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Abstract

Early disease outbreak detection systems
typically monitor health care data for irreg-
ularities by comparing the distribution of re-
cent data against a baseline distribution. De-
termining the baseline is difficult due to the
presence of different trends in health care
data, such as trends caused by the day of
week and by seasonal variations in temper-
ature and weather. Creating the baseline
distribution without taking these trends into
account can lead to unacceptably high false
positive counts and slow detection times.
This paper replaces the baseline method of
(Wong et al., 2002) with a Bayesian network
which produces the baseline distribution by
taking the joint distribution of the data and
conditioning on attributes that are responsi-
ble for the trends. We show that our algo-
rithm, called WSARE 3.0, is able to detect
outbreaks in simulated data with almost the
earliest possible detection time while keeping
a low false positive count. We also include
the results of running WSARE 3.0 on real
Emergency Department data.

1. Introduction

Farly disease outbreak detection systems monitor
health care data for any irregularities due to the onset
of an epidemic. These systems compare recent data
against baseline data and raise an alarm if the devia-
tions from the baseline are significant. On the surface,
this problem seems like a traditional anomaly detec-
tion task. Typical anomaly detection, however, finds
isolated anomalies in feature space which are not at all

indicative of a disease outbreak. As an example, sup-
pose we apply a traditional anomaly detection tech-
nique to Emergency Department (ED) records. We
might then find an unusual record such as a patient
that was over a hundred years old living in a sparsely
populated region. Instead of finding such unusual iso-
lated cases, early outbreak detection algorithms are
interested in finding specific groups whose profile is
anomalous relative to their typical profile. This type
of anomalous pattern detection is similar to work done
on mining contrast sets (Bay & Pazzani, 1999). Thus,
in our example of using ED records, if there is a dra-
matic upswing in the number of children from a partic-
ular neighborhood appearing in the ED with diarrhea,
then an early detection system should raise an alarm.

Determining the baseline distribution is a problem
that all early detection systems face. This distribu-
tion is usually obtained from a period of time in the
past when no epidemics are known to happen. How-
ever, determining this distribution is extremely diffi-
cult due to the different trends present in health care
data. Seasonal variations in weather and temperature
can dramatically alter the distribution of health care
data. For example, flu season typically occurs during
mid-winter, resulting in an increase in ED cases in-
volving cough and fever symptoms. Disease outbreak
detectors intended to detect epidemics such as SARS,
West Nile Virus and anthrax are not interested in de-
tecting the onset of flu season and would be thrown off
by it. Day of week variations make up another peri-
odic trend. Figure 1, which is taken from (Goldenberg
et al., 2002), clearly shows the periodic elements in
cough syrup and liquid decongestant sales.

Choosing the wrong baseline distribution can have dire
consequences for an early detection system. Consider
once again a database of ED records. Suppose we are
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presently in the middle of flu season and our goal is
to detect anthrax, not an influenza outbreak. Anthrax
initially causes symptoms similar to those of influenza.
If we choose the baseline distribution to be outside of
the current flu season, then a comparison with recent
data will trigger many false anthrax alerts due to the
flu cases. Conversely, suppose we are not in the mid-
dle of flu season and that we obtain the baseline dis-
tribution from the previous year’s influenza outbreak.
The system would now consider high counts of flu-like
symptoms to be normal. If an anthrax attack occurs,
it would be detected at a very late stage.
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Figure 1: Cough syrup and liquid decongestant sales
from (Goldenberg et al., 2002)

There are clearly tradeoffs when defining this baseline
distribution. At one extreme, we would like to capture
any current trends in the data. One solution would be
to use only the most recent data, such as data from
the previous day. This approach, however, makes the
algorithm susceptible to outliers that may only occur
in a short but recent time period. On the other hand,
we would like the baseline to be accurate and robust
against outliers. We could use data from all previ-
ous years to establish the baseline. This choice would
smooth out trends in the data and likely raise alarms
for events that are due to periodic trends.

In (Wong et al., 2002), we made the baseline distribu-
tion to be data obtained 35, 42, 49 and 56 days prior to
the current day under examination. These dates were
chosen to incorporate enough data so that seasonal
trends could be captured and they were also chosen
to avoid weekend versus weekday effects by making
all comparisons from the same day of week. We con-
cede that this baseline was chosen somewhat arbitrar-
ily. Ideally, the detection system should determine the
baseline automatically.

