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ABSTRACT 
Early detection of disease outbreaks, particularly an outbreak due 
to an act of bioterrorism, is a critically important problem due to 
the potential to reduce both morbidity and mortality.  One of the 
most lethal bioterrorism scenarios is a large-scale release of 
inhalational anthrax.  The Population-wide Anomaly Detection 
and Assessment (PANDA) algorithm [1] is specifically designed 
to monitor health-care data for the onset of an outbreak caused by 
an outdoor, airborne release of inhalational anthrax.  At the heart 
of the PANDA algorithm is a causal Bayesian network which 
models the effects of the outbreak on a population.  The most 
unique aspect of the PANDA algorithm is an approach we will 
refer to as population-wide anomaly detection in which each 
individual in the population is represented as a subnetwork of the 
overall causal Bayesian network.  This paper will describe the 
benefits of the population-wide approach used by PANDA, which 
include a coherent way to incorporate background knowledge as 
well as different types of evidence, the ability to combine multiple 
data sources indicative of an outbreak, and the capability to 
identify the evidence that contributes the most to the belief that an 
anthrax outbreak is occurring. 
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1. INTRODUCTION 
Early detection of disease outbreaks is a critically important 
problem due to the potential to reduce both morbidity and 
mortality.  Disease outbreaks can either occur naturally or they 
can be caused by acts of bioterrorism.  One of the most lethal 
bioterrorism scenarios is a large-scale release of inhalational 
anthrax, which is estimated to kill as many as 30,000 people per 
day and to have a long-term economic cost of as much as $200 
million per hour of the outbreak according to an analysis done by 
[2].  The Population-wide Anomaly Detection and Assessment 
(PANDA) algorithm [1] is specifically designed to monitor 
health-care data for the onset of an outbreak caused by an 
outdoor, airborne release of inhalational anthrax.  At the heart of 

the PANDA algorithm is a causal Bayesian network1 which 
models the effects of the outbreak on a population.  The most 
unique aspect of the PANDA algorithm is an approach we will 
refer to as population-wide anomaly detection in which each 
individual in the population is represented as a subnetwork of the 
overall Bayesian network. 

 

Figure 1: The causal Bayesian network structure used in PANDA. 

Figure 1 provides an illustration of the causal Bayesian network 
structure used in PANDA to detect an outdoor release of 
inhalational anthrax.  This model consists of three sets of nodes 
which we have labeled G, I and P in the diagram.  The nodes in 
the set G consist of global features that are common to all people.  
Included in the set G is a target node T which is the node that is 
actively monitored.  In Figure 1, the target node is Anthrax 
Release and we monitor the probability that Anthrax Release 
equals true.  In our example, Anthrax Release is the only global 
node.  In general, the set G could include other global features 
such as the national terror alert level or information about local 
events such as major sports events or political conventions.  At 
the next layer down, the interface nodes in set I are the nodes 
which contain the factors that significantly influence the status of 
an outbreak disease in individuals in the population.  Inhalational 
anthrax is an infectious but non-contagious disease; the bio-agent 
can only infect people through the spores and not through person-
to-person contact.  As a result, the state of the disease in the 
population can be reasonably modeled with the nodes Time of 
                                                                 
1 A causal Bayesian network is a Bayesian network in which the 

arcs have a causal interpretation in addition to indicating a 
probabilistic relationship between the nodes. 



Release and Location of Release.  In the future, we plan to refine 
the model to include other interface nodes such as the amount of 
the release, the type of anthrax powder and meteorological 
information.  Often the variables in I will be unmeasured.  It is 
legitimate, however, to have measured variables in I.  For 
example, the wind direction might be a measured variable that 
influences the disease status of people in the population, and thus 
it would be located in I.  The last set of nodes P consists of the 
person models Pi ie. P = {P1, …, Pn} which form the core of the 
population-wide approach.  Although we refer to these 
subnetworks as a person model, it can be generalized to entities 
that provide information about disease outbreaks, such as 
biosensors and livestock.  Each person model Pi represents an 
individual in the population.  In general, each person model can 
be different but for simplicity, we will use the model shown in 
Figure 2 for each Pi.  Evidence observed on an individual basis 
will be entered at the person model level.  In our implementation 
of PANDA, the information observed for each individual consists 
of Emergency Department (ED) records.  Each ED record 
contains the attributes Home Zip, Age (by decile), Gender, 
Respiratory Chief Complaint When Admitted to the ED, and ED 
Admission. 

