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ABSTRACT

Many applications in surveillance, monitoring, scientific dis-
covery, and data cleaning require the identification of anoma-
lies. Although many methods have been developed to iden-
tify statistically significant anomalies, a more difficult task
is to identify anomalies that are both interesting and statis-
tically significant. Category detection is an emerging area
of machine learning that can help address this issue using
a ”human-in-the-loop” approach. In this interactive setting,
the algorithm asks the user to label a query data point un-
der an existing category or declare the query data point to
belong to a previously undiscovered category. The goal of
category detection is to bring to the user’s attention a rep-
resentative data point from each category in the data in as
few queries as possible. In a data set with imbalanced cate-
gories, the main challenge is in identifying the rare categories
or anomalies; hence, the task is often referred to as rare cate-
gory detection. We present a new approach to rare category
detection based on hierarchical mean shift. In our approach,
a hierarchy is created by repeatedly applying mean shift with
an increasing bandwidth on the data. This hierarchy allows
us to identify anomalies in the data set at different scales,
which are then posed as queries to the user. The main ad-
vantage of this methodology over existing approaches is that
it does not require any knowledge of the dataset properties
such as the total number of categories or the prior probabil-
ities of the categories. Results on real-world data sets show
that our hierarchical mean shift approach performs consis-
tently better than previous techniques.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; G.3 [Probability and
Statistics]: [Nonparametric statistics]

General Terms
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1. INTRODUCTION
Many applications in surveillance, monitoring, scientific

discovery, and data cleaning require the identification of
anomalies. Ideally, these anomalies correspond to data points
or events of interest, such as a disease outbreak in bio-
surveillance or a network attack in intrusion detection. Al-
though many methods have been developed to characterize
anomalies as statistically unusual events, not all statistically
significant anomalies are necessarily useful. In fact, many
anomalies are simply uninteresting, corresponding to known
sources of noise or known combinations of features that are
irrelevant to actual events of interest.

Consider the following two examples. The first example,
taken from [15], involves the task of scientific discovery from
the Sloan Digital Sky Survey (SDSS) [17], which is a 5 year
survey of the northern skies by ground-based telescopes.
Most of the images in the SDSS capture known phenomena
such as stars, comets, nebulae, etc. which have already been
discovered. Anomalies in the data correspond to unusual or
unknown objects which could potentially lead to new scien-
tific discoveries. However, the majority of anomalies in the
SDSS are of no interest to astronomers. These anomalies in-
clude diffraction spikes, which are artifacts of the telescope,
and satellite trails. Such anomalies clearly do not lead to
new discoveries in astronomy. The anomalies of interest,
such as unusual galaxies, are extremely rare and constitute a
miniscule 0.001% of the entire data set. A similar task exists
in the analysis of network log files. The IT infrastructure of
a company can contain thousands of computers and devices
networked together. These components are often equipped
with monitoring agents that generate log files that capture
characteristics of the network traffic. Statistical anomalies
in these log files often correspond to uninteresting events
such as those arising from events that are already known or
expected, such as events arising from maintenance upgrades.
A very small fraction of the log file anomalies correspond to
actual network failures or attacks of interest. Identifying
these meaningful anomalies would be beneficial for the di-
agnosis of faults and the prevention of malicious attacks.

Thus, a challenging new task has emerged for the field of
anomaly detection – identifying anomalies that are not only
statistically significant but also interesting. Since the“inter-
estingness” of an anomaly is subjectively defined, a human-
in-the-loop approach is needed. Category detection [15] is
an emerging area of machine learning that can help address



this issue. Category detection operates on a set of unla-
beled examples S = {x1, x2, ...., xn} where xi ∈ ℜ

d are from
m distinct categories1 labeled yi = {1, 2..., m}. The cate-
gory detection algorithm asks the user to label a query data
point under an existing category or declare the query data
point to belong to a previously undiscovered category. The
goal of category detection is to bring to the user’s atten-
tion at least a single instance from each category in as few
queries to the user as possible. Figure 1 illustrates the in-
teractive category detection process. The main challenge in
this task is discovering the rare categories, which appear as
small, dense clusters or isolated outliers in the data set. This
task becomes especially challenging if the data set is dom-
inated by a handful of disproportionately large categories,
which makes the rare categories become extremely difficult
to discover through manual inspection. As a result, category
detection is often referred to as rare category detection.