In this paper, we propose building a Bayesian net-
work to represent the joint distribution of the baseline.
From this joint distribution, we represent the baseline
distributions from the conditional distributions formed

by conditioning on what we term environmental at-
tributes. These features are precisely those attributes
that account for trends in the data, such as the season,
the current flu level and the day of week.

2. WSARE 3.0

The WSARE algorithm, which stands for “What’s
Strange About Recent Events”, operates on discrete,
multidimensional temporal data sets. This algorithm
compares recent data against a baseline distribution
with the aim of finding rules that summarize signifi-
cant patterns of anomalies. Each rule takes the form
X; = V7, where X; is the ith feature and V is the jth
value of that feature. Multiple components are joined
together by a logical AND. For example, a two compo-
nent rule would be Gender = Male AND Home Loca-
tion = NW. Due to computational issues, the number
of components for each rule is two or less. It is helpful
to think of the rules as SQL SELECT queries. They
characterize a subset of the data having records with
attributes matching the components of the rule.

At this point we will provide an overview of our ex-
tended WSARE algorithm, which we will refer to as
WSARE 3.0. We will refer to the WSARE algorithm
in (Wong et al., 2002) as version 2.0. As in the pre-
vious version, WSARE 3.0 operates on a daily basis,
in which for each day, the algorithm treats records
from the past 24 hours as recent events. Using his-
torical data beyond the past 24 hours, WSARE 3.0
then creates a baseline distribution which is assumed
to capture the usual behaviour of the system being
monitored under the environmental conditions of the
current day. Once the baseline distribution has been
created, the algorithm considers all possible one and
two component rules over events occurring on the cur-
rent day. The rules are scored with a scoring func-
tion that assigns high scores to rules corresponding to
subsets of data that have unusual proportions when
compared against the baseline distribution. The rule
with the highest score for the day has its p-value cal-
culated using a randomization test. If this p-value is
lower than a specified threshold, an alert is raised.

The component that differentiates WSARE 3.0 from
WSARE 2.0 is the step that creates the baseline dis-
tribution. The previous version simply used data from
35, 42, 49 and 56 days prior to the current day. Ver-
sion 3.0 builds a Bayesian network from all data prior
to the past 24 hours and then represents the baseline
distribution as a data set sampled from the Bayesian
network. We will describe this step in detail below,
while the other parts of the algorithm will be described
briefly since they are thoroughly discussed in (Wong



et al., 2002).

2.1. Creating the baseline distribution

Learning the baseline distribution involves taking all
records prior to the past 24 hours and building a
Bayesian network from this subset. During the struc-
ture learning, we differentiate between environmental
attributes, which are features that cause trends in the
data, and response attributes, which are the remaining
features. The environmental attributes are specified
by the user based on the user’s knowledge of the prob-
lem domain. If there are any latent environmental at-
tributes that are not accounted for in this model, the
detection algorithm may have some difficulties. How-
ever, as will be described later in this paper, WSARE
3.0 was able to overcome some hidden environmental
attributes in our simulator.

The network structure is learned from data using an ef-
ficient structure search algorithm called Optimal Rein-
sertion (Moore & Wong, 2003) based on ADTrees
(Moore & Lee, 1998). Environmental attributes in
the structure are prevented from having parents be-
cause we are not interested in predicting their distribu-
tions, but rather, we want to use them to predict the
distributions of the response attributes. The struc-
ture search also exploits this constraint by avoiding
search paths that assign parents to the environmental
attributes.

We have often referred to environmental attributes as
attributes that cause periodic trends. Environmen-
tal attributes, however, can also include any source
of information that accounts for recent changes in the
data. Incorporating such knowledge into the Bayesian
network can aid in detecting anomalies other than the
ones we already know about. For example, suppose we
detect that a botulism outbreak has occurred and we
would still like to be on alert for any anthrax releases.
We can add “Botulism Outbreak” as an environmental
attribute to the network and supplement the current
data with information about the botulism outbreak.

