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ABSTRACT

Introduction: Emergency Department (ED) records and over-the-counter (OTC) sales data are 

two of the most commonly used data sources for syndromic surveillance.  Most current detection 

algorithms monitor these data sources separately, and either do not combine them, or combine 

them in an ad hoc fashion.  This paper introduces a causal model that coherently combines the 

two data sources in order to perform outbreak detection.

Objectives: This paper presents a Bayesian biosurveillance algorithm called PANDA that 

combines information from multiple data streams.  We describe the model, along with an 

explication of assumptions and techniques used to make this approach scalable for real-time 

surveillance of a large population.

Methods: We extend the causal Bayesian network model used in (1) to incorporate evidence 

from daily OTC sales data.  We model, at the level of individual people, the actions that result in 

the purchase of OTC products, as well as admission to an ED.

Results: The aim of this paper is to describe a detection model for monitoring both ED and OTC 

data.  This paper provides preliminary support that despite the complexities of this model, the 

running time is tractable.



Conclusion: This paper introduces a new Bayesian biosurveillance algorithm that models the 

interaction between ED and OTC data.  It also provides preliminary results that are positive 

regarding the run time of the algorithm.

1   INTRODUCTION

Two data sources that are routinely monitored by syndromic surveillance systems are 

over-the-counter (OTC) medication sales and Emergency Department (ED) chief complaint 

records (2; 3).  If a disease outbreak occurs in a region, we often expect its effects to be seen in 

both these data sources (4; 5).  Even though ED and OTC data sources contain the signal of an 

outbreak, detection algorithms usually monitor each type of data separately.  This independent 

analysis limits the detection capabilities of a surveillance system.

In order to illustrate this point, consider the characteristics of OTC data.  The signal of an 

outbreak is often expected to appear first in OTC medication sales then in ED data (4).  The 

notion is that individuals with the initial symptoms of the disease will typically attempt to treat 

themselves before seeking medical care (6-8).  While the early signal in OTC data is appealing, 

this signal will be weak.  In addition, OTC data is often reported as a univariate time series, in 

which the daily regional sales volume for a particular category of product (e.g., sales of cough 

medications) is recorded each day.  This univariate time series consists of data aggregated over 

time. Case-level data about each sales transaction are not available.  If such a level of detail were 

available, we could apply a multivariate detection algorithm and potentially exploit the 

additional information about each transaction to improve our detection capability.

In contrast to OTC data, ED chief complaint data does contain case-level information 

about each patient admitted.  Details that are typically recorded include admission date and time, 



age, gender, home zip code, and chief complaint.  Using this data, we can improve a detection 

algorithm’s capability by specifically looking for known spatial, temporal, demographic and 

symptomatic patterns of the disease in the data.  However, as was previously mentioned, we 

expect the signal of an outbreak to often appear later in ED data than in OTC data.

One way to combine the advantages of both types of data is to develop a detection 

algorithm that integrates the data sources.  If both data sources are being jointly monitored, then 

the combined information could reinforce our belief that an outbreak is happening. The key 

difficulty with this data fusion approach is in measuring the relationship between the data 

sources when an outbreak occurs.  The correlation between OTC and ED data during outbreak 

conditions cannot be learned because no training data exists that captures the effects of a large-

scale epidemic on these data sources during the same time period.  Most existing data fusion 

approaches (9-11) treat the data sources as if they are independent.  Although training data do

not exist, we do have some background knowledge about the plausible relationship between 

OTC and ED data for a given disease.  Our approach to combining multiple data streams relies 

on using this background knowledge to model the actions of individuals that result in possible

OTC medication purchases and ED admissions.

This paper extends the Population-wide Anomaly Detection and Assessment (PANDA) 

algorithm (1), which uses a causal Bayesian network to model an entire population of people.  In 

the original PANDA model, the algorithm was designed to monitor only ED chief complaint 

data. In this paper, we enhance PANDA to simultaneously monitor data sources of different 

granularity – specifically aggregated regional counts for OTC sales and multivariate ED records 

for individual patients.  Although the Bayesian network presented in (1) can be used to model the 

effects of any non-contagious disease outbreak in a geographic area, we will focus on detecting 



an outdoor, aerosolized release of an anthrax-like agent within a county-wide region being 

monitored.

