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Abstract  

We describe a wavelet-based automated algorithm for 
detecting disease outbreaks in temporal syndromic data. 
We describe the method, which improves upon the 
Goldenberg et al. (2002) algorithm and its implementation 
on a diverse set of real syndromic data from multiple data 
sources and multiple geographical locations. Our results 
show a robust performance which is comparable to a few 
recently suggested methods. 

1.  Introduction 

We examine the efficacy of using wavelets to predict the 
behavior of authentic syndromic time series data and 
extract anomalies from normal operating patterns.  
Syndromic surveillance involves the monitoring of time 
series containing syndromic data, such as emergency 
room counts, pharmaceutical sales or doctor 
appointments, in order to detect disease outbreaks before 
traditional sentinel methods.  Although syndromic 
surveillance has been developed using multiple 
techniques, there still remain issues of preconditioning the 
data to remove non-disease outbreak patterns, as well as 
finding alerting mechanisms triggered by a variety of 
outbreak patterns while maintaining an operationally 
acceptable false alarm rate.  

One way of removing the non-outbreak-related patterns is 
to monitor the residuals obtained by subtracting 
predictions from observations.  In theory, such residuals 
should yield random noise plus the outbreak signal, 
making the outbreak potentially more detectable by 
standard control chart methods (for more details on 
control chart methods, see Ryan (1989)).  However, other 
techniques to detect outbreaks can also be applied directly 
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to the non-normalized data (although most such 
techniques normalize internally). 

Wavelets provide a promising means for developing both 
of these types of technique because they can decompose a 
signal at multiple time and frequency scales.  This 
capability makes them a good candidate to handle 
syndromic data, which are created by processes operating 
on different time scales (from a weekend sale at a 
pharmacy to a 6 month flu season to a short term 
bioterrorism event) and by periodic effects at different 
frequencies (weekly, monthly, or yearly).  In addition, 
wavelets are computationally tractable and can be easily 
modified for use in real-world applications. 

Recent papers by Bakshi (1998) and Aradhye et al. (2003) 
have investigated the use of wavelets in statistical process 
charts for chemical engineering processes, and these 
investigations have inspired their application to the 
statistical process charts commonly used in syndromic 
surveillance.  But while wavelets have been suggested by 
other researchers in syndromic surveillance (Shmueli and 
Fienberg, 2006), they have rarely been directly compared 
to other methods on real syndromic data.   Goldenberg, et 
al. (2002) performed an analysis using wavelet 
predictions as a way of detecting a simulated anthrax 
outbreak.  Wavelets are also used to some extent in the 
commercial RODS application, which uses the wavelets’ 
averaged level to normalize for long-term trends and 
negative singularities (Zhang et al., 2003). Stacey et al. 
(2005) report a retrospective study of over-the-counter 
medication sales using wavelets to better understand 
trends and patterns. In line with the Goldenberg et al. 
(2002) implementation and in contrast to Zhang et al. 
(2003), we introduce two preconditioning steps to deal 
with day-of-week effect and holidays, and then use all 
levels of the wavelets in order to either predict or alarm. 

In this paper, we empirically examine the performance of 
this algorithm and several modifications, and compare it 
with other methods for removing non-outbreak related 
signals. 
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2.  Data 

This study used time series of aggregated, de-identified 
counts of health indicators derived from the BioALIRT 
program conducted by the U.S. Defense Advanced 
Research Projects Agency (DARPA) (Siegrist and Pavlin, 
2004).  Three types of daily syndromic counts were 
represented: military clinic visit diagnoses, filled military 
prescriptions, and civilian physician office visits. The 
BioALIRT program categorized the records from each 
data type as Respiratory (RESP), Gastrointestinal (GI), or 
Other, and the data were gathered from ten U.S. 
metropolitan areas with substantial representation of each 
data type. This study used the RESP and GI data for all 
three data types from five of the cities for a total of 30 
time series, each including syndromic counts for 700 
days. The RESP time series showed consistent day-of-
week effects and seasonal trends, while the GI time series 
showed only day-of-week effects. Figure 1 shows two 
sample series, one of RESP (top) and one of GI (bottom) 
data from one particular city.   