The structure of the Bayesian network used by PANDA is 
designed by expert judgment rather than learned from data.  The 
parameters of our model are obtained from a combination of 
census data, training data consisting of one year’s worth of ED 
records, and expert assessments informed by the literature.  With 
the structure and parameters of the model in place, we can 

perform inference on the Bayesian network to calculate the 
probability of an anthrax release.  We emphasize that the 
population-wide anomaly detection approach is only used in 
designing the structure of the model and in the inference phase.  
We do not estimate parameters for an individual in the population.  
Rather, we observe evidence regarding an individual from an ED 
record and then propagate the effects of that evidence through the 
Bayesian network in order to update our belief that an anthrax 
attack is occurring. 

At first glance, this approach appears to be intractable since the 
resulting model will consist of millions of nodes.  For example, a 
typical surveillance region such as Allegheny County, 
Pennsylvania consists of 1.4 million people.  Inference on a 
network of this scale seems intractable.  However, in a previous 
paper [1], we have shown that such an approach is indeed feasible 
for a real-time bio-surveillance application that monitors 
Emergency Department (ED) data.  In our initial prototype in [1], 
we exploit the conditional independence structure of the causal 
Bayesian network to produce two optimizations:  incremental 
updating and equivalence classes.  Incremental updating 
dramatically reduces inference time by allowing us to calculate 
probabilities for the entire population incrementally rather than 
from scratch whenever new data arrives.  We also exploit the fact 
that individuals with exactly the same evidence are 
indistinguishable under the PANDA model.  Individuals with the 
same values for the Home Zip, Age Decile, Gender, Respiratory 
Chief Complaint When Admitted, and ED Admission nodes are 
placed into the same equivalence class.  In our surveillance of 

Figure 2: The person model used by PANDA to model each individual in the population. 



Allegheny County, this optimization reduces the population of 1.4 
million people to 24,240 equivalence classes.    On a Pentium 4, 3 
Gigahertz processor with 2 Gigabytes of RAM, the PANDA 
algorithm takes approximately 45 seconds of initialization time; 
after initialization, each hour of ED data can be processed in 
about 3 seconds.   

Grouping individuals in equivalence classes may seem to 
contradict our claim of modeling each individual in the 
population.  However, the use of equivalence classes is purely for 
computational convenience.  We are indeed representing each 
person in the population and we are still capable of doing so 
without equivalence classes, albeit at a higher computational 
price.  In future work, we intend to incorporate more information 
regarding the symptoms exhibited by patients in the ED.  Adding 
this information will increase the number of features that define 
an equivalence class and consequently increase the number of 
equivalence classes beyond the number of people in the 
population.  We plan to replace the use of equivalence classes 
with other optimizations such as approximate inference in order to 
make future extensions of the PANDA algorithm tractable. 

Having addressed the most obvious downfall to population-wide 
anomaly detection, we will now discuss its advantages.  
Intuitively, it is the individuals in the population that generate the 
observed evidence.  Thus, the most logical unit in the model is the 
individual, which is the finest level of granularity permitted by the 
data.  With the modeling unit of an individual, we can exploit the 
conditional independence between individuals for a non-
contagious disease to make inference tractable.  As shown in 
Figure 1, if we condition on the time and location of the anthrax 
release, then the person models in the population are independent 
of each other.  Another advantage gained by modeling each 
individual in the population is the ability to distinguish arbitrary 
groups from each other.  This ability buys us a tremendous about 
of representational flexibility and power.  In particular, we can 
coherently incorporate various forms of background knowledge 
and evidence into the model.  Modeling at the individual level 
also facilitates combining information between multiple data 
sources, especially if the interaction between these data sources is 
much easier to model at an individual level than at a population 
level.  Finally, the population-wide approach allows us to 
determine the contribution of each individual to the overall 
probability that an anthrax attack is occurring.  We can determine 
the individuals that most influence this belief and in doing so, 
produce an explanation for why we believe an attack has 
occurred.  The remainder of this paper will address these merits of 
a population-wide anomaly detection approach.  We intend to 
provide an overview of this approach while leaving the details in 
previous papers on PANDA [1, 3]. 

