Key concept: Regularization

A regression example: Polynomial Curve Fitting

- In this example, there is only one real feature x. We learn a function of M-order polynomial
- Achieved by learning a linear regression using $(1, x, x^2, ..., x^M)$ as the features.
- Note that this new feature space is derived from the original input x
- Such derived features are often referred to as the basis functions

Consider different choices for M

- Larger M leads to higher model complexity
- Given 10 data points, if M=9, we can fit the training data perfectly severely overfitting
 - We fit the training data perfectly but perform terribly for inputs we have not seen in training

Over-fitting issue

- What can we do to curb overfitting
 - Use less complex model
 - Use more training examples
 - Regularization

In linear regression, overfitting can often be characterized by large weights

	M = 0	M = 1	M = 3	M = 9
W ₀	0.19	0.82	0.31	0.35
W ₁		-1.27	7.99	232.37
W ₂			-25.43	-5321.83
W ₃			17.37	48568.31
W 4				-231639.30
W5				640042.26
W ₆				-1061800.52
W7				1042400.18
W8				-557682.99
W9				125201.43

Regularized Linear Regression

• Consider the following loss function:

L2 Regularized Linear Regression

The new objective combines the SSE loss with a quadratic regularizer

$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{M} w_j^2$$

Or equivalently

$$(X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$$

which is minimized by

 $\boldsymbol{w} = (\lambda I + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{y}$

 λ : the regularization coefficient controls the trade-off between model complexity and the fit to the data

- Larger λ encourages simple model (driving more elements of **w** to 0)
- Small λ encourages better fit of the data (driving SSE to zero)

Effect of regularization

Fitted curves from 10 random points with M=9. Each curve is fitted with one set of 10 random points.

Smaller $\lambda \rightarrow$ more complex curves with achieve closer fit for each set but more overfitting

More Regularization functions $\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{M} |w_j|^q$ Equivalent to minimizing SSE subject to $\sum_{i=0}^{M} |w_i|^q \le \epsilon$

Equivalent to minimizing SSE subject to $\Delta_{l=0}|w_{l}|$.

A good explanation of this equivalence is provided here:

http://math.stackexchange.com/questions/335306/why-are-additional-constraint-and-penalty-term-equivalent-in-ridge-regression

Shape is determined by q, size determined by λ

Regularized Linear Regression

• Lasso (q = 1) tends to generate sparser solutions (majority of the weights shrink to zero) than a quadratic regularizer (q = 2, often called ridge regression).

Commonly used regularizers

• L-2 regularization
$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{M} w_j^2$$

Poly-time close-form solution Curbs overfitting but does not produce sparse solution

• L-1 regularization
$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \sum_{j=0}^{M} |w_j|$$

Poly-time approximation algorithm Sparse solution – potentially many zeros in **w**

• L-0 regularization $\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \sum_{j=0}^{M} I(w_j \neq 0)$ Seek to identify optimal feature subset NP-complete problem!

More general use of regularization

- More generally, for a learning task, lets say our parameter is w, and the objective is to minimize a loss function L(w)
- Adding regularization:

 $\min L(w) + \lambda \cdot \text{regularizer}$

- Most commonly used regularizer are norm-based: L_2 and L_1 norm of the weight vector
- Similar trend with changing λ
 - Larger λ leads to simpler model and reduced fit to the training data
 - Smaller λ leads to more complex model and improved fit to training but increase chance of overfitting