To restrict attention to authentic data representing routine 
consumer behavior and disease trends, but not containing 
artifacts such as changing participation of data providers, 
we excluded time series in which temporary dropouts and 
permanent step increases were evident. While an 
operational health-monitoring system must manage such 
data problems, the goal of this investigation was to isolate 
the issue of removing systematic data behavior from these 
problems and from the choice of alerting methods that use 
the data residuals as input. The remaining data included 
10 time series of RESP counts and 6 time series of GI 
counts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sample time series of daily counts from respiratory 
and gastrointestinal syndrome groups. 

 

 

3.  Method 

3.1  Data Preconditioning 

The data were first adjusted to account for two known and 
important factors: the day-of-week (DOW) effect and 
holidays. While syndromic data can come from a variety 
of sources (store sales, ER admissions, school absences, 
etc.), these two effects are present in many time series of 
daily syndromic counts. An exploratory analysis of our 
data confirmed that the day-of-week and holiday effects 
are present and strong. For example, many clinics and 
physician offices have reduced hours on weekends and 
holidays, so the corresponding visit counts are much 
lower than those on weekdays. 

3.1.1  DAY-OF-WEEK ADJUSTMENT 
To account for DOW effects we used an adaptive ratio-to-
moving-average with multiplicative effects. The ratio-to-
moving-average method is similar to the X-11 and X-12 
deseasonalizing method employed by the Census Bureau 
and used in many business applications. The method is 
based on estimating and removing the trend, and then 
estimating and removing the seasonal day-of-week effect 
from the de-trended data. We applied the method to a 
moving window of 128 days to capture the changing 
nature of the day-of-week effect. Results from this 
procedure are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Series before (top) and after (bottom) removing the 
day-of-week effect. 

3.1.2  HOLIDAY ADJUSTMENT 
To account for holidays we first assembled a list of all 
federal holidays from the Federal Office of Personnel 
Management (http://www.opm.gov/Fedhol/index.asp). 
Data points on these days were then replaced with 
predictions either from the wavelet prediction algorithm 
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or, when the data history was insufficiently long, with the 
value from the same day in the previous week. 

3.2  Wavelet Decomposition 

Wavelet decomposition was performed using a Haar 
wavelet function.  This function is the most basic of the 
wavelet functions, as it performs a simple averaging and 
differencing at each level, and was chosen in order to 
minimize the introduction of edge problems by the 
algorithm (Shmueli, 2005).  The wavelet decomposition is 
performed as follows: For each level j=1,…,J, a set of 
approximation and detail coefficients is created (the 
original time series is considered to be level j=0): 

 

  

 

The final approximation level (ApproxJ) together with all 
detail levels can be used to completely reconstruct the 
original series.  In fact, there is duplicated information; 
the series may be reconstructed completely if 2j of the 
coefficients at each level j are discarded. Discarding these 
coefficients is called downsampling. If downsampling is 
performed, then each of the detail levels and the final 
approximation coefficients are approximately 
uncorrelated. This correlation removal can be very useful, 
but in the context of forecasting it makes a wavelet 
method untenable for prospective prediction or alerting. 
The reason is that the “holes” mean that at most given 
time points some of the levels will have deleted 
coefficients.  Instead, we do not downsample, thereby 
creating a “stationary wavelet transform” (SWT) where 
we are guaranteed to have coefficients at every level at 
every time point. This is illustrated for one of the series in 
Figure 3. The price is that the coefficients are no longer 
uncorrelated and that the set of time series at each level 
are interdependent. 

An important modification to the ordinary SWT is 
“shifting into the past” such that coefficients are 
computed from only present and past data values but not 
future ones (see Shmueli, 2005 for details). 

3.3  Data Prediction Algorithm 

The stationary wavelet transform described above was 
used to perform both 1-day ahead and 7-day ahead 
predictions. Because the coefficients within a certain level 
are no longer uncorrelated, we used either an 
autoregressive (AR) model or a simpler exponentially 
weighted moving average (EWMA) with smoothing 
coefficient set to λ=0.3 in order to predict the next 
coefficient value. These predicted coefficient values at 
each level were then combined to produce the desired n-
days ahead prediction of the original series. 

To compare prediction performance between different wavelet 
techniques, we computed the median absolute percent error 
(MedAPE) of the residuals using the predictions from the last 
350 days of data.  The median was used rather than the mean for 
this performance metric to reduce the impact of outliers on the 
statistic.  The choice of a percentage error allows comparisons 
across time series.  