2. INCORPORATING BACKGROUND 
KNOWLEDGE 
One of the main advantages of a population-wide approach is the 
ability to coherently represent different types of background 
knowledge in the model.  This background knowledge is 
particularly useful for disease outbreak detection algorithms that 
monitor for a specific disease; we will refer to these detection 
algorithms as specific detectors.  In contrast, a non-specific 
detector such as WSARE [4] searches for any irregularities from 
the normal behavior.  A strategy that works well for non-specific 

detectors is to model the baseline behavior of the data and signal 
an alert when the deviation from this baseline exceeds some 
threshold.  However, since this strategy raises alarms for any 
irregularities rather than those caused by the disease being 
monitored, it can result in many false positives for a specific 
detector.  We can improve the performance of specific disease 
detectors by building models of the data during non-outbreak 
periods and building models of the effects of the specific disease 
during outbreak periods. 

Data during non-outbreak conditions are often available and in 
some cases abundant.  The most common approach to building a 
baseline model is to use standard machine learning techniques 
such as Bayesian network structure learning [4] to learn the 
structure and/or the parameters of the model.  Another option is to 
incorporate background knowledge of this baseline behavior into 
our model; for instance, in PANDA we use census information to 
model the demographics of the population.  In contrast to data 
during non-outbreak periods, data during outbreak periods are 
scarce or completely non-existent.  In the case of anthrax, there 
are only two commonly known anthrax outbreaks – an accidental 
leak in Sverdlovsk, Russia [5] and the 2001 postal anthrax attacks 
[6-9], although the postal attacks are clearly not representative of 
the large-scale outdoor release of anthrax that the PANDA 
algorithm is intended to detect.  We cannot learn a model of an 
anthrax outbreak from data because do not have training data 
available from both of these incidents.  

Nevertheless, we can incorporate the assessments of domain 
experts who are informed by their experience and the literature.  
In addition to studies performed on the two known outbreaks, 
there is a vast body of medical literature that allows us to model 
what we know about the likely patterns of presentation of 
inhalational anthrax [10-13].  In particular, we can model the 
known progression of symptoms that occur after a person has 
inhaled anthrax spores.  We can also represent the incubation 
period, which is the earliest period of time after infection that a 
person begins to physically manifest the symptoms of anthrax (the 
incubation period varies depending on the concentration of spores 
released and the amount inhaled by an individual).  Finally, in the 
case of an airborne release of anthrax, we can model the spatial 
dispersion pattern of the spores as in [14, 15], enabling the 
detection algorithm to know that a person standing downwind in 
the dispersion region is more likely to be infected than someone 
who is standing upwind.  We can coherently incorporate all of this 
information in the parameters of the causal Bayesian network as 
background knowledge.  Most importantly, the majority of the 
background knowledge about inhalational anthrax is at an 
individual level and it is precisely this background knowledge that 
we intend to use to improve our detector. 

 

3. INCORPORATING DIFFERENT TYPES 
OF EVIDENCE 
Besides the power in representing different forms of prior 
knowledge, modeling each individual allows the model to 
combine spatial, temporal, demographic, and symptomatic 
evidence to derive a posterior probability of a disease outbreak.    
For instance, if many people are admitted to the ED with 
symptoms consistent with those of inhalational anthrax and their 
home locations follow roughly the spatial dispersal pattern of an 



airborne anthrax release, then the posterior probability of an 
anthrax attack should be high.  Furthermore, individual modeling 
permits new types of knowledge and evidence to be readily 
incorporated into the model.  We had previously assumed that the 
person models are identical for the purpose of simplicity but we 
can easily incorporate different person models into our 
framework.  If we know more information about one person or 
group of people than another, we can represent that difference.  
As an example, if we gain access to radiology reports for a group 
of individuals, and we find that radiology reports are especially 
useful indicators of an anthrax attack, we can then readily add this 
new evidential variable to the person model representing those 
individuals.   

