were distinct from the ones we used to 
evaluate PANDA. The width of the rectangle is set to be 
approximately 3 miles, which was chosen by calculating 
the average area per zip code in Allegheny county, 
determining the diameter of a circle with this average area, 
and then assigning that diameter as the width. The length 
of the rectangle is assumed to extend to infinity, as shown 
by the arrows in Figure 5.

We evaluated the spatial model over the 96 simulated data 
sets for the 1.0 concentration that were previously used. 
The false positive rate was measured over the period of 
January 1, 2002 until 24 hours after the start of the 
simulated release for the particular data set. The results are 

Figure 6: The person model modified to incorporate spatial information



shown in Figure 7, and they indicate that the spatial model 
improves the detection time significantly. The largest 
difference in detection time is approximately 9.6 hours. 
The maximum widths of the 95% confidence intervals for 
the spatial and non-spatial model results are +/- 1.68 and 
1.64 hours, respectively.
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Figure 7: An AMOC curve comparing the spatial model 
results with those from the non-spatial model

4  RELATED RESEARCH

This section provides a representative sample of the 
spectrum of biosurveillance approaches that have been 
reported in the literature. For a more comprehensive and 
detailed survey, see (Moore 2003) and (Wong, 2004). The 
most studied and applied techniques are univariate 
detection algorithms based on time-series models or 
regression. These algorithms include the Serfling method  
(Serfling 1963, Tsui 2001), ARIMA model (Hamilton 
1994, Reis 2003), univariate hidden Markov (HMM) 
models (Rabiner 1989),  the Kalman filter (Hamilton 
1994), and change-point statistics (Carlstein 1988). 
Another large group of detection algorithms are based on 
the field of statistical quality  control, including techniques 
such as CuSum (Hutwagner, 2003) and EWMA 
(Williamson 1999). All of these algorithms monitor a 
single variable, such as the rate of patient visits to 
emergency departments, looking for values of the variable 
that are significantly abnormal. The time-series algorithms 
differ from each other in how they define and detect what 
is abnormal.

Methods that monitor the spatial dimension are rarer. The 
most prominent method is the Spatial Scan algorithm 
(Kulldorf 1997), which searches over a region, looking for 
subregions that appear abnormal along some single 
dimension (e.g., disease counts), relative to the remaining 
regions. Recent work has improved the speed of the Spatial 
Scan method using a multi-resolution algorithm (Neill 
2003) as well as generalized it to include a time dimension 
(Kulldorff 2001).

WSARE (Wong 2003) and BCD (Buckeridge 2004) are 
two multivariate methods that take as input both spatial 

data (e.g., patient zip codes) and temporal data (e.g., the 
time at which patients visit the emergency department), as 
well as patient features, such as age, gender, and 
symptoms. WSARE uses rules to represent anomalies, and 
it searches over the rule space in an efficient and 
statistically sound manner. BCD monitors in a frequentist 
manner whether a Bayesian network learned from past data 
(during a "safe" training period) appears to have a 
distribution that differs from the distribution of more recent 
data. If so, an anomaly may have occurred.

All of the approaches mentioned above use frequentist 
statistics -- none are Bayesian. The current paper is novel 
in introducing, implementing, and evaluating a spatio-
temporal, multivariate Bayesian approach to 
biosurveillance.

5  SUMMARY AND FUTURE WORK

This paper introduced a biosurveillance method that uses 
causal Bayesian networks to model non-contagious 
diseases in a population. By making two independence 
assumptions in the model, both of which appear plausible, 
and by performing inference using equivalence classes and 
incremental updating, it is possible to achieve tractable 
Bayesian biosurveillance in a region with 1.4 million 
people. We implemented and evaluated an outbreak 
detection system called PANDA. Overall, the run time 
results and the detection performance of this initial 
evaluation are encouraging, although additional studies are 
needed and are in process.

There are several straightforward extensions to PANDA 
that we plan to implement in the near term, including (1) 
increasing the number of days being modeled, (2) 
modeling on an hourly basis, rather than a daily one, and 
(3) adding nodes for prevailing wind direction and wind 
speed to the model. We also plan to incorporate into the 
model a set of variables that represent the amount of over 
the counter (OTC) medication sales of a particular type 
(e.g., cough medication sales) per subregion (e.g., zip 
code) per day. In future work, we will extend the BN 
model to represent additional non-contagious outbreak 
diseases, as well as non-outbreak diseases that might be 
easily confused with outbreak diseases. We also intend to 
investigate models of contagious diseases, which will be 
more complex, because there is much less independence in 
these models. Developing inference algorithms that are fast 
enough to permit real-time biosurveillance of contagious 
diseases will be challenging. Thus, we expect eventually to 
need to use approximate inference algorithms. Finally, 
throughout this work, we plan to perform extensive testing 
of the run time and detection performance of Bayesian 
detection algorithms and then compare those results to the 
detection performance of other methods.
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