Data Set

Build Model
Data Points

Spot Interesting

With Labels
Update Model Ask User to Label

Categories of
Interesting Data Points

Figure 1: The interactive category detection loop

In this paper we present a new approach to rare category
detection using a Hierarchical Mean Shift procedure. Mean
Shift is a nonparametric clustering technique widely used in
computer vision for segmentation. In our approach, we use
Mean Shift to discover cluster modes. By repeatedly apply-
ing Mean Shift with increasing bandwidths, we can create
a hierarchy of clusters at different scales and thus use this
information to score each cluster by how “anomalous” it is.
This score can then be used to rank the representative data
points of each cluster for labeling by a user. The main ad-
vantage of the proposed method over previous related work
[15, 8] is twofold. First, our approach dramatically reduces
the number of queries to the user needed to discover all the
categories in the data. Secondly, our approach does not re-
quire any prior knowledge regarding the properties of the
data set, such as the total number of clusters present in the
data or the prior probability of a data point belonging to a
cluster.

2. RELATED WORK
Category detection incorporates ideas from active learning

[11] and semi-supervised learning [19, 1, 21] but work that
investigates category detection itself is relatively sparse. We
briefly review the main contributions in the area of category
detection.

Category detection was first proposed by Pelleg et al. [15]
through their Interleave algorithm, which assumes that the
data is generated by a mixture model. Interleave starts with
an entirely unlabeled data set and clusters it using EM for
mixture models. Using the results of EM, the Interleave al-
gorithm maintains, for every mixture component, a list of
data points that are “most owned” by that mixture compo-
nent. This list is sorted in increasing order of the “degree

1We will use the word category and class interchangeably.

of ownership” by the mixture component. Intuitively, the
algorithm queries data points that are “least owned” by the
components. It cycles through all the lists in a round robin
fashion and selects the data point in the first position of each
component’s list for user-labeling. Once the user has pro-
vided the category labels, the Interleave algorithm clamps
the labeled data points to their user-supplied labels before
EM is applied again. This process continues until the user
terminates the loop.

Despite some nice properties such as being
model-independent and robust to noise in the data, Inter-
leave has several shortcomings. First, the algorithm is sen-
sitive to initial conditions as the EM clustering converges to
a local optimum. Second, the algorithm requires an initial
estimate of the number of classes in the data. Although the
number of classes changes as the user provides feedback to
the Interleave algorithm, this initial estimate of the number
of classes is often not known in advance and an incorrect
value at the outset can adversely affect the algorithm. Fi-
nally, as pointed out by [8], Interleave requires the classes
to be separable in feature space.

He et al. [8] propose a nearest-neighbor based active learn-
ing for rare category detection (NNDM) to address the sep-
arability assumption in Interleave. NNDM uses an unsuper-
vised local density differential sampling strategy. It makes
use of nearest neighbors to measure the local density around
each data point. The algorithm starts with an entirely un-
labeled data set. In each iteration, the algorithm selects for
labeling the data point with the largest change in local den-
sity. Like Interleave, NNDM needs to know the number of
classes in advance. NNDM also requires the prior probabil-
ity of a data point belonging to each class. Although NNDM
is effective at discovering categories that overlap each other,
we have noticed some undesirable behavior by NNDM in
which the algorithm repeatedly queries data points (with
large local density differential values) from the same cluster
which has already been discovered.

Fine et al. [5] abstract the rare category detection prob-
lem as an output identification task in a learning model.
The learning model has an unknown target function f which
maps every input in χ to one of m output values. The output
identification task is to find m inputs, one for each output
value. The algorithm knows that the target function f is in
a given function class F . The work assumes an unknown dis-
tribution over the inputs and describes algorithms for many
classes of functions. The algorithms are shown to have an
expected sample bound of the order of m and log(1/ǫ) where
ǫ is the lower bound on the probability of each output class.
The work similarly reports sample bounds in special cases
like binary outputs i.e. m = 2, specific distributions (the
uniform distribution) and a concept class defined over the
Boolean hypercube {0, 1}n.

3. MEAN SHIFT
Mean Shift is a non-parametric clustering algorithm pro-

posed by Fukunaga and Hostetler [6]. It is based on the
concept of nonparametric estimation of probability density
functions in which the value of a density function at a point
can be estimated using the sample observations that fall
within a small region around that point. The popular Parzen
window technique generalized this concept for density esti-
mation. The Mean Shift algorithm is commonly used in
vision for image segmentation [2, 3] but it has received rel-



atively little attention in the machine learning community
compared to other clustering techniques. We now describe
Mean Shift based on the description and notation in Co-
maniciu and Meer [3].

