Lecture 13

Bagging

- Generate T random sample from training set by bootstrapping
- Learn a sequence of classifiers h_1, h_2, \ldots, h_T from each of them, using base learner L
- To classify an unknown sample X, let each classifier predict.
- Take simple majority vote to make the final prediction.

Simple scheme, works well in many situations!
Bias/Variance for classifiers

• Bias arises when the classifier cannot represent the true function – that is, the classifier underfits the data.

• Variance arises when the classifier overfits the data – minor variations in training set cause the classifier to overfit differently.

• Clearly you would like to have a low bias and low variance classifier!
 – Typically, low bias classifiers (overfitting) have high variance.
 – High bias classifiers (underfitting) have low variance.
 – We have a trade-off.
Effect of Algorithm Parameters on Bias and Variance

• k-nearest neighbor: increasing k typically increases bias and reduces variance

• decision trees of depth D: increasing D typically increases variance and reduces bias
Why does bagging work?

- Bagging takes the average of multiple models --- reduces the variance
- This suggests that bagging works the best with low bias and high variance classifiers
Boosting

• Also an ensemble method: the final prediction is a combination of the prediction of multiple classifiers.

• What is different?
 – Its iterative.

 Boosting: Successive classifiers depends upon its predecessors - look at **errors from previous classifiers** to decide what to **focus** on for the next iteration over data

 Bagging: Individual classifiers were independent.

 – All training examples are used in each iteration, but with different weights – more weights on difficult examples. (the ones on which we committed mistakes in the previous iterations)
Adaboost: Illustration

Final Classifier

\[H(X) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m h_m(x) \right] \]

Original data: uniformly weighted

Training Sample

Update weights

Weighted Sample

\[h_1(x) \]

Update weights

Weighted Sample

\[h_2(x) \]

Update weights

Weighted Sample

\[h_3(x) \]

Update weights

Weighted Sample

\[h_M(x) \]
The AdaBoost Algorithm

Input: a set S, of m labeled examples: $S = \{(x_i, y_i), i = 1, 2, \ldots, m\}$,
labels $y_i \in Y = \{1, \ldots, K\}$
Learn (a learning algorithm)
a constant L.
The AdaBoost Algorithm

Input: a set S, of m labeled examples: $S = \{(x_i, y_i), i = 1, 2, \ldots, m\}$, labels $y_i \in Y = \{1, \ldots, K\}$
Learn (a learning algorithm)
a constant L.

[1] initialize for all i: $w_1(i) := 1/m$
[2] for $\ell = 1$ to L do
[3] for all i: $p_\ell(i) := w_\ell(i)/(\Sigma_i w_\ell(i))$
[4] $h_\ell :=$ Learn(p_ℓ)
[5] $\epsilon_\ell := \Sigma_i p_\ell(i)[h_\ell(x_i) \neq y_i]$
[6] if $\epsilon_\ell > 1/2$ then
[7] $L := \ell - 1$
[8] exit
[9] $\beta_\ell := \epsilon_\ell/(1 - \epsilon_\ell)$
[10] for all i: $w_{\ell+1}(i) := w_\ell(i)\beta_\ell^{1-[h_\ell(x_i)\neq y_i]}$

initialize the weights
compute normalized weights
call Learn with normalized weights.
calculate the error of h_ℓ
compute new weights

Output: $h_f(x) = \arg\max_{y \in Y} \sum_{\ell=1}^{L} \left(\log \frac{1}{\beta_\ell} \right) [h_\ell(x) = y]$
AdaBoost(Example)

Original Training set: Equal
Weights to all training samples

Taken from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire
AdaBoost(Example)

ROUND 1

\[h_1 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\[D_2 \]
AdaBoost (Example)

ROUND 2

$\varepsilon_2 = 0.21$
$\alpha_2 = 0.65 \rightarrow D_3$
AdaBoost (Example)

ROUND 3

h_3

$\varepsilon_3 = 0.14$
$\alpha_3 = 0.92$
$H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92)$
Weighted Error

- Adaboost calls L with a set of prespecified weights
- It is often straightforward to convert a base learner L to take into account an input distribution D.

Decision trees?

K Nearest Neighbor?

Naïve Bayes?

- When it is not straightforward we can resample the training data S according to D and then feed the new data set into the learner.
Boosting Decision Stumps

Decision stumps: very simple rules of thumb that test condition on a single attribute.

Among the most commonly used base classifiers – truly weak!

Boosting with decision stumps has been shown to achieve better performance compared to unbounded decision trees.
Boosting Performance

• Comparing C4.5, boosting decision stumps, boosting C4.5 using 27 UCI data set
 – C4.5 is a popular decision tree learner
Boosting vs Bagging of Decision Trees

![Graph showing the comparison between error rates of Bagging and AdaBoost with C4.](image)
Overfitting?

• Boosting drives training error to zero, will it overfit?
• Curious phenomenon

![Graph showing error vs. number of rounds](image)

• Boosting is often robust to overfitting (not always)
• Test error continues to decrease even after training error goes to zero
Explanation with Margins

\[f(x) = \sum_{l=1}^{L} w_l \cdot h_l(x) \]

Margin = \(y \cdot f(x) \)

Histogram of functional margin for ensemble just after achieving zero training error
Effect of Boosting: Maximizing Margin

Even after zero training error the margin of examples increases. This is one reason that the generalization error may continue decreasing.
Bias/variance analysis of Boosting

• In the early iterations, boosting is primarily a bias-reducing method
• In later iterations, it appears to be primarily a variance-reducing method
What you need to know about ensemble methods?

• Bagging: a randomized algorithm based on bootstrapping
 – What is bootstrapping
 – Variance reduction
 – What learning algorithms will be good for bagging?

• Boosting:
 – Combine weak classifiers (i.e., slightly better than random)
 – Training using the same data set but different weights
 – How to update weights?
 – How to incorporate weights in learning (DT, KNN, Naïve Bayes)
 – One explanation for not overfitting: maximizing the margin