2   METHODS

The key aspect of the PANDA algorithm is the explicit modeling of each individual in 

the population as a subnetwork of the overall causal Bayesian network.  We will refer to models 

of these individuals as person models, although these models could be generalized to entities that 

provide information about disease outbreaks, such as biosensors and livestock.  The advantage of 

modeling each individual in the population is to allow the algorithm to have a great deal of 

representational power and representational flexibility.  By having a subnetwork for each 

individual, we can coherently represent different types of background knowledge in the model.  

For instance, with an aerosolized anthrax release, we can build into the model our temporal 

assumption about the incubation time of anthrax as well as our spatial assumption that the release 

will take the shape of a downwind plume (12; 13).  Besides the power in representing prior 

knowledge, modeling the entire population allows the model to combine spatial, temporal, 

demographic, and symptomatic evidence to derive a posterior probability of a disease outbreak.  

As for representational flexibility, the individual modeling allows new types of knowledge and 

evidence to be readily incorporated into the model.  As an example, if we gain access to 

radiology reports for a group of individuals, and we find that radiology reports are especially 

useful indicators of an anthrax attack, we can then easily add this new evidential variable to the 

model.  Finally, most of the background knowledge of the characteristics of respiratory anthrax 

disease is at an individual rather than population level.



2.1 The Generic Model

Figure 1 illustrates the causal Bayesian network that we use to detect an outbreak caused by an 

aerosolized release of an anthrax-like bio-agent.  This network is an instantiation of a generic 

model for infectious but non-contagious diseases.  We will first present the generic model, using 

the network in Figure 1 as an example.  Then, we will present the details of the specific model in 

Figure 1.  We can partition the nodes X of the generic model into four parts:

1. A set of global nodes G contains the nodes which are global features common to all 

people.  Included in the set G is the target node T, which indicates the occurrence of a 

disease outbreak.  By monitoring the state of T, we can derive an updated posterior 

probability that a disease outbreak is occurring.  In Figure 1, the target node T is Anthrax 

Release, which also happens to be the only node in G.  The set G could include other 

Figure 1: The anthrax model used by PANDA



variables such as the national terror alert level or information about local events such as 

major sports events or political conventions.

2. A set of interface nodes I, illustrated by Time of Release and Location of Release in

Figure 1.  For the purposes of simplicity, we only include these two nodes to the specific 

model.  We plan to refine our model by adding other nodes to the interface layer such as 

the amount of release, the type of anthrax powder, and meteorological information.

3. A set of person models P = {P1,P2,…,Pn}, one for each person.  Evidence observed on an 

individual basis will be entered at the person model level.

4. A set of population-wide evidence nodes O = {O1, O2,…,Om}.  The set O represents 

evidence that is aggregated over a particular group of people, such as a group living in a 

particular geographic region.  In the specific model, the set O consists of the aggregate 

OTC sales of a particular type (e.g., cough medication sales) over a particular zip code.

The generic model makes three assumptions that are intended to facilitate inference on T.  These 

assumptions are:

Assumption 1: I|i-i PP i, and any arc between a node I in I and a node X in some person 

model Pi is oriented from I to X. The symbol  means “is independent of” and the notation i-P

means all person models except iP .  The fact that we do not condition on the population-wide 

evidence in O in this assumption may seem counter-intuitive, but as we will describe in Section 

3, we do not use the evidence in O when we calculate the contribution of the evidence in P to the 

posterior probability. 



Assumption 2:  I|PG   and any arc between a node G in G and a node I in I is oriented from 

G to I.

Assumption 3: The person models Pi contain arcs that are oriented towards the population-wide 

evidence nodes in O.

Thus, from Assumptions 1 to 3, we do not allow arcs directly between the person models.  For 

non-contagious diseases that may cause outbreaks, Assumptions 1 to 3 are reasonable when I

contains all of the factors that significantly influence the status of an outbreak disease in 

individuals in the population. In the case of bioterrorist-released bio-agents, for example, such 

information includes the time and location of release of the agent.  A key characteristic of nodes 

in I is that they have arcs to the nodes in one or more person models, and they induce the 

conditional independence relationships described in Assumptions 1 and 2.  On the other hand, for 

contagious diseases, which are not the topic of the current paper, arcs will be needed between 

person models, since people can infect each other.  Once Assumptions 1 to 3 no longer hold, 

inference becomes much more computationally expensive and we cannot perform the 

optimizations described in later sections that allow PANDA to run efficiently.

