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Review

• We have provided a basic review of the 
probability theory
– What is a (discrete) random variable
– Basic axioms and theorems
– Conditional distribution
– Bayes rule

Bayes Rule
P(A ^ B)     P(B|A) P(A)
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More general forms:
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Commonly used discrete distributions
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Binomial distribution: x ~ Binomial(n , p)
the probability to see x heads out of n flips

Categorical distribution: x can take K values, the distribution 
is specified by a set of    ‘s 

=P(x=vk), and 

Multinomial distribution: Multinomial (n , [x1, x2, …, xk])
The probability to see x1 ones, x2 twos, etc, out of n dice 
rolls
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Continuous Probability Distribution

• A continuous random variable x can take any 
value in an interval on the real line
– X usually corresponds to some real-valued 

measurements, e.g., today’s lowest temperature 
– It is not possible to talk about the probability of a 

continuous random variable taking an exact value ---
P(x=56.2)=0

– Instead we talk about the probability of the random 
variable taking a value within a given interval 
P(x∈[50, 60])

– This is captured in Probability density function
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PDF: probability density function

• The probability of X taking value in a given range [x1, 
x2] is defined to be the area under the PDF curve 
between x1 and x2

• We use f(x) to represent the PDF of x
• Note:

– f(x) ≥0
– f(x) can be larger than 1
–

–
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What is the intuitive meaning of f(x)?

If   f (x1)=α*a and f (x2)=a

Then when x is sampled from this distribution, you are 
α times more likely to see that x is “very close to” x1 
than that x is “very close to” x2
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Commonly Used Continuous Distributions
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• So far we have looked at univariate distributions, 
i.e., single random variables

• Now we will briefly look at joint distribution of 
multiple variables

• Why do we need to look at joint distribution?
– Because sometimes different random variables are 

clearly related to each other
• Imagine three random variables

– A: teacher appears grouchy
– B: teacher had morning coffee
– C: kelly parking lot is full at 8:50 AM

• How do we represent the distribution of 3 
random variables together?
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

Example: Binary 
variables A, B, C

The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

Example: Binary 
variables A, B, C

111

011

101

001

110

010

100

000

CBA
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

3. If you subscribe to the axioms of 
probability, those numbers must 
sum to 1.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30Question: What is the relationship 

between p(A,B,C) and p(A)?
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Using the 
Joint

One you have the JD you can 
ask for the probability of any 
logical expression involving 
your attribute
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Using the 
Joint

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(
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Inference 
with the 

Joint
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Inference 
with the 

Joint

∑
∑

=
∧

=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)()|(

E

EE

P

P

EP
EEPEEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612  
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So we have learned that 

• Joint distribution is useful!
we can do all kinds of cool inference
– I’ve got a sore neck: how likely am I to have 

meningitis?
– Many industries grow around this kind of 

Inference: examples include medicine, 
pharma, Engine diagnosis  etc. 

• But, HOW do we get joint distribution?
– We can learn from data

So we have learned that 

• Joint distribution is extremely useful!
we can do all kinds of cool inference
– I’ve got a sore neck: how likely am I to have 

meningitis?
– Many industries grow around Beyesian

Inference: examples include medicine, 
pharma, Engine diagnosis  etc. 

• But, HOW do we get joint distribution?
– We can learn from data
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Learning a joint distribution
Build a JD table for your 
attributes in which the 
probabilities are unspecified

The fill in each row with

recordsofnumber total
row matching records)row(ˆ =P

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

Fraction of all records in which
A and B are True but C is False

Example of Learning a Joint

• This Joint was 
obtained by 
learning from 
three attributes 
in the UCI 
“Adult” Census 
Database 
[Kohavi 1995]

UCI machine learning repository:
http://www.ics.uci.edu/~mlearn/MLRepository.html
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Where are we?

• We have recalled the fundamentals of 
probability

• We have become content with what JDs 
are and how to use them

• And we even know how to learn JDs from 
data.

