Review

- We have provided a basic review of the probability theory
- What is a (discrete) random variable
- Basic axioms and theorems
- Conditional distribution
- Bayes rule

Bayes Rule

$$
P(A \mid B)=\begin{array}{cc}
P\left(A^{\wedge} B\right) & P(B \mid A) P(A) \\
P(B) & P(B)
\end{array}
$$

More general forms:

$$
\begin{gathered}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)} \\
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
\end{gathered}
$$

Commonly used discrete distributions

Bernoulli distribution: $\operatorname{Ber}(p)$

$$
P(x)=\left\{\begin{array}{ll}
1-p & \text { for } x=0 \\
p & \text { for } x=1
\end{array} \Rightarrow P(x)=p^{x}(1-p)^{1-x}\right.
$$

Binomial distribution: $x \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$ the probability to see x heads out of n flips

$$
P(x)=\frac{n(n-1) \cdots(n-x+1)}{x!} p^{x}(1-p)^{n-x}
$$

Categorical distribution: x can take K values, the distribution is specified by a set of θ_{k} 's

$$
\theta_{k}=\mathrm{P}\left(\mathrm{x}=\mathrm{v}_{\mathrm{k}}\right), \text { and } \theta_{1}+\theta_{2}+\ldots+\theta_{K}=1
$$

Multinomial distribution: Multinomial ($n,\left[x_{1}, x_{2}, \ldots, x_{k}\right]$) The probability to see x_{1} ones, x_{2} twos, etc, out of n dice rolls

$$
P\left(\left[x_{1}, x_{2}, \ldots, x_{k}\right]\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} \theta_{1}^{x_{1}} \theta_{2}^{x_{2}} \cdots \theta_{k}^{x_{k}}
$$

Continuous Probability Distribution

- A continuous random variable x can take any value in an interval on the real line
- X usually corresponds to some real-valued measurements, e.g., today's lowest temperature
- It is not possible to talk about the probability of a continuous random variable taking an exact value --$P(x=56.2)=0$
- Instead we talk about the probability of the random variable taking a value within a given interval $P(x \in[50,60])$
- This is captured in Probability density function

PDF: probability density function

- The probability of X taking value in a given range [x1, $x 2$] is defined to be the area under the PDF curve between x1 and x2
- We use $f(x)$ to represent the PDF of x
- Note:
$-f(x) \geq 0$
- $f(x)$ can be larger than 1
$-\int_{-\infty}^{\infty} f(x) d x=1$
$-P(X \in[x 1, x 2])=\int_{x 1}^{x 2} f(x) d x$

What is the intuitive meaning of $f(x)$?

If $f(x 1)=\alpha^{*} a$ and $f(x 2)=a$

Then when x is sampled from this distribution, you are α times more likely to see that x is "very close to" $x 1$ than that x is "very close to" $x 2$

Commonly Used Continuous Distributions

Uniform Probability Density Function

$f^{\prime}(x)$	$=1 /(b-a)$		for $a \leq x \leq b$
	$=0$		elsewhere

Normal (Gaussian) Probability Density Function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Exponential Probability Distribution

$$
f(x)=\frac{1}{\mu} e^{-x / \mu}
$$

- So far we have looked at univariate distributions, i.e., single random variables
- Now we will briefly look at joint distribution of multiple variables
- Why do we need to look at joint distribution?
- Because sometimes different random variables are clearly related to each other
- Imagine three random variables
- A: teacher appears grouchy
- B: teacher had morning coffee
- C: kelly parking lot is full at 8:50 AM
- How do we represent the distribution of 3 random variables together?

The Joint Distribution
 Example: Binary variables A, B, C

Recipe for making a joint distribution of M variables:

The Joint Distribution

Example: Binary
variables A, B, C
Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).

A	B	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values,

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

The Joint Distribution

Example: Boolean variables A, B, C
Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those numbers must sum to 1 .

Question: What is the relationship

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the
 Joint

| gender | hours_worked | wealth | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Female | v0:40.5- | poor | 0.253122 | \square |
| | | rich | 0.0245895 | |
| | v1:40.5+ | poor | 0.0421768 | |
| | | rich | 0.0116293 | |
| Male | v0:40.5- | poor | 0.331313 | \square |
| | | rich | 0.0971295 | \square |
| | v1:40.5+ | poor | 0.134106 | \square |
| | | rich | 0.105933 | \square |

One you have the JD you can ask for the probability of any logical expression involving your attribute

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Using the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

$P($ Poor Male $)=0.4654$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Inference with the Joint