Once the Bayesian network is learned, we have a joint
probability distribution for the data. We would like to
produce a conditional probability distribution, which
is formed by conditioning on the values of the environ-
mental attributes. Suppose that today is February 21,
2003. If the environmental attributes were Season and
Day of Week, then we would set Season = Winter and
Day of Week = Weekday. Let the response attributes
in this example be Xj,..., X,,. We can then obtain
the probability distribution P(Xj, ..., X, | Season =
Winter, Day of Week = Weekday) from the Bayesian
network. For simplicity, we represent the conditional

distribution as a data set formed by sampling 10000
records from the Bayesian network conditioned on the
environmental attributes. The size of this sampled
data set has to be large enough to ensure that samples
with rare combinations of attributes will be present,
hence the choice of 10000 records. Note that this sam-
pling is easily done in an efficient manner since envi-
ronmental attributes have no parents. We will refer
to this sampled data set as D Bypgserine- The data set
corresponding to the records from the past 24 hours of
the current day will be named DB, ccent-

We chose to use a sampled data set instead of using
inference mainly because sampling requires D Bpgserine
to be generated only once and then we can use it to
obtain the p-values for all the rules. With inference,
we would need to sample a different D By gepine for ev-
ery rule in order to perform the randomization test
described in the next section. While a sampled data
set provides the simplest way of obtaining the condi-
tional distribution, we have not, however, completely
ignored the possibility of using inference to speed up
this process. We would like to investigate this direc-
tion further in our future work.

2.2. Scoring each rule

Finding the best rule for the current day requires com-
paring how different recent records are from the base-
line. This step requires a two-by-two contingency ta-
ble to be established for each rule. Suppose the rule
is Respiratory Syndrome = True. We set up a con-
tingency table as shown in Table 1 with the cells con-
taining counts for records matching and not matching
the rule for both data sets DBy ccent and DBpgseline-
Let Chrecent be the count for DB,.ccent and Cpgseline b€
that for DBpgseline -

The score of a rule is determined through a hypoth-
esis test in which the null hypothesis is the indepen-
dence of the row and column attributes of the two-
by-two contingency table. In effect, the hypothesis
test measures the difference between the counts for
the recent period and those for the baseline. This
test produces a p-value that determines the signifi-
cance of the anomalies found by the rule. This p-
value will be referred to as the score in order to dis-
tinguish it from p-values used later on. We use the
Chi Squared test whenever its assumptions are not
violated. Since we are searching for anomalies, the
counts in the contingency table are frequently small
numbers and we resort to using Fisher’s Exact Test
(Good, 2000). Running Fisher’s Exact Test on Table
1 yields a score of 0.00000464, which indicates that
Chrecent for the rule Respiratory Syndrome = True is



anomalous when compared to that of Cygserine-

Table 1. A Sample 2x2 Contingency Table

Crecent Cbaselz'ne
RespiratorySyndrome = | 58 653
True
RespiratorySyndrome # | 409 9347
True

When scoring a rule, we are making a comparison
between current data and data obtained from the
Bayesian network, which will differ slightly from the
true baseline distribution because the network struc-
ture was learned from a finite amount of data. In the
future, we would like to incorporate some notion of
the Bayesian network’s uncertainty into these scores,
perhaps by reporting a confidence interval.

2.3. Obtaining the p-value for each rule

The score produced by the previous step cannot be
accepted at face value as a p-value because of a multi-
ple hypothesis testing problem. Suppose we follow the
standard practice of rejecting the null hypothesis when
the p-value is < a, where a = 0.05. When only one
hypothesis test is performed, the probability of making
a false discovery under the null hypothesis would be «,
which equals 0.05. On the other hand, if we perform
1000 hypothesis tests, one for each possible rule under
consideration, then the probability of making a false
discovery could be as bad as 1 — (1 — 0.05)100 ~ 1,
which is much greater than 0.05 (Miller et al., 2001).

We need to add an adjustment for the multiple hypoth-
esis tests. This problem can be addressed using a Bon-
ferroni correction (Bonferroni, 1936) but this approach
can be unnecessarily conservative. Instead, we use a
randomization test (Good, 2000) in which the date is
assumed to be independent of the other features. In
this test, the non-date features of both DB, .¢cent and
D Bpgseiine remain the same but the dates are shuf-
fled between the two data sets, resulting in two newly
randomized data sets RDB,ccent and RDBygseline Te-
spectively. RDBccent and RD Bygserine Will now both
contain records with dates from the original recent pe-
riod and from the baseline period. The procedure is
described below.