  

2.2 The Anthrax Model

In this prototype model, we make the simplifying assumption that individuals living in a zip code

only purchase OTC medication within their own home zip code.  Consequently, the OTC 

purchases in each zip code are independent of each other.  This assumption will of course be 

violated in the event of a large-scale bioterrorist attack.  We plan to address this issue in future 



work but we will operate using this assumption for this initial prototype.  One straightforward 

way to avoid this assumption is to model the population-wide evidence O as the OTC sales over 

the entire region of Allegheny county; however, doing so would lose spatial information that 

might be helpful in detecting an outbreak.  The OTC Sales for Zip Code nodes are integer-valued 

nodes representing the aggregate number of units of OTC medication sold over the specified zip 

code.  These nodes are considered to be observed nodes because they are instantiated with values 

from the OTC data.

The person model is shown in more detail in Figure 2. The structure of this model was 

created by expert judgment.  Some of the nodes in the person model are temporal nodes, which 

we model over a three-day period.  We use three days in this initial prototype because it is the 

shortest period of time that we believe is meaningful for modeling a disease outbreak.  We intend 

to expand this time period to two weeks for modeling an anthrax outbreak.  Finally, we will 

refer to the nodes Home Zip, Age Decile, Gender, Respiratory Chief Complaint When Admitted, 

and ED Admission as evidence nodes because their values are observed in the ED data.    

The parameters of some of the nodes in Figure 2 were estimated from a training set 

consisting of one year’s worth of ED patient data from the year 2000 or from one year’s worth of 

OTC data from 2004. The parameters of other variables were obtained from U.S. Census data 

about the region. The rest had their respective probabilities (whether prior or conditional) derived 

as a logical function of their parents or assessed subjectively. The subjective assessments were 

informed by the literature and by general knowledge about infectious diseases. Due to space 

restrictions, we will only describe below the nodes that are different from the original PANDA 

model in (1)  



 Anthrax Acute Respiratory Infection: Indicates whether an individual has an acute respiratory 

infection (ARI) due to anthrax. This node models the presence of ARI over a three-day 

period, much like the Anthrax Infection node.

 ED Acute Respiratory Infection: Indicates whether an individual, who presents to the ED, has 

an acute respiratory infection (ARI) due to an ED disease other than anthrax. This is a 

temporal node, and it has the same states as those of Anthrax Infection. 

 Non-ED Acute Respiratory Infection: Indicates whether an individual, who does not present 

to the ED, has an acute respiratory infection (ARI) due to a disease other than anthrax.   This 

is also a temporal node, and it has the same type of states as those of Anthrax Infection.

 Acute Respiratory Infection: Indicates if the patient has ARI.  This node is a “logical or” of 

Anthrax Acute Respiratory Infection, ED Acute Respiratory Infection and Non-ED Acute 

Respiratory Infection.

Figure 2: The person model used by PANDA.  Note that the Time of Release and Location of 
Release nodes are part of the interface node layer.  The OTC Sales for Zip Code node is part 
of the population-wide evidence layer.  Although the OTC Sales for Zip Code node is only 
shown with input from a single person model, it actually has arcs from all person models in a 
given zip code, as illustrated in the simple example in Figure 1.



 Daily OTC Purchase: Captures the probability of purchasing a respiratory-related OTC 

medication (e.g., a cough medication) today, yesterday, the day before yesterday, or never.

We derived the conditional probability of this variable based on the literature and data from 

OTC sales of respiratory-related medication in the county-wide region being modeled.

 Last 3 Days OTC Purchase: A Boolean node describing if a respiratory-related OTC 

medication was purchased in the last three days by this person being modeled.

2.3 Inference

The goal of PANDA is to monitor the state of the target node T, which captures the 

probability of a disease outbreak occurring.  Specifically, PANDA calculates the posterior 

probability of T as new ED and OTC data arrive.  Let o be the set of population-wide evidence, 

namely the OTC sales volume for each zip code in the county-wide region.  Similarly, let e be 

the collective set of evidence from individual people consisting of case information from those 

that were recently seen in EDs in the region.  Note that from the ED data, we can use 

demographic information from the most recent U.S. Census to infer information about 

individuals who have not been recently admitted to the ED.  The sets e and o can be described as:

e = {X = e: X  Pi, Pi  P} and o = {X = o: X  Oj,  Oj  O}

The goal of the algorithm is to calculate the probability of a disease outbreak given the 

OTC and the ED data.  Mathematically, this objective is expressed as:

)()|,(),|( TPTPkTP  eoeo ,                      (1)

where the proportionality constant is 

 
T

TPTPk )()|,(1 eo .