3.1 Kernel Density Estimation
Let (x1, . . . , xn) be n independent and identically dis-

tributed d-dimensional data points. Furthermore, let H be
a symmetric positive definite d-by-d bandwidth matrix. We
define the kernel function with bandwidth H to be

KH (x) = |H |−1/2K(H−1/2x) (1)

The term K(x) is a d-dimensional kernel function that is
non-negative and integrates to one. It satisfies the condi-
tions for asymptotic unbiasedness, consistency, and uniform
consistency of the gradient of the density estimate [6]. The
multivariate kernel density estimator with bandwidth ma-
trix H computed at point x is given by

f̂(x) =
1

n

n
X

i=1

KH (x− xi) (2)

In order to reduce the complexity of estimation, we assume
H is proportional to the identity matrix H = h2

I where
h > 0. Assuming H to be proportional to the identity ma-
trix, the multivariate kernel density estimator in Equation
2 becomes

f̂(x) =
1

nhd

n
X

i=1

K(
x− xi

h
) (3)

Various multivariate kernel functions can be used for den-
sity estimation using Equation 3. In our work, we use a
radially symmetric kernel obtained by rotating in Rd a sym-
metric univariate Gaussian kernel function with mean 0 and
variance 1. The kernel is of the form

KN(x) = (2π)−d/2 exp(−
1

2
‖x‖2) (4)

We can write this kernel more abstractly as:

K(x) = ck,dk(‖x‖2) (5)

where ck,d is a normalization constant that makes K(x)
integrate to one and k(x) is called the profile of kernel K(x).
As defined by [2], the profile k(x) is a function k : [0,∞]→ R
such that K(x) = k(‖x‖2). For the Gaussian kernel func-
tion, the profile is given by

kN (x) = exp(−
1

2
x) (x ≥ 0). (6)

The density estimator expression for the multivariate nor-
mal kernel is:

f̂(x) =
ck,d

nhd

n
X

i=1

k(‖
x− xi

h
‖2) (7)

3.2 Density Gradient Estimation
The density gradient estimator can be obtained by the

gradient of the density estimator in Equation 7 [3]. If we

define k′(x) as the derivative of the profile, the gradient of
the density estimator can be calculated as:

▽ f̂h,K(x)

=
2ck,d
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(8)

The second term, shown in Equation 9 is the Mean Shift
which is the difference between the weighted mean, using k′

for the weighting, and x.

mh,K(x) =

n
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Using the normal kernel, the Mean Shift vector becomes

mh,K(x) =

n
X

i=1

xi exp
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mh,K(x) is proportional to the normalized density gradi-
ent and always points toward the steepest ascent direction
of the density function.

3.3 Mean Shift Clustering
Mean Shift can then be used for clustering or mode de-

tection by iteratively shifting each data point towards the
direction of its Mean Shift vector [6]. The amount of the
shift is proportional to the gradient at the data point. Each
data point xi, at the ith iteration, is shifted according to
Equation 11. Eventually, the points converge to a station-
ary point which corresponds to a mode of the density.

xi+1 = xi + mh,K(xi) (11)

We distinguish between two data sets required for the
Mean Shift algorithm, which we call the reference and the
query data sets. The reference data set consists of the data
points that are used for the density estimation. The points
in the reference data set do not move. The query data set
consists of data points that are shifted by every iteration
of Mean Shift. When the Mean Shift algorithm converges,
the query data set contains the cluster modes. The query
data set is not necessarily the same as the reference data
set. When the query data set is the reference data set, the
process is known as blurring [2] since it progressively blurs
the data set on each iteration.



3.4 Bandwidth Selection
The bandwidth parameter h plays a critical role in the

accuracy of the density estimation during Mean Shift. If
the bandwidth is too small, it produces an undersmoothed
density estimate, resulting in many small clusters. If the
bandwidth is too large, the density estimate will be over-
smoothed, resulting in a small number of very large clusters.
A variety of techniques have been developed for bandwidth
selection, such as the Maximal Smoothing Principle, Likeli-
hood Cross Validation, Least Squares Cross Validation and
Plug-in methods [9].

4. METHODOLOGY
Our approach to category detection is based on Hierarchi-

cal Mean Shift (HMS) [12, 4], which produces a hierarchy
of clusters by repeatedly blurring the data. The repeated
blurring of the data is accomplished by re-running Mean
Shift with increasingly larger bandwidths, using at each it-
eration the cluster centers from the previous iteration. HMS
is closely related to scale-space theory [12], which is a multi-
scale data representation framework designed to model how
the human visual system sees details in an image as the
image is progressively smoothed.