Let UCP = Uncompensated p-value (i.e., the score
as defined above).

For j = 1 to 1000
Let DB = DBT_'ecent U DBbaseline
Produce RDB.,..,; and RDB]

baseline

from DB.

Let RDBJ = RDBg‘ecent U RDBgaseline

Let BR’ = Best rule on RDB

Let UCP’ = Uncompensated p-value of BR’
on RDB’

Let the compensated p-value of BR be C PV, that is

# of Rand Tests in which UCP? > UCP

PV =
opv # of Rand Tests

CPV estimates the chance of seeing an uncompen-
sated p-value as good as UCP if in fact there was no
relationship between the date and the other features.

3. Evaluation
3.1. The Simulator

We evaluated WSARE 3.0 on a small scale city simu-
lator. Our city consists of nine regions, each of which
contains a different sized population, ranging from 100
people in the smallest area to 600 people in the largest
section. We ran the simulation for a two year period
starting from January 1, 2002 to December 31, 2003.
The environment of the city is not static, with weather,
flu levels and food conditions in the city changing from
day to day. Flu levels are typically low in the spring
and summer but start to climb during the fall. We
made flu season strike in winter, resulting in the high-
est flu levels during the year. Weather, which only
takes on the values of hot or cold, is as expected for
the four seasons, with the additional feature that it
has a good chance of remaining the same as it was
yesterday. Each region has a food condition of good
or bad. A bad food condition facilitates the outbreak

of food poisoning in the area.
Anthrax Concentration,

Previous Region
Food Condition,

Day of
Week

@ Previous
/ Flu Level
Region Foo Region Anthra»

Figure 2. City Status Bayesian Network

We implemented this city simulation using a Bayesian
network, as shown in Figure 2. We will use the conven-
tion that any nodes shaded black in the Bayes network
are set by the system and do not have their values
generated probabilistically. Due to space limitations,
instead of showing eighteen separate nodes for the cur-
rent and previous food conditions of each region, we
summarize them using the generic nodes Region Food
Condition and Previous Region Food Condition re-
spectively. This same space saving technique is used



for the current and previous region anthrax concentra-
tions. Most of the nodes in this Bayesian network have
an arity of two to three values. For each day, after the
black nodes have their values set, the values for the
white nodes are sampled from the Bayesian network.
These records are stored in the City Status (CS) data
set. The simulated anthrax release was selected for a
random date during a specified time period. One of
the nine regions is chosen randomly for the location of
the simulated release. On the date of the release, the
Region Anthrax Concentration node is set to have the
value of High. The anthrax concentration remains high
for the affected region for a randomly chosen length of
time.

Region
Anthrax
Concentration

Region
Grassiness

Region
Food
Condition

Figure 3. Patient Status Bayesian Network

Table 2. Examples of two records in the PS data set

Location NW N

Age Child Senior
Gender Female Male
Flu Level High None
Day of Week ‘Weekday ‘Weekday
‘Weather Cold Hot
Season Winter Summer
Action Absent ED visit
Reported Symptom | Nausea Rash
Drug None None
Date Jan-01-2002 Jun-21-2002

The second Bayesian network used in our simulation
produces individual health care cases. Figure 3 de-
picts the Patient Status (PS) network. On each day,
for each person in each region, we sample the individ-
ual’s values from this network. The black nodes first
have their values assigned from the CS data set record
for the current day. The white nodes are then sampled
from the PS network. Each individual’s health profile
for the day is thus generated. The disease node indi-
cates the status of each person in the simulation. A

person is either healthy or they can have, in order of
precedence, allergies, the cold, sunburn, the flu, food
poisoning, heart problems or anthrax. If an individual
has more than one disease, the disease node picks the
disease with the highest precedence. A sick individual
then exhibits one of the following symptoms: none,
respiratory problems, nausea, or a rash. The actual
symptom associated with a person may not necessar-
ily be the same as the symptom that is reported to
health officials. Actions available to a sick person in-
clude doing nothing, buying medication, going to the
ED, or being absent from work or school. As with the
CS network, the arities for each node in the PS net-
work are small, ranging from two to four values. If the
patient performs any action other than doing nothing,
the patient’s health care case is added to the PS data
set. Only the attributes in figure 3 labelled with up-
percase letters are recorded, resulting in a great deal
of information being hidden from the detection algo-
rithm, including some latent environmental attributes.
The number of cases generated daily by the PS net-
work is typically in the range of 30 to 50 records. Table
2 contains two examples of records in the PS data set.

