Making intelligent systems understandable and controllable by end users

Simone Stumpf1, Weng-Keen Wong2, Margaret Burnett2, Todd Kulesza2

1 City University London
Centre for HCI Design, School of Informatics
London EC1V 0HB, United Kingdom
Simone.Stumpf.1@city.ac.uk

2 Oregon State University
School of EECS
Corvallis, Oregon 97333, USA
{wong, burnett, kuleszto}@eecs.oregonstate.edu

ABSTRACT
Pervasive systems for end users are becoming mainstream yet ways to make them transparent and controllable by users are still in their infancy. In this position paper we describe our work with other kinds of intelligent systems to make them intelligible and adaptable by end users. Our results could hold useful lessons for pervasive systems to better support their use.

Categories and Subject Descriptors
H.5.m [Information interfaces and presentation]: Miscellaneous

General Terms
Human Factors

Keywords
Explanatory debugging; intelligent user interfaces; machine learning; personalization; intelligent assistants.

1. INTRODUCTION
Many intelligent systems, such as email inbox filters, object recognition systems, and music recommenders, learn from data to personalize themselves to specific end users. These kinds of adaptations are also found in pervasive systems, such as smart home systems and context-aware mobile applications. Interacting with these systems is, however, currently limited and often uninformative for the end user because of the internal complexity and “black box” nature of most of these pervasive systems. With a few exceptions (e.g., [7]), research into making them transparent and controllable by end users is still in its infancy.

We view the process of end-user interaction with intelligent systems from an explanatory debugging perspective [5] (see Figure 1). First, the intelligent system must provide an explanation to the end user, in order for the end user to form a correct mental model of the “source code” and behavior of the system. Second, the end user then provides feedback to the intelligent agent in order to fix the “bugs” in the system. Our work with intelligent systems, specifically text classifiers and recommender systems, could hold lessons for adopting the same approach for pervasive systems.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Conference’10, Month 1–2, 2010, City, State, Country. Copyright 2010 ACM 1-58113-000-0/00/$10.00.

2. EXPLANATIONS
Our approach rests on the assumption that end users will be better at debugging if they have deeper and better knowledge of how the intelligent system works. Our recent work has shown that, indeed, soundness of mental models impacts end users’ ability to efficiently and effectively steer a system’s behavior and their perceptions of benefit, satisfaction and user experience [3]. The mental models of end users in this study were shaped through brief scaffolded instruction sessions that explained how the system, a music recommender, worked “underneath the hood”. However, it may be feasible to build this instructional ability into intelligent systems, in order for them to explain themselves better. Explaining intelligent systems is challenging because at their heart are complex statistical machine learning algorithms, which even experts in machine learning find hard to understand [1]. To help address this problem, we have been exploring how different kinds of explanations impact end users’ reasoning.

First, we looked at the understandability of three explanation approaches for text classifiers [10]. We compared Keyword-based, Similarity-based and Rule-based explanations. Our results indicate that, while there was not one perfect way to explain the behavior, Rule-based and Keyword-based approaches were easier to understand compared with similarity-based explanation mechanisms, and they also led to end users being able to understand the behavior more correctly. Factors that played a part in understanding were the perceived soundness of the reasoning and how this reasoning was communicated.

We have also explored what specific elements need to be explained. We adapted the Whyline approach [2] for a naïve Bayes text classifier to provide explanations about different elements of an intelligent system’s reasoning and a visual explanation of keyword weights [6, 4]. We found that participants had particular problems with understanding where to make changes and how these changes would affect other parts of the system.

Figure 1. An “explanatory debugging” perspective of end-user interaction with an intelligent agent. Interaction consists of two parts: 1) the agent provides an explanation to the end user who then 2) provides corrective feedback to the agent.
We have developed an approach based on locally-weighted lo-

er [8]. However, user co-train ing can suffer from an unstable pe-

ures through this visual explanation [6]. In our experiments with

features, creating new features (such as by combining features or

thetic regression which allows end users to label features rather

than instances [11]. This algorithm has shown promise in both

simulated studies and studies involving actual end users.

4. CONCLUSION

We have explored how end users who are not trained in software

engineering or machine learning could better interact with and fix

their intelligent systems. Our work has focused on both providing

explanations of how these systems work as well as guiding end

users to make informed choices when debugging a system. We

have also worked on making the system heed the end user when

they attempt to debug it. We believe that our work could hold

important lessons for the intelligibility and control of pervasive

systems, which are built on similar machine learning foundations.

5. ACKNOWLEDGMENTS

This work has been in part supported by NSF grant 0803487.

6. REFERENCES

optimization for steering machine classification. Proc. CHI,

ACM (2010), 1343-1352.

interface for asking questions about program behavior. Proc.

CHI, ACM (2004), 151-158.

more? The effects of mental model soundness on personaliz-

S., Ko, A., Oberst, I. Why-oriented end-user debugging of

Naïve Bayes text classification. Transactions on Interactive

Y., Moore, T., Oberst, I., Shinsel, A., McIntosh, K. Explan-
atory debugging: Supporting end-user debugging of machine-

Burnett, M., Oberst, I., Ko, A. Fixing the program my com-
puter learned: Barriers for end users, challenges for the ma-

[7] Lim, B.Y., Dey, A.K., Avrahami, D. Why and why not ex-
planations improve the intelligibility of context-aware intel-

[8] Stumpf, S., Rajaram, V., Li., L., Burnett, M., Wong, W.-K.,

Dietterich, T., Sullivan, E., Drummond, R., Herlocker, J. In-

teracting meaningfully with machine learning systems: Three

experiments. IJHCS 67(8), (2009), 639-662.

[9] Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong, W.-

K., Burnett, M. Integrating rich user feedback into intelligent

[10] Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T.,

Sullivan, E., Drummond, R., Herlocker, J. Toward harness-
ing user feedback for machine learning. Proc. IUI, ACM

(2007).

McIntosh, K., Burnett, M. End-user feature labeling: A locally-