Bayes Classifiers

• A formidable and sworn enemy of decision 
trees

Classifier Prediction of
categorical output

Input
Attributes

DT BC
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Recipe for a Bayes Classifier
• Assume you want to predict output Y which has arity nY and 

values v1, v2, … vny.
• Assume there are m input attributes called X=(X1, X2, …

Xm)
• Learn a conditional distribution of p(X|y)  for each possible 

y value, y = v1, v2, … vny,, we do this by:
– Break training set into nY subsets called DS1, DS2, … DSny

based on the y values, i.e., DSi = Records in which Y=vi

– For each DSi  , learn a joint distribution of input distribution
– This will give us p(X| Y=vi), i.e., P(X1, X2, … Xm | Y=vi )

Recipe for a Bayes Classifier
• Assume you want to predict output Y which has arity nY and 

values v1, v2, … vny.
• Assume there are m input attributes called X=(X1, X2, …

Xm)
• Learn a conditional distribution of p(X|y)  for each possible 

y value, y = v1, v2, … vny,, we do this by:
– Break training set into nY subsets called DS1, DS2, … DSny

based on the y values, i.e., DSi = Records in which Y=vi

– For each DSi  , learn a joint distribution of input distribution
– This will give us p(X| Y=vi), i.e., P(X1, X2, … Xm | Y=vi )

• Idea: When a new example (X1 = u1, X2 = u2, …. Xm = um) 
come along, predict the value of Y that has the highest 
value of P(Y=vi | X1, X2, … Xm)
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Getting what we need
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Bayes Classifiers in a nutshell
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1. Learn the P(X1, X2, … Xm | Y=vi ) for each value vi

3. Estimate  P(Y=vi ) as fraction of records with Y=vi .

4. For a new prediction:

Estimating the joint 
distribution of X1, X2, …

Xm given y can be 
problematic!

Joint Density Estimator Overfits

• Typically we don’t have enough data to estimate the joint 
distribution accurately

• It is common to encounter the following situation:
– If no records have the exact X=(u1, u2, …. um), then P(X|Y=vi ) = 0 

for all values of Y.

• In that case, what can we do?
– we might as well guess Y’s value!
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Example: Spam Filtering
• Bag-of-words representation is used for emails (X ={x1, 

x2, …, xm})
• Assume that we have a dictionary containing all 

commonly used words and tokens 
• We will create one attribute for each dictionary entry

– E.g., xi is a binary variable, xi=1 (0) means the ith word in the 
dictionary is (not) present in the email

– Other possible ways of forming the features exist, e.g., xi=the # 
of times that the ith word appears

• Assume that our vocabulary contains10k commonly 
used words --- we have 10,000 attributes

• How many parameters that we need to learn?
2*(210,000-1)

• Clearly we don’t have enough data to 
estimate that many parameters

• What can we do?
– Make some bold assumptions to simplify the 

joint distribution
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Naïve Bayes Assumption

• Assume that each attribute is independent 
of any other attributes given the class label
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A note about independence
• Assume A and B are Boolean Random 

Variables. Then
“A and B are independent”

if and only if
P(A|B) = P(A)

• “A and B are independent” is often notated 
as BA⊥
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Independence Theorems

• Assume P(A|B) = 
P(A)

• Then P(A^B) =

= P(A) P(B)

• Assume P(A|B) = 
P(A)

• Then P(B|A) =

= P(B)

Independence Theorems

• Assume P(A|B) = 
P(A)

• Then P(~A|B) =

= P(~A)

• Assume P(A|B) = 
P(A)

• Then P(A|~B) =

= P(A)
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Conditional Independence

• P(X1|X2,y) = P(X1|y)
– X1 and X2 are conditionally independent given 

y
• If X1 and X2 are conditionally independent 

given y, then we have
– P(X1,X2|y) = P(X1|y) P(X2|y)

Naïve Bayes Classifier
• Assume you want to predict output Y which has arity nY and 

values v1, v2, … vny.
• Assume there are m input attributes called X=(X1, X2, …

Xm)
• Learn a conditional distribution of p(X|y)  for each possible 

y value, y = v1, v2, … vny,, we do this by:
– Break training set into nY subsets called DS1, DS2, … DSny

based on the y values, i.e., DSi = Records in which Y=vi

– For each DSi  , learn a joint distribution of input distribution
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Example

1110
1100
1010
0000
0011
0111
YX3X2X1

Apply Naïve Bayes, and make 
prediction for (1,1,1)?

Final Notes about Bayes Classifier

• Any density estimator can be plugged in to 
estimate P(X1,X2, …, Xm |y)

• Real valued attributes can be modeled using 
simple distributions such as Gaussian (Normal) 
distribution

• Zero probabilities are painful for both joint and 
naïve. A hack called Laplace smoothing can 
help!

• Naïve Bayes is wonderfully cheap and survives 
tens of thousands of attributes easily



20

What you should know

• Probability
– Fundamentals of Probability and Bayes Rule
– What’s a Joint Distribution
– How to do inference (i.e. P(E1|E2)) once you 

have a JD, using bayes rule
– How to learn a Joint DE (nothing that simple 

counting cannot fix)
• Bayes Classifiers

– What is a Bayes Classifier
– What is a naïve bayes classifier, what is the 

naïve bayes assumption