3.2. Algorithms

'All Health Care Cases

Counts of health care cases

0 50 100 150 200 250 300 350
Day number

Figure 4: Daily Counts of Health Care Data

We ran five detection algorithms on 100 different PS
data sets. Fach data set was generated for a two year
period, beginning on January 1, 2002 and ending De-
cember 31, 2003. The detection algorithms trained on
data from the first year until the current day while
the second year was used for evaluation. The anthrax
release was randomly chosen in the period between
January 1, 2003 to December 31, 2003.

We tried to simulate anthrax attacks that are not triv-
ially detectable. Figure 4 plots the total count of
health care cases on each day during the evaluation pe-
riod. A naive detection algorithm would assume that
the highest peak in this graph would be the date of the
anthrax release. However, the anthrax release for Fig-



ure 4 occurred on day 276. Occasionally the anthrax
releases affect such a limited number of people that
it was virtually undetectable. Consequently, we only
used data sets with more than nine reported anthrax
cases on any day during the attack period.

The Standard Algorithm The first algorithm
used is a common anomaly detection algorithm which
we will call the Standard Algorithm. This detector de-
termines the mean and variance of the total number
of records on each day in the PS data set during the
training period. A threshold is calculated based on
the formula below, in which ®~! is the inverse to the
cumulative distribution function of a standard normal
while the p-value is supplied by the user.

-val
threshold = p+ o * ®~1(1 — b-value

)

If the aggregate daily counts of health care data ex-
ceeds this threshold during the evaluation period, the
Standard Algorithm raises an alarm. We used a train-
ing period of January 1, 2002 to December 31, 2002.

WSARE 2.0 WSARE 2.0 was also evaluated, using
a baseline distribution of records from 7, 14, 21 and
28 days before the current day. The attributes used
by WSARE 2.5 and 3.0 as environmental attributes
were ignored by WSARE 2.0. If these attributes were
not ignored, WSARE 2.0 would report many trivial
anomalies. For instance, suppose the environmental
attribute Day of Week = Sunday for the current day.
If this attribute were not ignored, WSARE 2.0 would
notice that 100% of the records for the current day had
Day of Week = Sunday while only 14.2% of records in
the baseline data set matched this rule.

WSARE 2.5 Instead of building a Bayesian net-
work over the past data, WSARE 2.5 simply builds
a baseline from all records prior to the current pe-
riod with their environmental attributes equal to the
current day’s. In our simulator, we used the environ-
mental attributes Flu Level, Season, Day of Week and
Weather. To clarify this algorithm, suppose for the
current day we have the following values of these en-
vironmental attributes: Flu Level = high, Season =
winter, Day of Week = weekday and Weather = cold.
Then D Bygserine would contain only records before the
current period with environmental attributes having
exactly these values. It is possible that no such records
exist in the past with exactly this combination of en-
vironmental attributes. If there are fewer than five
records in the past that match, WSARE 2.5 cannot
make an informed decision when comparing the cur-

rent day to the baseline and simply reports nothing for
the current day.

WSARE 3.0 WSARE 3.0 uses the same environ-
mental attributes as WSARE 2.5 but builds a Bayesian
network for all data from January 1, 2002 to the begin-
ing of the current day. We hypothesized that WSARE
3.0 will detect the simulated anthrax outbreak sooner
than WSARE 2.5 because 3.0 can handle the cases
where there are no records corresponding to the cur-
rent day’s combination of environmental attributes.
The Bayesian network is able to generalize from days
that do not match today precisely, producing an esti-
mate of the desired conditional distribution. For effi-
ciency reasons, we allowed WSARE 3.0 to learn a net-
work structure from scratch once every 30 days. On
intermediate days, WSARE 3.0 simply updates the pa-
rameters of the previously learned network without al-
tering its structure. We also ran a version of WSARE
3.0 which used a Bonferroni correction instead of a
randomization test.