One of the main reasons we chose HMS is because Mean
Shift is a non-parametric clustering algorithm, which per-
mits clusters to take on arbitrary shapes, unlike a Gaussian
Mixture Model. Initially, we created a non-parametric ver-
sion of the Interleave algorithm by replacing EM with Mean
Shift and measuring cluster ownership by the total distance
shifted to reach the cluster mode. However, this Interleave
variant (called MS-Interleave) requires estimating the band-
width parameter h. After trying many different bandwidth
estimation techniques [9] on a variety of data sets, we found
that in many cases, the bandwidth estimates tend to under-
smooth the data, producing a large number of modes when
Mean Shift is applied2. With a large number of modes, the
MS-Interleave algorithm produces many redundant queries
for the same cluster as the algorithm believes that the data
points belonging to that cluster belong to different clusters.

In order to avoid selecting a single optimal bandwidth
value, we used HMS, which repeatedly blurs the data with
increasing bandwidths. HMS results in a cluster hierarchy
similar to a dendrogram, except the clustering algorithm
used is Mean Shift and not single-linkage clustering. This
hierarchy contains extremely useful information regarding
the properties of the clusters such as their outlierness, com-
pactness, and isolation, which we will define in more detail
in Section 4.3. We use these properties to determine which
data points, that are representative of these clusters, should
be brought to the attention of the user. One other benefit
to our HMS-based category detection is the fact that it does
not require the user to input parameters requiring knowl-
edge of the data set properties, such as an initial guess as to
the number of clusters in the data (in the case of Interleave)
or the category priors (in the case of NNDM).

Our HMS procedure for category detection consists of 3
phases: 1) data standardization, 2) building the cluster hi-
erarchy and 3) querying data points.

2We also tried a common post-processing step in Mean Shift
where modes that are within some ǫ of each other are merged
into the same cluster but the results for category detection
were still poor.

4.1 Data Standardization
The data sets are first standardized to prevent one di-

mension dominating the distance calculations used in the
analysis. Sphering is perfomed on the datasets using the
following transformation [13].

Zi = Λ−1/2QT (xi − x̄) i = 1, ..., n (12)

In the equation above, x̄ is the sample mean, the columns
of Q are the eigenvectors of the sample covariance matrix,
Λ is a diagonal matrix of corresponding eigenvalues and xi

is the ith data point in the dataset.

4.2 Building the cluster hierarchy
In the second step, HMS builds the cluster hierarchy. Be-

fore we can apply Mean Shift, we first compute the initial
bandwidth value by finding the minimum non-zero distance
hmin between any two points in the data set3. The band-
width matrix is computed as H = h2

min∗I . For convenience,
we will refer to the bandwidth H as a scalar value h.

The lowest level of the hierarchy consists of the individual
data points. The initial iteration of HMS applies Mean Shift
with bandwidth hmin to these individual data points. Each
data point either remains as its own cluster of size one or it is
merged into a larger cluster. On the next iteration of HMS,
the centers of these clusters become the data points at the
next level of the hierarchy and the bandwidth is increased by
multiplying the current bandwidth scalar value by k, which
is the bandwidth increment. Mean Shift, with the increased
bandwidth, is applied to these data points (which are the
cluster centers one level down) to produce a new set of clus-
ters. Mean Shift runs faster for each iteration of HMS as
the number of data points at each level of the hierarchy de-
creases quickly. This entire process continues until there is
only one cluster left. In effect, we are repeatedly blurring
the data by summarizing the data points in terms of their
cluster centers.

The algorithm to build the cluster hierarchy is described in
Algorithm 1. In each iteration of Algorithm 1, Mean Shift is
applied to a list of cluster centers stored in
Hierarchy[l].ClusterCenters to produce a clustering of these
cluster centers. Initially, each individual data point is con-
sidered a cluster center. Hierarchical Mean Shift performs
some bookkeeping that is not shown in Algorithm 1. For
each cluster center at hierarchy level l, the algorithm stores
the total distance it was moved by Mean Shift to a new
cluster center at level (l + 1). Furthermore, the algorithm
maintains two cluster membership lists for each cluster at
level (l + 1). The first cluster membership list consists of
the previous cluster centers at level l. The second cluster
membership list consists of the original data points in the
initial query data set.

4.3 Querying the user
One of the advantages of Hierarchical Mean Shift is its

ability to preserve “the structure and integrity of the out-
liers in the clustering process” [12]. Leung et al. define
different cluster validity metrics such as lifetime, compact-
ness, isolation and outlierness to measure the “goodness” of

3As mentioned in Section 4.5, we are using kd-trees to speed
up Mean Shift, which allows this minimum distance compu-
tation to be efficient.



