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‘ Motivation

“I've tried Al I've tried B! Tell me what else...” (Bang)

Sukhoi Su-30 fighter jet
crashed in Paris, June ‘99

= Don’t tell me what is wrong (about the software)
o Just tell me what to do.
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Context notes

* Weng-Keen: “Event detection very rare”;
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sadly, not true in software monitoring

many “positive” examples
- E.g. MAGR
- particularly for safety-critical software
* built using simulation-based verification:
« Common / more common at ESA/NASA

some anomalies barely hide
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Anomaly detection
and System Safety

Scrub launches under anomalous conditions

number of o-nng crosion or blowby reports
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Reject conclusions regarding “safe ice strikes”

o CRATER: meteorite impact model:
certified for 150mph impacts of size 3 cubic inches
Used to argue that Columbia was not harmed on launch

o COLUMBIA: 477mhp impact of size 1200 cubic inches
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Certity software w.r.t. some
“envelope of operation”

Launch the system with an anomaly detector
Alert if system leaves its envelope of certification
On alert:

a

O 0O O O

Disengage auto-pilot; wake up human pilot
Devote more sensor time to the anomalous event
If non-critical, go to safe mode

If critical situations, hit the eject button

Try and steer back to a “safe place”

If we know a device’s “envelope of certification”

a

a

a

And we know when it leaves it
And if a contrast set learner learns the delta between “old and safe” and “current”
And if that learner is constrained to only reporting the controllables

Then that “contrast set” is a “control rule” for “get me the hell out of here”
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From anomaly detection
to control policies

TARX: impact rule learner

o Consequence
class distribution predicted by antecedent

o Ak.a.
minimal contrast set learner
weighted frequency association rule learning
impact rules

TAR3

o Builds conjunctions via forward select search over attributes,
Attributes explored in “lift order”
Frequency in good/frequency in bad

o Greedy search, early stopping

TAR4:

o Fast heuristic Bayesian evaluation of rules
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initialized or
learned
incrementally

/

‘Inside a Bayesian Impact
Impact Learner
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o A new day: Likeihood of the two classes
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not “new example to classify”
but “growing rule”

100 times



But...

Can we recognize the arrival of new classes?
Assumption:

o Devices move through modes

o Sampling rate faster than mode changes
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Constraints
(a.k.a. lets make it interesting)

Should be able to exploit o0z, eliod B, coencorimearer
supervisor knowledge % e . o o
o Exploit known error modes t , e Y v R LS. o
Should still work when | o VAR
unsupervised ¢} } s [ o
o Learn new modes G5 Faikre Mode 3 I Fakao Mods 4
Should handle o
massive data sets I M "3 ooty
2 One-pass 02| Teohtiia? o, 0z} * Smmtalelfl o,
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Prior work: an SVDD solution “Q:l sk o o K a8 o,
Unsatisfactory _m! TR A - A
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o Atleast: straw-man to assess
other methods Liu, Cukic, Menzies, Tools with Al, 2002
o Also, low memory/ fast runtimes
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B.A.D. = bayesian anomaly detection
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B So our tallor drives a brmw

B Naive: assumes independence; counts single attribute ranges (not combinations)
® But oplimal under the one-zero assumption Domingos and Pazzani [1997].
® Incremental simple, last leaming/classification speed, low slorage space.
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SAWTOOTH: an incremental

SPADE: incremental discretizer [Orrego04]:
o Auto-update’s SAWTOOTH’s theories

Bayes Classifier

SAWTOOTH:
o Work in “windows” of 150
instances;

o Disable learning when
performance “stable”

stads

NACCLTACY

D ’ -

ora=1 ara=50 era=100

“Misses low-frequency events”
(reviewer)

o ?? Combine with FSS
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Shares its frequency tables

Like (Max-min)/N

but if new Max/Min older than previously
seen Max/Min then...

...new bins are added above/below
If bins get too small, merge

Good news:

Runs in one pass of data
Very low memory overhead

SPADE + batch Bayes within 3% mean
accuracies of N-pass discretizers
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Bad news: “No split operator” (reviewer)
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‘ B.A.D. and a F-15 flight simulator
(five different flights)

Average Max Likelihood
= Erasize = 100 samples

T T L5 T
L
o Unsupervised learning: all classes = “class0” 0.0001 P : A
: ~ e
= Eras: ’\ ;
o 1..8: Commissioning (same for each plane) ' “r
o 9..13: Fly five different missions 1e-05 | h S
0 14: Inject different errors into each plane % " f
. b
= Result:Massive drop in av. Max. likelihood g x ki -
o l.e. very clear indication that something 1e-06 rg 4 L'“;
novel is happening to the planes i g

1 5 9 15
train monitor error
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B.A.D. on 25 UCI data sets

Emulates a device with several major modes

Take data from UCI

o “Blocked” data into contiguous “runs” of classes

o Can we detect start of “novel” blocks: a class never seen before?

Don’t expect an incremental unsupervised learner to out-perform a
batch supervised learner

o Test excludes classes that a batch classifier finds with PD < T%
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Results
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Discussion

Current experience: Need more case studies
o we can build anomaly detection and o ARES/ TRICK simulation of NASA’s CEV

controller in a single framework GNC system

2 can also generate test cases o Extensions to non-relational data

o Not Bayes, but Webb’s AODE

Success of very simple anomaly o Rahul’s cascaded detectors & “ping”-
detection rig: ing on v. small training examples

o Incremental Bayes classifier
o Very simple incremental discretion Needs a rule generator

may suffice o B.A.D. reports anomalies,

. Can’t describe then
Caveat: since procedural

programming monitoring has high o Standard problem of explanation of
frequency “positive” events mathematical systems

Combining technologies

SlmpI|C|ty has its virtues o Use B.A.D. to find anomalies

2 One-pass o Use (say) WSARE3to generate Bayes nets
o Low memory footprint to visualize the before/after pattern

o Can recognize new modes

o Can be initialized with old modes Is this problem best viewed NOT as “event

] detection” but as “active learning”?
o ?7? IR for anomaly detection
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Questions? Comments?
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Some context notes

- domainKnowledge -> model

- {model,data} -> eventDetection

-> interestingnessDectector -> {feedback,action}

- feedback -> {data,domainKnowledge}

This talk:

Tools:
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Data come from a running program

InterestingnessDetector =

« track average max. likelihood in an incremental Bayes classifier
Feedback: very simple (update Bayes classifier)

Action: report control rule for observables that can drive software back to
“non-anomalous” zone

One-sided classification : seek things that aren’t what we have seen before
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More context notes

Rahul: “Interactive event detection”
- Me : runtime monitoring and control of procedural software

James: “I’'m an imposter since I’'m working on the easiest image
anomaly problem”
« Me: me to!

Weng-Keen: “New forms of interesting events appear frequently”
- Absolutely

Weng-Keen: “Event detection very rare”; sadly, not true in software

- The “MAGR” example

- So we have many “positive” examples (particularly for safety-
critical software build using simulation-based verification:
common/rare at ESA/NASA)

- And some of the anomalies aren’t hiding
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