3.3. Real Emergency Department Data

We also tested out the performance of WSARE 3.0 on
real ED data from a major US city. The database
used contained almost seven years worth of data,
with personal identifying information excluded in or-
der to protect patient confidentiality. The features in
this database include date of admission, coded hospi-
tal ID, age decile, gender, syndrome information and
both home location and work location on a latitude-
longitude grid. WSARE was run on data from the
year 2001 and was allowed to use over five full years
worth of training data from the start of 1996 to the
current day. The environmental attributes used were
month, day of week and the number of cases from the
previous day with respiratory problems. The last en-
vironmental attribute is intended to be an approxima-
tion to the flu levels in the city. We used a one-sided
Fisher’s Exact Test to score the rules such that only
rules corresponding to an upswing in recent data are
considered. In addition, we apply the False Discovery
Rate (Benjamini & Hochberg, 1995) algorithm with
a = 0.1 to compensate for another layer of multiple
hypothesis testing when dealing with historical data
as described in (Wong et al., 2002).

4. Results

Our evaluation criteria examines the algorithms’ per-
formance in terms of detection time versus false posi-
tives over p-values ranging from between 0.01 to 0.15
in 0.01 increments. The lower p-values yield lower false



positives and higher detection times while the converse
is true with higher p-values. Figure 5 fills in the lines
to display the asymptotic behaviour of the algorithms.
The optimal detection time is one day, as shown by
the dotted line at the bottom of the graph. We add
a one day delay to all detection times to simulate re-
ality where current data is only available after a 24
hour delay. Any alert occurring before the start of the
simulated anthrax attack is treated as a false positive.
Detection time is calculated as the first alert raised
after the release date. If no alerts are raised after the
release, the detection time is set to 14 days.

T
standard =-=-=--
WSARE 2.0 ===
WSARE 2.5 ——

\ WSARE 3.0 (Bonferroni)

5+ N, WSARE 3.0 (Randomization) -====: 4

*, Optimal

Detection Time in Days
w
T
!

0 L L L L L L
0 1 2 3 4 5 6 7

False Positives per Month

Figure 5: Asymptotic Behavior of Algorithms for
Simulated Data

From the results of our simulation, WSARE 2.5 and
both versions of WSARE 3.0 outperform the other two
algorithms in terms of the detection time and false pos-
itive tradeoff. On average, WSARE 2.5 and WSARE
3.0 were able to detect the anthrax release within a pe-
riod of one to two days. Both the Standard Algorithm
and WSARE 2.0 were thrown off by the periodic trends
present in the PS data. We had previously proposed
that WSARE 3.0 would have a better detection time
than WSARE 2.5 due to the Bayesian network’s abil-
ity to produce a conditional distribution for a combi-
nation of environmental attributes that may not exist
in the past data. After checking the simulation results
for which WSARE 3.0 outperforms WSARE 2.5, we
conclude that in some cases, our proposition was true.
In others, the p-values estimated by WSARE 2.5 were
not as low as those of version 3.0. The baseline distri-
bution of WSARE 2.5 is likely not as accurate as the
baseline of WSARE 3.0 due to smoothing performed
by the Bayesian network. The false positives found by
WSARE 2.5 and WSARE 3.0 are likely due to other
non-anthrax illnesses that were not accounted for in
the Bayesian network. Had we explicitly added a Re-

gion Food Condition environmental attribute to the
Bayesian network, this additional information would
likely have reduced the false positive count.

The Bonferroni-correction version of WSARE 3.0 had
nearly identical performance to the randomization test
version. We suspect that as the number of attributes
in the data increases, thereby increasing the number
of hypothesis tests, the Bonferroni correction becomes
more conservative and unable to detect some attacks.
We would like to investigate further the differences be-
tween these two approaches.

The following list contains the significant anomalous
patterns found in the real ED data for the year 2001.