 

 

 

 

 

 

 

 

 

 

Figure 3. A 5-level Haar Stationary wavelet transform of 
a preconditioned respiratory syndrome series (top) into 
an approximation (a5) and five detail levels (d1-d5). 

3.4  Alerting Algorithm 

To determine an alert, we used a simple prediction-based 
Shewhart control chart method. The wavelet-based 
predicted count was compared to the actual count, and the 
alert level was generated as the difference divided by the 
standard deviation of the differences excluding holidays 
from the past 28 days. The threshold for the control chart 
was varied to generate a receiver operating characteristics 
(ROC) curve to examine the probability of detection 
versus the probability of a false alarm. 

3.5  Simulated Outbreaks and Evaluation 

Our data do not contain a set of easily identifiable and 
universally accepted disease outbreaks. Although there 
was a set of outbreak dates suggested by a set of experts, 
it was not very reliable (Shmueli, 2005).  Therefore, in 
order to evaluate the performance of our method in the 
presence of outbreaks, we injected the data with one of 
two types of outbreaks: a one-day spike and a lognormal 
curve using mean and variance parameters derived from 
published observations of the incubation period 
distribution of  human cases of avian flu (WHO, 2005).  
We applied these parameters because of the public’s 
growing concern about the possibility of a human 
pandemic, and the recent observations of the global 
increase of H5N1 infection in bird populations suggest 
that a related virus could be the source of the next such 
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pandemic.   Given that the symptomatology of the next 
pandemic strain is unknown, we considered both gradual 
and explosive signals to simulate the data effects of an 
outbreak. 

The data used for this study started in the middle of one 
calendar year and continued for 700 days, encompassing 
one full and two partial calendar years.   To evaluate the 
performance of the algorithm for detection, we ran 365 
separate trials, inserting one outbreak per trial starting on 
a unique day in the full calendar year.  The spike outbreak 
inserted had a magnitude equal to one standard deviation 
of the previous 28 days of raw data.  The detection 
algorithm’s output for all trials was then combined and 
used to generate a ROC curve. 

4.  Results 

4.1  Optimal Configuration 

Numerous configurations for the wavelet algorithm were 
studied to yield the optimal performance.  Variations on 
the length of the training window (including “infinite”, 
using all previous data), the order of the AR model used 
for predicting each level’s coefficients (or using a simple 
EWMA), and what forms of preprocessing to use (day-of-
week, holiday, or neither) were examined to determine 
which yielded the best performance when predicting next 
day and 7-day ahead forecasts.  A 128-day sliding 
window, with a 7-day AR, combined with day-of-week 
and holiday preconditioning, proved most effective. The 
final predictions are re-seasonalized using the appropriate 
day-of-week indexes that were estimated in the initial 
preprocessing step. 

4.2  Background Prediction Accuracy 

Table 1 gives the median absolute percentage error 
(MedAPE) statistics for several different configurations of 
the wavelet-based predictor when no outbreaks were 
injected.  The left columns (blue) are based on a 5-level 
HAAR wavelet, with a 128-day sliding window for the 7-
day AR and full DOW and holiday preconditioning.  The 
middle columns (green) are based on the same technique 
but without removing the DOW effect, clearly showing 
the need to deseasonalize the data before applying the 
wavelet transform.  Similarly, the right columns (orange) 
are based on the same prediction technique but without 
accounting for calendar holidays.  Interestingly, holidays 
seem to impact the prediction results more for respiratory 
count time series (containing DOW and annual variations) 
than the GI count time series. 

       

       
       

Table 1. MedAPE of the residuals for GI and respiratory 
count series comparing the prediction performance of 
three variations of the wavelets-based algorithm for both 
1 and 7-day ahead predictions 

 

 

4.3  Outbreak Detection 

To evaluate the ability of the algorithm to detect an 
outbreak we injected such patterns into the data. Figure 4 
shows initial results for two series, one for respiratory 
counts (top) and one for GI counts (bottom) where a 
spike-shaped outbreak was injected on each day in the 
data. ROC curves are generated by the day-of-week on 
which the outbreak was injected. Overall, the detection 
probability is high, but the performance varies such that it 
is most likely to detect a weekend outbreak and hardest to 
detect one on a Monday. 