We can calculate the term P(T) using Bayesian network (BN) inference on just the portion of the 

model that includes G.  Performing BN inference over just the nodes in G is much preferable to 

inference over all the nodes in X, because the number of nodes in X is approximately 107 in the 

current model.  Since the set I renders the nodes in P (including e) independent from the nodes in 

G, we can derive the term P( o, e | T)  as follows:

(2)

The above summation can be very demanding computationally, because e usually contains many 

nodes.  We can factor the term P( o, e | I = i ) as follows:

When combined with Equation 2, we can consider the term P(o | e, I ) to be the conditional 

contribution of the OTC evidence to the posterior probability P(T | o, e), while the term P( e | I )

can be considered as the conditional contribution of the ED evidence.  

2.3.1 Incorporating ED Evidence

As described in (1), calculation of the term P( e |I ) is done efficiently using equivalence 

classes and incremental updating. We save both space and reduce inference time by using 

equivalence classes to group individuals who are indistinguishable based on their evidence.  

Individuals in the same equivalence class have the same values for the Home Zip, Age Decile, 

Gender, Respiratory Chief Complaint When Admitted, and ED Admission nodes.  Incremental 

updating dramatically reduces inference time by allowing us to avoid calculating P(e | I) for the 

entire population every time new ED data arrives.  

2.3.2 Incorporating OTC Evidence

)|(),|()|,( IeIeoIeo PPP 

)|()()|,( TPPTP iIiI|e o,eo
i





In order to incorporate OTC evidence into the posterior probability, we need to compute 

the probability ),|( IeoP .  If for the purpose of this initial prototype we make the simplifying 

assumption that individuals living in a zip code only purchase OTC medications within their 

home zip code, then the OTC purchases for each zip code are independent of each other, 

conditioned on the nodes in I. We also assume that the OTC purchases within a given 

equivalence class can be modeled as with a binomial distribution, and the distribution of OTC 

purchases within a given zip code can be modeled as the sum of independent binomial 

distributions of the equivalence classes within that zip code.  Let Z be the set of all zip codes in 

the region under surveillance and let 
kZO be the variable representing the OTC cough-medication 

sales volume for zip code Zk. Furthermore, let the observed OTC cough-medication sales 

volume during the past three days for zip code Zk be 
kZo .  The zip-code independence 

assumption allows us to factor the probability ),( Ie|oP as follows:





Zk

kk
Z

ZZ oOPP ),|(),|( IeIeo (3)

In order to model the probability ),|( Ie
kk ZZ oOP  , which corresponds to the 

probability of the OTC cough-medication data for zip code Zk, we need to determine the 

contribution of  the equivalence classes that belong to this zip code.  Let
kZΩ  be the set of 

equivalence classes that have Home Zip equal to Zk.  For clarity, we will assume that there is 

only one person model, namely the one shown in Figure 2, common to all the people in the 

population; in general, there can be as many person models as is useful to represent different 

types of people.  An equivalence class jQ is defined by a tuple je , which is a (possibly 

incomplete) set of values for the evidence nodes in the person model.  An example of such a 



tuple is { Home Zip=15213, Age Decile=2, Gender=Male, Respiratory Chief Complaint When 

Admitted=True, ED Admission=Today}.

We model the OTC sales volume for each equivalence class jQ as a binomial distribution 

with parameters
jn  and 

jp .  The parameter 
jn is simply the number of people currently within 

the equivalence class. The second parameter 
jp represents the probability of an individual in 

the equivalence class making an OTC cough-medication purchase within the previous three days.  

This probability is calculated by conditioning on the evidence je that defines the equivalence 

class, and computing the probability that Last 3 Days OTC Purchase in Figure 2 equals True by 

performing Bayesian network inference on the person model.

