
Lecture 4

Oct - 6 - 2008

Review from last lecture
• Nearest neighbor classifier

– A lazy learning algorithm
– Decision boundary can be obtained by the Voronoi diagram of the training

set
– Complex, sensitive to label noise

• K-nearest neighbor, how to select k? a model selection problem
– Use training error – bad idea
– Use validation error – better
– Use cross-validation error – even better

• Issues with KNN
– Features need to be normalized to the same range
– Computational cost – high
– Irrelevant features – bad for kNN, which assumes all features are equally

important
– Last but not least: finding the right distance metric can be difficult

• So far we’ve learned two classifiers
– Perceptron: LTU
– KNN: complex decision boundary

• We have paid special attention on some of the
issues such as
– Is the learning algorithm robust to outliers?
– Is the learning algorithm sensitive to irrelevant

features?
– Is the algorithm computationally scalable?
– We will continue to pay attention to these issues as

we introduce more learning algorithms

Decision Tree
One of the most popular
off-the-shelf classifiers

What is decision tree: an
example

Definition

• Internal nodes (rectangles)
– Each node presents a test on a particular attribute
– Multiple possible outcomes lead to branches of the tree
– For discrete attributes (outlook = sunny, overcast or wind)

• n possible values -> n branches
– Continuous attributes (temperature = 87 F)?

• Leaf nodes (elipses)
– Each assign a class label to all examples that end up there,

1 2 3 4

1

2

3

4

X2 < 1.5?

Y N

X1<3.5?

Y N

X1<1.5?

Y N

X2<3.5?

Y N

Decision Tree Decision Boundaries
• Decision Trees divide the input space into axis-parallel rectangles

and label each rectangle with one of the K classes

Characteristics of Decision Trees
• Decision trees have many appealing properties

– Similar to human decision process, easy to understand
– Handle both Discrete and Continuous features

– Highly flexible hypothesis space, as the # of nodes (or depth)
of tree increases, decision tree can represent increasingly
complex decision boundaries

Definition: Hypothesis space

The space of solutions that a learning algorithm can possibly output. For
example,

• For Perceptron: the hypothesis space is the space of all straight
lines
• For nearest neighbor: the hypothesis space is infinitely complex
• For decision tree: it is a flexible space, as we increase the depth of
the tree, the hypothesis space grows larger and larger

DT can represent arbitrarily complex
decision boundaries

If needed, we can keep growing the tree until all examples are
correctly classified, although it may not be the best idea.

How to learn decision trees
• Goal: Find a decision tree h that achieves minimum

misclassification errors on the training data
• As our previous slides suggest, we can always achieve this by using

large trees
• In fact, we can achieve this trivially: just create a decision tree with

one path from root to leaf for each training example
– Problem: Such a tree would just memorize the training data. It would

not generalize to new data points – i.e., capture regularities that are
applicable to unseen data

• Alternatively: find the smallest tree h that minimizes training error
– Problem: This is NP-Hard

So far we have looked at what is a decision tree, and what kind of
decision boundaries decision trees produce, and its apealling
properties. We now need to address:

Greedy Learning For DT
There are different ways to construct trees from data. We will
focus on the top-down, greedy search approach:
Instead of trying to optimize the whole tree together, we try to
find one test at a time.
Basic idea: (assuming discrete features, relaxed later)
1. Choose the best attribute a* to place at the root of the

tree.
2. Separate training set S into subsets {S1, S2, .., Sk} where

each subset Si contains examples having the same value for
a*

3. Recursively apply the algorithm on each new subset
until examples have the same class or there are few of them.

Building DT: an example

0
1

1

x

y

13 15

Training data contains
13 15

If we had to make a decision
now, we’d pick . But there’s
too much uncertainty.

Based on training data, with
probability 13/28 I would be
wrong

Now if you are allowed to ask
one question about your
example to help the decision,
which question will you ask?

0
1

1

x

y

[13,15]
X < 0.5

[5,15][8,0] [5,15]
Y < 0.5

[4,0] [1,15]

Now we feel much better because the uncertainty in
each leaf node is much reduced!

One possible question: is x < 0.5?

Building a decision tree
1. Choose the best attribute a* to place at the root of the tree.

What do we mean by “best” – reduce the most uncertainty about our
decision of the class labels

2. Separate the training set S into subsets {S1, S2, .., Sk} where each
subset Si contains examples having the same value for a*

3. Recursively apply the algorithm on each new subset until all examples
have the same class label

Choosing split: example

0 1

0 1 0 1

of training examples y=0
of training examples y=1

Candidate test

1+3= # of training examples with x1=0

of training mistakes can be used as a measure of uncertainty