Inference
with the Joint

$P($ Male \mid Poor $)=0.4654 / 0.7604=0.612$

So we have learned that

- Joint distribution is useful! we can do all kinds of cool inference
- I've got a sore neck: how likely am I to have meningitis?
- Many industries grow around this kind of Inference: examples include medicine, pharma, Engine diagnosis etc.
- But, HOW do we get joint distribution?
- We can learn from data

So we have learned that

- Joint distribution is extremely useful! we can do all kinds of cool inference
- I've got a sore neck: how likely am I to have meningitis?
- Many industries grow around Beyesian Inference: examples include medicine, pharma, Engine diagnosis etc.
- But, HOW do we get joint distribution?
- We can learn from data

Learning a joint distribution

Build a JD table for your attributes in which the probabilities are unspecified

A	B	C	Prob
0	0	0	$?$
0	0	1	$?$
0	1	0	$?$
0	1	1	$?$
1	0	0	$?$
1	0	1	$?$
1	1	0	$?$
1	1	1	$?$

Fraction of all records in which A and B are True but C is False

Example of Learning a Joint

- This Joint was obtained by learning from three attributes in the UCI
"Adult" Census Database [Kohavi 1995]

The fill in each row with
$\hat{P}($ row $)=\frac{\text { records matching row }}{\text { total number of records }}$

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

\qquad

UCI machine learning repository:
http://www.ics.uci.edu/~mlearn/MLRepository.html

Where are we?

- We have recalled the fundamentals of probability
- We have become content with what JDs are and how to use them
- And we even know how to learn JDs from data.

Bayes Classifiers

- A formidable and sworn enemy of decision trees

Recipe for a Bayes Classifier

- Assume you want to predict output Y which has arity n_{Y} and values $v_{1}, v_{2}, \ldots v_{n y}$.
- Assume there are m input attributes called $\mathrm{X}=\left(X_{1}, X_{2}, \ldots\right.$ X_{m})
- Learn a conditional distribution of $\mathrm{p}(\mathrm{X} \mid \mathrm{y})$ for each possible y value, $\mathrm{y}=v_{1}, v_{2}, \ldots v_{\mathrm{ny}}$, we do this by:
- Break training set into n_{Y} subsets called $D S_{1}, D S_{2}, \ldots D S_{n y}$ based on the y values, i.e., $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn a joint distribution of input distribution
- This will give us $\mathrm{p}\left(\mathrm{X} \mid Y=v_{i}\right)$, i.e., $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} \mid Y=v_{i}\right)$

Recipe for a Bayes Classifier

- Assume you want to predict output Y which has arity n_{Y} and values $v_{1}, v_{2}, \ldots v_{n y}$.
- Assume there are m input attributes called $\mathrm{X}=\left(X_{1}, X_{2}, \ldots\right.$ X_{m})
- Learn a conditional distribution of $\mathrm{p}(\mathrm{X} \mid \mathrm{y})$ for each possible y value, $\mathrm{y}=v_{1}, v_{2}, \ldots v_{n y}$, we do this by:
- Break training set into n_{Y} subsets called $D S_{1}, D S_{2}, \ldots D S_{n y}$ based on the y values, i.e., $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn a joint distribution of input distribution
- This will give us $p\left(X \mid Y=v_{i}\right)$, i.e., $P\left(X_{1}, X_{2}, \ldots X_{m} \mid Y=v_{i}\right)$
- Idea: When a new example ($X_{1}=u_{1}, X_{2}=u_{2}, \ldots . X_{m}=u_{m}$) come along, predict the value of Y that has the highest value of $\mathrm{P}\left(Y=v_{i} \mid X_{1}, X_{2}, \ldots X_{m}\right)$
$Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)$

Getting what we need

$$
Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)
$$

Getting a posterior probability

$$
\begin{gathered}
P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right) \\
=\quad \frac{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)}{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m}\right)} \\
=\frac{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)}{\sum_{j=1}^{n_{v}} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v_{j}\right) P\left(Y=v_{j}\right)}
\end{gathered}
$$

Bayes Classifiers in a nutshell

1. Learn the $\mathrm{P}\left(X_{1}, X_{2}, \ldots \mathrm{X}_{m} \mid Y=v_{i}\right)$ for each value v_{i}
2. Estimate $\mathrm{P}\left(Y=v_{i}\right)$ as fraction of records with $Y=v_{i}$.
3. For a new prediction:

$$
\begin{gathered}
Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right) \\
=\underset{v}{\operatorname{argmax}} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v) \\
\begin{array}{c}
\text { Estimating the joint } \\
\text { distribution of } X 1, X 2, \ldots \\
X m \text { given } y \text { can be } \\
\text { problematic! }
\end{array}
\end{gathered}
$$

Joint Density Estimator Overfits

- Typically we don't have enough data to estimate the joint distribution accurately
- It is common to encounter the following situation:
- If no records have the exact $\mathrm{X}=\left(u_{1}, u_{2}, \ldots . u_{m}\right)$, then $\mathrm{P}\left(X \mid Y=v_{i}\right)=0$ for all values of Y.
- In that case, what can we do?
- we might as well guess Y's value!