Algorithm 1: Hierarchical Mean Shift - Building the
clustering hierarchy
Let S be the data set and h be the bandwidth parameter ;
Set h = minimum non-zero distance between any two
points in S;
Set Hierarchy[0].ClusterCenters = S;
l = 0;
repeat

newClusterCenters =
MeanShift(Hierarchy[l].ClusterCenters, h);

Set Hierarchy[l+1].ClusterCenters =
newClusterCenters;
h = h ∗ 1.1;
l = l + 1;

until size(Hierarchy[l].ClusterCenters) == 1 ;

a cluster in the hierarchy. This section describes two types
of criteria, each of which can be used with Hierarchical Mean
Shift resulting in two different approaches to rare category
detection. We refer to these two approaches as Hierarchical
Mean Shift - Outlierness (HMS-Out) and Hierarchical Mean
Shift - Compactness-Isolation (HMS-CI).

Outlierness.
The Outlierness criterion [12] is based on the concept of

the lifetime of a cluster. The lifetime of a cluster is defined
as the range of logarithmic scales over which the cluster
survives. Similarly, we can define the lifetime in the Hi-
erarchical Mean Shift scenario as the range of logarithmic
bandwidths over which the cluster survives i.e. the loga-
rithmic difference between the bandwidth when the cluster
is formed and the bandwidth when the cluster is merged
with other clusters. The Outlierness metric helps in iden-
tifying outliers in the data. The cluster which has a long
lifetime and fewer points will have high Outlierness value.
Intuitively, rare categories are more likely to have high Out-
lierness value as they tend to have fewer points and longer
lifetime.

Outliernessi =
lifetime of Ci

number of data points in Ci
(13)

The cluster hierarchy built in the first phase is traversed
and the list of unique clusters is formed. The same cluster
can persist at more than one level of the hierarchy and all the
different occurrences are treated as one unique cluster. The
Outlierness value for each cluster is calculated and the list is
sorted in the decreasing order of their Outlierness value. To
query a cluster, we ask the user to label its representative
data point, which is the data point which has moved the least
in terms of its Mean Shift distance before being assigned to
the cluster center.

Compactness-Isolation.
Compactness and isolation [12] are another set of criteria

that can measure the quality of a cluster. Intuitively, a clus-
ter is well-defined if the distance between the data points
inside the cluster is small (ie. it is compact) and those out-
side is large (ie. it is isolated). Given pi is the cluster center
of Ci and h is the scalar bandwidth parameter, the isolation
and compactness of Ci can be calculated as

isolation =

P

x∈Ci
e−‖x−pi‖

2/2h2

P

x e−‖x−pi‖
2/2h2

(14)

compactness =

P

x∈Ci
e−‖x−pi‖

2/2h2

P

x∈Ci

P

j e−‖x−pj‖
2
/2h2

(15)

The isolation and compactness metric are close to one for
a good cluster. These two criteria can be combined into one
single Compactness− Isolation criterion (CI) for the clus-
ter which is simply the sum of isolation and compactness
values of the cluster. This criterion is calculated for each
cluster in the cluster hierarchy and stored in a list sorted in
decreasing order. The CI criterion is more computationally
expensive to compute than Outlierness. The worst case run
time complexity for CI is O(n2) and occurs when CI needs to
be computed for all clusters at the lowest level of the cluster
hierarchy.

The list created by using one of the above two criteria is
traversed in the third phase. Clusters with higher validity
criterion are selected first. The representative point of the
cluster is chosen as it was in the Outlierness criterion. If
this representative point has already been selected for label-
ing then the cluster is skipped; otherwise, the representative
point is presented to the user for labelling. The entire algo-
rithm is described in Algorithm 2.