4. DATA FUSION 
Modeling each individual in the population also facilitates fusion 
of different data sources, because such data originate from the 
individuals in the population that are being explicitly modeled.  In 
[3] we extended the PANDA model to incorporate evidence from 
both ED data and from over-the-counter (OTC) data.  By jointly 
monitoring both data sources, the combined information could 
reinforce our belief that an anthrax outbreak is happening and 
improve the detection algorithm’s performance. However, the 
correlation between OTC and ED data during outbreak conditions 
cannot be learned because no training data exists that captures the 
effects of a large-scale anthrax attack on these data sources during 
the same time period.  Although training data do not exist, we do 
have some background knowledge at the individual level about 
the plausible relationship between OTC and ED data during an 
anthrax outbreak.  Our approach to combining multiple data 
streams relies on using this background knowledge and explicitly 
modeling the actions of individuals that result in the interaction 
between OTC medication purchases and ED admissions. 

 
Figure 3: The causal Bayesian network used to combine ED data 
and OTC data. 

Another concern in data fusion is incorporating data sources of 
different spatial and temporal granularity.  For example, ED data 
is available in real-time (although we process it as if it were 
available hourly) with each record corresponding to an individual.  
On the other hand, the OTC data is available at the end of each 
day and each record aggregates the OTC sales over a zip code.  
The population-wide approach models the data at the level of an 
individual, which is the finest granularity that makes sense and 
that is permissible though the data.  With this level of granularity, 
we can always aggregate individuals to form a coarser level of 
granularity while taking full advantage of all the information 
available. 

Figure 4: The person model for the PANDA algorithm that combines both ED data with OTC data. 



Figure 3 illustrates the extension to the model in Figure 1 while 
Figure 4 depicts the modifications to the person model in Figure 
2.  The new causal Bayesian network incorporates the OTC 
evidence in the set of population-wide evidence nodes O.  The set 
O represents evidence that is aggregated over a particular group of 
people, such as the daily OTC sales of cough medication sales 
over a zip code.   

 

5. EXPLANATION 
With a population-wide anomaly detection algorithm, we can not 
only detect anomalies but also explain why they are anomalies.  
Using the Bayesian network framework, we can find the subset of 
evidence E* that most influences the target node T.  Once this 
subset of evidence is found, we can trace the pathways between 
E* and T that contribute the most to the belief that an attack is 
occurring.  In the current PANDA model, E* corresponds to 
evidence about individuals.  We can determine the individuals 
whose evidence most supports the hypothesis of an anthrax attack.  
Once these individuals have been identified, we can determine the 
relationships between them, which can potentially identify the 
origin and subsequent spread of the anthrax release.  In our 
current prototype, we group the individuals into equivalence 
classes defined by the evidence observed in the data.  Thus, we 
can identify the equivalence class that most supports the 
hypothesis of an anthrax attack.  We have also used this 
explanation method to identify the zip code that is the most likely 
location of the release and the day that is the most likely time of 
release. 

 

6. CONCLUSION 
We have approached the task of detecting a large-scale airborne 
release of inhalational anthrax with a population-wide anomaly 
detection algorithm.  This method has been ideally suited for this 
task due to the various forms of background knowledge and 
evidence that need to be incorporated into the model.  In addition, 
if an alert is raised over a possible anthrax release, we gain the 
capability to explain why the alarm was triggered.  The results 
reported in [1] have been promising and indicate that modeling 
each individual is feasible for a real-time bio-surveillance system.  
We also believe that the merits of this approach can benefit 
anomaly detection tasks in other domains. 
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