Example: Spam Filtering

- Bag-of-words representation is used for emails $\left(X=\left\{x_{1}\right.\right.$, $\left.x_{2}, \ldots, x_{m}\right\}$)
- Assume that we have a dictionary containing all commonly used words and tokens
- We will create one attribute for each dictionary entry
- E.g., x_{i} is a binary variable, $x_{i}=1$ (0) means the i th word in the dictionary is (not) present in the email
- Other possible ways of forming the features exist, e.g., $\mathrm{x}_{\mathrm{i}}=$ =the \# of times that the ith word appears
- Assume that our vocabulary contains10k commonly used words --- we have 10,000 attributes
- How many parameters that we need to learn?

$$
2^{\star}\left(2^{10,000}-1\right)
$$

- Clearly we don't have enough data to estimate that many parameters
- What can we do?
- Make some bold assumptions to simplify the joint distribution

Naïve Bayes Assumption

- Assume that each attribute is independent of any other attributes given the class label

$$
\begin{array}{|l|}
P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v_{i}\right) \\
=P\left(X_{1}=u_{1} \mid Y=v_{i}\right) \cdots P\left(X_{m}=u_{m} \mid Y=v_{i}\right)
\end{array}
$$

A note about independence

- Assume A and B are Boolean Random Variables. Then
"A and B are independent"
if and only if

$$
P(A \mid B)=P(A)
$$

- " A and B are independent" is often notated as
$A \perp B$

Independence Theorems

- Assume $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ P(A)
- Then $\mathrm{P}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)=$

$$
=P(A) P(B)
$$

- Assume $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ P(A)
- Then $P(B \mid A)=$ $=P(B)$

Independence Theorems

- Assume $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ P(A)
- Then $P(\sim A \mid B)=$
$=P(\sim A)$
- Assume $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ P(A)
- Then $\mathrm{P}(\mathrm{A} \mid \sim \mathrm{B})=$ $=P(A)$

Conditional Independence

- $P\left(X_{1} \mid X_{2}, y\right)=P\left(X_{1} \mid y\right)$
$-X_{1}$ and X_{2} are conditionally independent given y
- If X_{1} and X_{2} are conditionally independent given y, then we have
$-P\left(X_{1}, X_{2} \mid y\right)=P\left(X_{1} \mid y\right) P\left(X_{2} \mid y\right)$

Naïve Bayes Classifier

- Assume you want to predict output Y which has arity n_{Y} and values $v_{1}, v_{2}, \ldots v_{n y}$.
- Assume there are m input attributes called $\mathrm{X}=\left(X_{1}, X_{2}, \ldots\right.$ X_{m})
- Learn a conditional distribution of $\mathrm{p}(\mathrm{X} \mid \mathrm{y})$ for each possible y value, $\mathrm{y}=v_{1}, v_{2}, \ldots v_{\text {ny }}$, we do this by:
- Break training set into n_{Y} subsets called $D S_{1}, D S_{2}, \ldots D S_{n y}$ based on the y values, i.e., $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn a joint distribution of input distribution

$$
\begin{aligned}
& P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v_{i}\right) \\
& =P\left(X_{1}=u_{1} \mid Y=v_{i}\right) \cdots P\left(X_{m}=u_{m} \mid Y=v_{i}\right)
\end{aligned}
$$

$Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P\left(X_{1}=u_{1} \mid Y=v\right) \cdots P\left(X_{m}=u_{m} \mid Y=v\right) P(Y=v)$

Example

X_{1}	X_{2}	X_{3}	Y
1	1	1	0
1	1	0	0
0	0	0	0
0	1	0	1
0	0	1	1
0	1	1	1

Apply Naïve Bayes, and make prediction for (1,1,1)?

Final Notes about Bayes Classifier

- Any density estimator can be plugged in to estimate $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}} \mathrm{ly}\right)$
- Real valued attributes can be modeled using simple distributions such as Gaussian (Normal) distribution
- Zero probabilities are painful for both joint and naïve. A hack called Laplace smoothing can help!
- Naïve Bayes is wonderfully cheap and survives tens of thousands of attributes easily

What you should know

- Probability
- Fundamentals of Probability and Bayes Rule
- What's a Joint Distribution
- How to do inference (i.e. P(E1|E2)) once you have a JD, using bayes rule
- How to learn a Joint DE (nothing that simple counting cannot fix)
- Bayes Classifiers
- What is a Bayes Classifier
- What is a naïve bayes classifier, what is the