We combine the distributions for each equivalence class in 
kZΩ by using a normal 

approximation to the binomial distribution (14) to represent the OTC sales distribution for each 

equivalence class. The normal approximation is needed because there is no efficient way directly

to derive the distribution over the sum of binomial variates. In contrast, it is straightfoward to 

derive the distribution over the sum of normal variates.  With this approximation we can convert 

a binomial distribution with parameters 
jn  and 

jp into a normal distribution with mean 

jj pn and variance )1( jjj ppn  .  The distribution for the entire zip code is therefore represented 

as a normal distribution ),( 2

kkk ZZZN  with mean 
kZ and variance 2

kZ that are as follows:





kZΩj

k

Q
jjZ pnμ      and     )1(2

j
Q

jjZ ppnσ
j

k 



kZΩ

Finally, to derive the probability of observing the OTC sales for each zip code, we compute 
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3   RESULTS AND DISCUSSION

Average initialization 
time (sec)

Average processing time for 
three-day window of data (sec)

ED Model 45.31 3
ED+OTC Model 209.73 3.91

Table 1: Mean running times for the ED and ED+OTC
models, averaged over 100 simulation files.

We compare the average running times for the model from (1), which we will call the ED model, 

and the model described in this paper, which we will call the ED+OTC model, with both models 

operating on a Pentium-4 three Gigahertz machine with two Gigabytes of RAM.  As shown in 

Table 1, the initialization time for the ED+OTC model is nearly four times that of the ED model.  

However, when actually processing the three-day window of data, the models take 

approximately the same amount of time.  For example, suppose we run PANDA in real-time

starting at t = 72 hours.  The algorithm first performs an initialization phase then processes the 

data from t = 0 to t = 71 hours.  When data accumulates for the next hour, PANDA moves its 

window of cases forwarded by an hour and analyzes the data from t = 1 to t = 72 hours.  For each 

subsequent 72 hour window, the running time of PANDA only takes about four seconds.   Even

with the OTC extension, the new PANDA model is capable of processing all of the current data 

well before the next hour’s worth of data arrives. These timing results provide support that the 

method is practical for real-time biosurveillance.  We will be evaluating the false positive rate 

and detection time of our approach using data created by injecting simulated anthrax cases into 

existing ED and OTC data streams. 

4   RELATED WORK



For an overview of algorithms used in syndromic surveillance, we refer the reader to (15).  In 

this section, we will focus on the most relevant, representative work of which we are aware.  

Burkom (10) suggests two approaches for using the Spatial Scan Statistic (16) to combine 

multiple data sources in performing syndromic surveillance.  The first method treats the multiple 

sources as covariates. The Spatial Scan Statistic is calculated using the sum of the observed 

counts from the data sources and the sum of the expected counts.  One of the main problems of 

this approach is that a data source with a large count may mask data sources with smaller counts.  

As an alternative, Burkom proposes calculating the log likelihood ratio for each data source and 

summing these ratios to form the scan statistic, similar to the approach taken by Kulldorff (11).  

Burkom (9; 17) also suggests combining multiple univariate statistical process control methods 

using a technique such as Edgington’s consensus method (18).  However, Edgington’s consensus 

method assumes independence among the data sources.  In order to capture the correlation 

between data streams, Burkom (17) uses multivariate methods such as Hotelling’s T2 (19), 

MCUSUM (20) and MEWMA (21) on multiple univariate signals.  In these multivariate 

methods, the covariance matrix for the data streams is typically estimated from a baseline period.  

If the covariance matrix changes significantly during an outbreak, then this estimate will not 

capture the actual relationship between the data streams during an outbreak.

5   CONCLUSIONS

This paper introduces a data fusion approach to biosurveillance that is based on modeling 

the effects of an outbreak disease on the individuals in the population.  We extend the causal 

Bayesian network in (1) to incorporate evidence from both ED and OTC data by modeling the 

actions of individuals in terms of purchasing OTC products and visiting the ED.  In addition, we 



demonstrate that this data fusion model can process a three-day window of ED and OTC data in 

approximately four seconds, making it a feasible algorithm for real-time surveillance.  In future 

work, we plan to extend the model to cover a two-week period and relax the zip code 

independence assumption. We then intend to perform a thorough and high fidelity evaluation of 

the detection algorithm that involves injecting simulated anthrax cases into actual ED and OTC 

data streams.
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