1. Sat 2001-02-13: SCORE = -0.00000004 PVALUE = 0.00000000
14.80% ( 74/500) of today’s cases have Viral Syndrome = True
and Encephalitic Prodome = False
7.42% (742/10000) of baseline have Viral Syndrome = True
and Encephalitic Syndrome = False
2. Sat 2001-03-13: SCORE = -0.00000464 PVALUE = 0.00000000
12.42% ( 58/467) of today’'s cases have Respiratory Syndrome = True
6.53% (653/10000) of baseline have Respiratory Syndrome = True
3. Wed 2001-06-30: SCORE = -0.00000013 PVALUE = 0.00000000
1.44% ( 9/625) of today's cases have 100 <= Age < 110
0.08% ( 8/10000) of baseline have 100 <= Age < 110
4. Sun 2001-08-08: SCORE = -0.00000007 PVALUE = 0.00000000
83.80% (481/574) of today's cases have Unknown Syndrome = False
74.29% (7430/10001) of baseline have Unknown Syndrome = False
5. Thu 2001-12-02: SCORE = -0.00000087 PVALUE = 0.00000000
14.71% ( 70/476) of today's cases have Viral Syndrome = True
and Encephalitic Syndrome = False
7.89% (789/9999) of baseline have Viral Syndrome = True
and Encephalitic Syndrome = False
6. Thu 2001-12-09: SCORE = -0.00000000 PVALUE = 0.00000000
8.58% ( 38/443) of today's cases have Hospital ID =1
and Viral Syndrome = True
2.40% (240/10000) of baseline have Hospital ID = 1

and Viral Syndrome = True

Rule 3 is likely due to clerical errors in the data since
the rule finds an increase in the number of people be-
tween the ages of 100 and 110. For Rules 1, 2, 5 and
6, we went back to the original ED database to look
at the text description of the chief complaints for the
cases related to these three rules. Rule 2 cases contain
a large number of complaints of shortness of breath,
possibly due to an illness causing respiratory problems.
The symptoms related to Rules 1, 5 and 6 involve dizzi-
ness, fever and sore throat. Given that Rules 1, 5 and
6 have dates in winter, along with the symptoms men-
tioned, we speculate that this anomalous pattern is
likely caused by an influenza strain.



5. Conclusion

Even with multiple periodic trends and other non-
anthrax illnesses present in the simulated data,
WSARE 3.0 has been shown to be successful at de-
tecting anomalous patterns that are indicative of an
anthrax release. WSARE 3.0 outperformed all the
other algorithms evaluated by detecting the anthrax
releases with close to a one day delay, which is the
earliest possible detection time in our simulation. For
a false positive rate of one per month, WSARE 3.0 de-
tects the simulated anthrax release about 2 days earlier
than WSARE 2.0 and 12 hours earlier than WSARE
2.5. In addition, the false positive rate for WSARE
3.0 could be reduced even further if more environmen-
tal attributes capturing the current state of the system
had been added to the Bayesian network. We have also
demonstrated that WSARE 3.0 is able to find anoma-
lous patterns in real ED data.

6. Related Work

Market basket analysis (Agrawal & Srikant, 1994; Brin
et al., 1997) uses association rules to find patterns in
sales data. Contrast set mining (Bay & Pazzani, 1999)
has the same flavor as the approach taken by WSARE
except it finds rules with more than two components
using a pruning algorithm to reduce the exponential
search space. This optimization prunes away rules
whose counts are too small to yield a valid Chi-Squared
test. Many of these rules are interesting to WSARE.
Multiple hypothesis testing problems are addressed us-
ing a Bonferroni correction.

In health care, Brossette et al. use association rules
for hospital infection control and public health surveil-
lance (Brossette et al., 1998). Their work is similar
to WSARE 2.0, with the main difference being the
additional steps of the randomization test and FDR
in WSARE. Kuldorfl’s Spatial Scan Statistic (Kull-
dorff, 1997) finds clusters in a multi-dimensional point
process that are not explained by a baseline distribu-
tion. Both of these detection algorithms do not take
periodic trends into account. In (Goldenberg et al.,
2002), the authors investigate the use of grocery data
for the early detection of bio-terrorism attacks. Peri-
odic trends in the grocery data are handled by using
a wavelet transform while an autoregressive model is
used for prediction of next day sales.
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