Algorithm 2: Hierarchical Mean Shift for rare category
detection
Build cluster hierarchy using Hierarchichal Mean Shift.
Let ht be its height.
Let L = empty
for i← ht to 0 do

For each cluster C at height i calculate its validity
criteria value if it is not done previously and add it
to list L;

end
Sort list L in decreasing order of the validity criteria
values of the clusters;
while not all classes have been discovered do

Let C be the next cluster to select in list L;
Let p be the data point which has least Mean Shift
distance from the cluster center of C;
if p has not been selected for labeling then

Present p to user for labeling;
else

continue;
end

end

4.4 Tiebreaker
The sorted list may contain cluster entries with the same

criterion values. These ties in criterion values can happen
for clusters at the lower levels of the hierarchy as low band-
width values lessen the effect of neighboring points for a
given cluster resulting in high Compactness-Isolation values.
Ties in Outlierness also occur when small compact clusters
have low lifetimes due to being near much bigger clusters.
In such cases a tiebreaker condition can be applied. For each
cluster with the same criterion values, the distance between
the cluster mode and each data point already labeled by



the expert is calculated. For our highest average distance
(HAD) tiebreaker, the point with the highest average of the
distances is picked first for labeling. This heuristic means
that data points near already queried points are left to be
queried later, thus decreasing the possibility of picking data
points near the classes that have already been discovered.
In this way, tiebreakers use the labels that have been pro-
vided by the user to improve performance. Computing the
HAD is typically very quick when k is small as the number
of clusters with the same criterion value and the number of
points already labeled by the expert are far less than n.

4.5 Computational Considerations
Each iteration of Mean Shift requires computing the dis-

tance between an individual data point and all other data
points. This distance computation is then performed over
all the data points. If there are n data points of dimension d
and if Mean Shift requires M iterations to converge, then the
total time complexity of Mean Shift is O(n2dM). Mean Shift
can be computationally expensive when n is large, hence sev-
eral techniques, including locality-sensitive hashing [7] and
an improved fast Gauss transform [20], have been developed
to speed up the Mean Shift algorithm. Another technique
for speeding up Mean Shift relies on the use of kd-trees [16],
which is a multi-resolution space-partitioning data structure
that can be used to dramatically reduce the O(n2) complex-
ity of an all-pairs computation. The data points falling into
a partition defined by a leaf node of the kd-tree are treated
as a homogenous group, thereby allowing an approximation
to be computed. Thus, rather than computing the distance
between data point xi and all other data points xj , j 6= i,
one can compare xi against groups corresponding to the par-
titions of the kd-tree.

In our work, we used a single kd-tree approach which
is similar to the optimization used for kernel regression by
Deng et al. [10]. Like Mean Shift, kernel regression requires
the calculation of the weighted average of points falling within
a hypersphere centered at the query point, with radius spec-
ified by the bandwidth. This computation is shown in Equa-
tion 16, where ŷ(xq) is the weighted average being computed,
xq is the query point, and wi(xq) is the weight of the ith dat-
apoint with respect to the query point.

ŷ(xq) =

Pn
i=1

wi(xq)xi
Pn

i=1
wi(xq)

(16)

Equation 16 for kernel regression is similar to Equation 9 for
meanshift.

The use of kd-trees in kernel regression is based on the
idea that if we have a group with k datapoints in which we
know that all the weights in the group with respect to the
query point xq are close to the same value w then approxi-
mate values of

P

wi(xq)xi and
P

wi(xq) can be used. This
approximate value can be obtained in constant time without
the need to sum the individual members of the group. Imple-
mentation of this approximation is straightforward by sup-
plementing a kd-tree with extra information at each node.
The nodes in the kd-tree act as hyper-rectangles enclosing all
the points of the node and are treated as groups. To compute
P

wi(xq)xi and
P

wi(xq) a top-down search of a kd-tree is
performed where at each node a decision is made either to
treat all the points in the node as a group (cutoff) or recur-
sively continue the search of the children (recurse). Consid-

ering xq and the hyper-rectangle of the node, the minimum
and the maximum distance of xq from the hyper-rectangle
i.e. Dmin and Dmax can be easily computed in turn, provid-
ing the maximum and minimum possible weights wmin and
wmax of any data points owned by the node. If the values
of wmin and wmax are close enough then the cutoff option
is taken. The algorithm makes a cutoff if

(wmax − wmin)NB

weight so far in search
< τ (17)

where τ is a system constant.
Wang et al. [18] propose a dual-tree optimization for

mean-shift in which two kd-trees are built separately, one
for the query points and the other for the reference points.
These trees are traversed simultaneously and each reference
tree node’s weight contribution to a query tree node is re-
cursively updated by comparing these two nodes and their
children. Once both trees have been traversed, the dual-tree
algorithm produces a memory-efficient cache of the Mean
Shift values of all the query points. However, for every iter-
ation of Mean Shift, the query tree has to be rebuilt since
the query points have been changed while the reference tree
remains fixed. The dual-tree method is ideally suited for
datasets which need a small number of Mean Shift iterations
[18]. The data sets in our work involve many iterations of
Mean Shift. As a result, the dual-tree Mean Shift method
tends to be slower than the single kd-tree method due to the
frequent rebuilding of the query tree.

