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A regression example:  Polynomial Curve Fitting

• In this example, there is only one real feature 𝑥𝑥. We learn a function of M-order polynomial
• Achieved by learning a linear regression using 1, 𝑥𝑥, 𝑥𝑥2, … , 𝑥𝑥𝑀𝑀 as the features.
• Note that this new feature space is derived from the original input 𝑥𝑥
• Such derived features are often referred to as the basis functions



Consider different choices for M

• Larger M leads to higher model complexity
• Given 10 data points, if M=9, we can fit the training data perfectly – severely 

overfitting 
• We fit the training data perfectly but perform terribly for inputs we have not seen in training



Over-fitting issue
• What can we do to curb over-

fitting
• Use less complex model
• Use more training examples
• Regularization



In linear regression, overfitting can often be 
characterized by large weights



Regularized Linear Regression
• Consider the following loss function:

Data term + Regularization term (penalize complex 
models)
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L2 Regularized Linear Regression
The new objective combines the SSE loss with a quadratic regularizer
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Or equivalently 
𝑋𝑋𝒘𝒘− 𝒚𝒚 𝑇𝑇 𝑋𝑋𝒘𝒘 − 𝒚𝒚 + 𝜆𝜆𝒘𝒘𝑻𝑻𝒘𝒘

which is minimized by 𝒘𝒘 = 𝜆𝜆𝜆𝜆 + X𝑇𝑇X −1X𝑇𝑇𝒚𝒚

𝜆𝜆: the regularization coefficient controls the trade-off between model complexity and 
the fit to the data

• Larger 𝜆𝜆 encourages simple model (driving more elements of 𝐰𝐰 to 0)
• Small 𝜆𝜆 encourages better fit of the data (driving SSE to zero)



Effect of regularization 

𝜆𝜆 = 𝑒𝑒2.6 ≈ 13.46

Fitted curves from 10 random points with M=9.  Each curve is fitted with one set of 
10 random points. 

𝜆𝜆 = 𝑒𝑒−0.31 ≈ 0.73 𝜆𝜆 = 𝑒𝑒−2.4 ≈ 0.09

Smaller 𝜆𝜆 → more complex curves with achieve closer fit for each set but more overfitting



More Regularization functions

Lasso, L-1 L-2 

Equivalent to minimizing SSE subject to ∑𝑖𝑖=0𝑀𝑀 𝑤𝑤𝑖𝑖 𝑞𝑞 ≤ 𝜖𝜖

A good explanation of this equivalence is provided here:
http://math.stackexchange.com/questions/335306/why-are-additional-constraint-and-penalty-term-equivalent-in-ridge-regression

Shape is determined by 𝑞𝑞, size determined by 𝜆𝜆
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Regularized Linear Regression
• Lasso (𝑞𝑞 = 1)  tends to generate sparser solutions 

(majority of the weights shrink to zero) than a quadratic 
regularizer (𝑞𝑞 = 2, often called ridge regression). 



Commonly used regularizers

• L-2 regularization

Poly-time close-form solution
Curbs overfitting but does not produce sparse solution

• L-1 regularization

Poly-time approximation algorithm
Sparse solution – potentially many zeros in w
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• L-0 regularization

Seek to identify optimal feature subset
NP-complete problem!
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More general use of regularization

• More generally, for a learning task, lets say our parameter is 𝒘𝒘,  and 
the objective is to minimize a loss function 𝐿𝐿(𝒘𝒘)

• Adding regularization: 
min 𝐿𝐿 𝑤𝑤 + 𝜆𝜆 ⋅ regularizer

• Most commonly used regularizer are norm-based: 𝐿𝐿2 and 𝐿𝐿1 norm of 
the weight vector

• Similar trend with changing 𝜆𝜆
• Larger 𝜆𝜆 leads to simpler model and reduced fit to the training data
• Smaller 𝜆𝜆 leads to more complex model and improved fit to training but 

increase chance of overfitting
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