 

 

 

 

 

 

 

 

 

City Wavelet w/o 
Deseasonalizi

ng

w/o 
Holidays

Wavelet w/o 
Deseasonalizi

ng

 w/o 
Holidays

(a) 12.17 15.07 12.15 10.5 13.94 10.71
(b) 7.94 11.93 9.66 7.59 11.2 9.44
(c) 8.77 12.9 10.08 9.45 11.69 9.84
(d) 7.54 10.22 8.91 7.28 8.94 7.96
(e) 10.97 13.78 11.14 9.55 11.17 10.56
(f) 13.53 16.33 14.24 12.54 15.59 12.1

City Wavelet w/o 
Deseasonalizi

ng

w/o 
Holidays

Wavelet w/o 
Deseasonalizi

ng

w/o 
Holidays

(g) 8.59 11.31 10.8 9.74 11.16 10.88
(h) 8.51 12.11 10.46 8.97 10.29 11.62
(i) 5.24 7.75 6.65 6.67 7.22 7.76
(j) 10.66 15.61 12.12 12.75 16.73 14.65
(k) 10.15 13.87 11.7 11.99 13.04 13.81
(l) 11.25 15.29 12.81 15.33 14.95 16.94

(m) 13.45 18.17 14.52 13.44 17.58 14.28
(n) 5.96 8.29 6.55 6.9 7.73 7.85
(o) 7.3 10.06 9.86 9.68 10.28 11.49
(p) 8.18 11.39 9.58 11.37 10.16 12.67

GI Count Series
1-Day Ahead 7-Day Ahead

Respiratory Count Series
1-Day Ahead 7-Day Ahead
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Figure 4. ROC curves for a respiratory series (above) and GI 
series (below), according to the day of week that a spike-
outbreak was injected. 

 

Table 2 shows the sensitivity of the algorithms to spike 
outbreaks at specific false alarm rates.  For example, if 
one accepts a false alarm every two weeks, then in city (g) 
the algorithm would be expected to detect 82% of spike 
outbreaks.  These numbers are for spike outbreaks having 
size equal to one standard deviation of the data.  A larger 
spike would be more likely to be detected. 

 

 

 

 

 

 

Table 2. Detection accuracy comparing specific false alarm rates 
on each series. 

Probability of Outbreak Detection for Specific 
False Alarm Rates 

Gi Count Series 

City 

1 False alarm 

Every 2 weeks 

1 False alarm 

Every month 

(a) 0.7269 0.5038 

(b) 0.8818 0.6104 

(c) 0.8299 0.6466 

(d) 0.8682 0.7648 

(e) 0.8400 0.7818 

(f) 0.6219 0.2638 

Respiratory Count Series 

City 

1 False alarm 

Every 2 weeks 

1 False alarm 

Every month 

(g) 0.8294 0.7315 

(h) 0.8593 0.7509 

(i) 0.9534 0.9178 

(j) 0.8137 0.6507 

(k) 0.8317 0.6650 

(l) 0.8667 0.5102 

(m) 0.6975 0.4682 

(n) 0.9126 0.8438 

(o) 0.9096 0.8569 

(p) 0.8466 0.7309 

5.  Discussion 

The method described in this paper is based on 
Goldenberg et al. (2002), but improves upon it in four 
aspects. First, an important step of preconditioning that 
directly treats day-of-week and holidays is incorporated 
instead of the more general smoothing method using a 
cosine-transform. Second, the wavelet decomposition 
uses a Haar and “backward shifted” coefficients to 
minimize edge problems and enable prospective operation 
rather than retrospective analysis. Third, the method is 
applied to a wider range of syndromic data from a 
geographically diverse set of metropolitan areas. And 
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fourth, we evaluate the performance of the algorithm for 
detecting two different types of outbreak. This broad 
testing highlights the method’s advantage as a wide-range 
detector. 

From comparisons with other methods, the performance 
of the wavelet-based detector for univariate time series 
appears to be comparable to methods such as Holt-
Winter’s exponential smoothing and adaptive regression 
models (see Burkom et al. 2006 for further details). 
However, the distinguishing utility of the wavelet-based 
methods is likely to be their robustness over many data 
types and applications to the multivariate problem. Our 
next steps are to investigate its performance on low-count 
data, and on a larger variety of outbreak patterns. Another 
challenge is to include the day-of-week handling within 
the wavelet detector and eliminating the need for a 
preconditioning step. This is challenging when using a 
Haar wavelet, because it is by nature dyadic and therefore 
“skips” the 7-day periodicity. One direction is to apply the 
wavelets to an “8-day” week obtained with interpolation. 
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