5. EVALUATION
We evaluate our algorithms on the Abalone, Shuttle, Op-

tical Digits, Optical Letters, Statlog and Yeast data sets
taken from the UCI data repository [14]. We chose data
sets that had a large number of class labels and had con-
tinuous feature values. All the datasets except for Abalone
and Yeast are sub-sampled. This sub-sampling is done to
create imbalanced data sets that suit the rare category de-
tection problem where some classes dominate the data and
the remaining classes have only a few records. Shuttle is
randomly sub-sampled from the original dataset to produce
a smaller data set with 4000 examples. The original Optical
Digits, Optical Letters, and Image Segmentation (Statlog)
datasets contain almost the same number of examples for
each class. Following the evaluation in [15], we changed the
class distributions for the Optical Digits and Image Segmen-
tation datasets into a geometric series with the largest class
owning half of the data and each subsequent class being half
as small with the smallest class containing 8 examples. The
Optical Letters data set has been sampled in such a way
that the two largest classes own half the data and the sub-
sequent pairs of classes being half as small with the smallest
class containing 8 examples. Table 1 has a summary of their
properties. The number of records listed in Table 1 is after
subsampling if the data sets were subsampled. The data sets
are first standardized before running the experiments.We use
a bandwidth increment of k = 1.1 in all our experiments.

All the algorithms are evaluated based on the total num-
ber of queries presented to the user before the user sees at
least one example from all the classes in the data set. In
these queries, the user is assumed to provide the correct
class label for the queried data point. This evaluation met-
ric is the standard used in rare category detection [15, 8].
The assumption with this performance metric is that a sin-



Name Dims Records Classes Smallest
class

Largest
class

Abalone 7 4177 20 0.34% 16%
Shuttle 8 4000 7 0.02% 64.2%
Optical
Digits

64 1040 10 0.77% 50%

Optical
Letters

16 2128 26 0.37% 24%

Statlog 19 512 7 1.5% 50%
Yeast 8 1484 10 0.33% 31.68%

Table 1: Properties of the data sets.

Dataset HMS-
CI

HMS-
CI
+HAD

HMS-
Out

HMS-
Out
+HAD

NNDM Inter-
leave

Abalone 1195 93 603 385 124 193
Shuttle 44 32 36 28 162 35
Optical
Digits

100 100 160 118 576 117

Optical
Letters

133 133 161 182 420 489

Statlog 18 20 34 124 228 54
Yeast 73 91 103 77 88 111

Table 2: Number of queries needed to identify all
classes for the HMS methods using the Highest Av-
erage Distance (HAD) tiebreaker

gle example would help the expert to generalize about the
class to which the example belongs. Intuitively, the metric
measures the effort the expert expends in order to discover
all the classes in the data set. These results are summarized
in Table 2.

Table 4 illustrates the category detection curves, which
show the number of classes discovered as a function of the
number of queries to the user. The area under the category
detection curve can be used as an alternative metric for eval-
uating the algorithms. The AUC metric favors algorithms
that can quickly discover the majority of the classes but are
slow to discover the last few remaining classes. Table 3 sum-
marizes the AUC metric for the different algorithms, with
the AUC being normalized by the total area in the graph.

We compare the performance of ’Hierarchical Mean Shift
- Outlierness’ (HMS-Out), ’Hierarchical Mean Shift - Com-
pactnessIsolation’ (HMS-CI), ’Hierarchical Mean Shift - Out-
lierness + HAD Tiebreaker (HMS-CI+Out), and ’Hierarchi-
cal Mean Shift - CompactnessIsolation + HAD Tiebreaker’
(HMS-CI+HAD) against existing rare category detection
techniques NNDM [8] and Interleave [15] on the 6 data sets.
Since the performance of Interleave is sensitive to the start-
ing conditions for EM, we ran Interleave 10 times on each
data set with different random starting conditions and re-
ported the best result. We set the category priors for NNDM
to be their empirically observed values in the data sets.

6. DISCUSSION
The results in Table 2 and Table 4 show that the HMS

approaches outperform both NNDM and Interleave. With-
out the tiebreaker heuristic, the HMS variants outperform
Interleave and NNDM on 4 out of the 6 datasets and come
within one hint of Interleave on the Shuttle dataset.

The Abalone data set was a difficult data set for category

Dataset HMS-
CI

HMS-
CI
+HAD

HMS-
Out

NNDM Inter-
leave

Abalone 0.835 0.873 0.837 0.846 0.840
Shuttle 0.925 0.929 0.917 0.480 0.905
Optical
Digits

0.855 0.855 0.840 0.199 0.808

Optical
Letters

0.936 0.936 0.917 0.573 0.765

Statlog 0.956 0.958 0.944 0.472 0.934
Yeast 0.821 0.805 0.793 0.838 0.778

Table 3: Area under the category detection curves
in Table 4, normalized by the total area in the graph.

detection by HMS. From the category detection curves for
Abalone in Table 4, we see that the HMS-CI method finds
18 of the total 20 classes more quickly than NNDM and
Interleave, but fails to find the last 2 classes. The HMS-Out
method finds 17 of 20 classes more quickly than NNDM and
Interleave and also fails to discover the same 2 classes as
HMS-CI. Analyzing the Abalone dataset reveals that these
classes are small compact clusters that are very close to more
than one large cluster. As a result, their Outlierness lifetime
is low as they are merged into one of the larger clusters early
on in the cluster hierarchy building phase, resulting in a low
Outlierness value. Hence, HMS-Out fails to find these clus-
ters quickly. Similarly, in the case of HMS-CI, the points
from nearby larger clusters contribute substantially to the
denominators of the compactness and isolation criteria of
the small cluster, resulting in low values for Compactness-
Isolation. The end result is that for Abalone, there are sev-
eral data points that are tied either in terms of Outlierness or
Compactness-Isolation near the bottom of the cluster hier-
archy. The NNDM algorithm performs well on the Abalone
data set because it is successful at discovering changes in
local density.

If we add the HAD tiebreaker heuristic, the HMS category
detection methods outperform both NNDM and Interleave
on all six data sets. The HAD heuristic allows the category
detection algorithm to query the data points that are tied
with the same criterion values using a more intelligent order-
ing. The improvement in category detection for the Abalone
data set is due to the ability of the HAD heuristic to require
the queries to be further away from all of the already queried
data points. Without this tiebreaker, the HMS algorithms
will query the data points with identical criterion values in
some arbitrary order.

The HMS-CI methods, both with and without the HAD
tiebreaker heuristic, outperform the HMS-Out methods on
all data sets except for Shuttle. The CI criteria appears to
be a better criterion for selecting data points for category
detection but it is more computationally expensive to com-
pute than Outlierness.

We also experimented with a range of values for the band-
width increment k. Due to space limitations, we do not
include the results here. Our empirical results show that
for a range of k = 1.1 − 1.9, the HMS-CI+HAD algorithm
has little variation in the total number of hints needed to
discover all classes. The running times initially decrease as
k increases. However, at a certain point when k becomes
large, the running time starts to increase due to the cost of
computing the HAD tiebreaker heuristic.



For future work, we would like to improve the use of the
user feedback for category detection. Currently, the feed-
back is only used in the HAD tiebreaker heuristic. We would
also like explore different presentation options, such as pre-
senting the entire cluster to the user, rather than just the
representative point from the cluster. In addition, we would
like to make the HMS algorithm even more efficient. The
bottleneck in the algorithm is building the cluster hierarchy.
Although the data standardization and the cluster hierar-
chy construction can be completed offline while the query
selection can be performed online, we would like to make
the algorithm scale to extremely large data sets. Finally, we
would like to investigate the theoretical issues surrounding
the use of HMS for category detection.

7. CONCLUSION
We have proposed a rare category detection method us-

ing Hierarchical Mean Shift. A cluster hierarchy is built
by successively running Mean Shift first on the dataset and
then on the cluster centers using a series of increasing band-
width values. Then, data points are chosen for querying
using two different criteria: Outlierness and Compactness-
Isolation. For data points with identical criterion values,
we use a highest average distance heuristic as a tiebreaker.
This HMS approach has a number of attractive properties.
It does not require the user to provide information regard-
ing the dataset properties such as the number of classes or
the prior probabilities of the classes. Furthermore, the non-
parametric nature of Mean Shift removes any restrictions on
the shapes of the clusters. Finally, and most importantly,
the HMS approach discovers all the categories in the data
sets used in our experiments in much fewer queries than ex-
isting approaches such as Interleave and NNDM.
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Table 4: Category Detection Curves for the Abalone, Shuttle, Optical Digits, Optical Letters, Statlog and
Yeast data sets. We show the results of applying Interleave, NNDM, HMS-Out, HMS-CI, and HMS-CI+HAD
to these data sets. To avoid excessive clutter, we do not show HMS-Out+HAD since its results are similar
to that of HMS-CI+HAD.


