Lecture 4

Oct - 6 - 2008

Review from last lecture

Nearest neighbor classifier
— Alazy learning algorithm

— Decision boundary can be obtained by the Voronoi diagram of the training
set

— Complex, sensitive to label noise

K-nearest neighbor, how to select k? a model selection problem
— Use training error — bad idea

— Use validation error — better

— Use cross-validation error — even better
Issues with KNN

— Features need to be normalized to the same range

— Computational cost — high

— lIrrelevant features — bad for kNN, which assumes all features are equally
important

— Last but not least: finding the right distance metric can be difficult

e So far we've learned two classifiers
— Perceptron: LTU
— KNN: complex decision boundary

 We have paid special attention on some of the
Issues such as
— |Is the learning algorithm robust to outliers?

— |Is the learning algorithm sensitive to irrelevant
features?

— |Is the algorithm computationally scalable?

— We will continue to pay attention to these issues as
we introduce more learning algorithms

Decision Tree
One of the most popular
off-the-shelf classifiers

What Is decision tree: an
example

Outlook
Sunny Overcast Rain
Humidiry }L}. Wind
High Normal Strong Weak

/ \ / \

Na Yes No Yes

Chutlook

Definition RN

Sunmny Overcast Rain

Humidiry m Wind

/\

High Normal Strong Weak

Internal nodes (rectangles)
— Each node presents a test on a particular attribute
— Multiple possible outcomes lead to branches of the tree

— For discrete attributes (outlook = sunny, overcast or wind)
* n possible values -> n branches

— Continuous attributes (temperature = 87 F)?
Leaf nodes (elipses)
— Each assign a class label to all examples that end up there,

Decision Tree Decision Boundaries

« Decision Trees divide the input space into axis-parallel rectangles
and label each rectangle with one of the K classes

A X2 <1.5?

PN
4 @ @ @ @

= X1<3.5?
sk o | e e | e / \
X1<1.5?
2 r &® S S @ / \
X2<3.5?
1F e ® ® ®
N
| | | | R e @

Characteristics of Decision Trees

* Decision trees have many appealing properties
— Similar to human decision process, easy to understand
— Handle both Discrete and Continuous features
— Highly flexible hypothesis space, as the # of nodes (or depth)

of tree increases, decision tree can represent increasingly
complex decision boundaries

Definition: Hypothesis space

The space of solutions that a learning algorithm can possibly output. For
example,
* For Perceptron: the hypothesis space is the space of all straight
lines
* For nearest neighbor: the hypothesis space is infinitely complex
» For decision tree: it is a flexible space, as we increase the depth of
the tree, the hypothesis space grows larger and larger

DT can represent arbitrarily complex
decision boundaries

1

X2A | x2<3
1 /\
6 x1 <4 x1 <3
1 1 | /\ /\
0 1 0 1 x2 <4
4 0 /\
0 1
0 1
0
0
” 1
1) |
0 1
0 —
0 2 4 6 x1

If needed, we can keep growing the tree until all examples are
correctly classified, although it may not be the best idea.

So far we have looked at what is a decision tree, and what kind of
decision boundaries decision trees produce, and its apealling
properties. We now need to address:

How to learn decision trees

Goal: Find a decision tree h that achieves minimum
misclassification errors on the training data

As our previous slides suggest, we can always achieve this by using
large trees

In fact, we can achieve this trivially: just create a decision tree with
one path from root to leaf for each training example

— Problem: Such a tree would just memorize the training data. It would
not generalize to new data points — i.e., capture regularities that are
applicable to unseen data

Alternatively: find the smallest tree h that minimizes training error
— Problem: This is NP-Hard

Greedy Learning For DT

There are different ways to construct trees from data. We will
focus on the top-down, greedy search approach:

Instead of trying to optimize the whole tree together, we try to
find one test at a time.

Basic idea: (assuming discrete features, relaxed later)

1. Choose the best attribute a* to place at the root of the
tree.

2. Separate training set S into subsets {S,, S,, .., S,} where
each subset S, contains examples having the same value for
a*

3. Recursively apply the algorithm on each new subset
until examples have the same class or there are few of them.

Building DT: an example

y
} Training data contains
1 O ®
O O eeee 13 L
::8: If we had to make a decision
6 o0 eeee now, we’d pick @ . But there’s

too much uncertainty.

Based on training data, with
probability 13/28 | would be
©O o0 0o O wrong

0 . Now if you are allowed to ask
one guestion about your
example to help the decision,

13 o 15 e which question will you ask?

One possible question: is x < 0.5?

o o |eeee (1801
<y

1

Now we feel much better because the uncertainty in
each leaf node is much reduced!

Building a decision tree

. Choose the best attribute a* to place at the root of the tree.

What do we mean by “best” — reduce the most uncertainty about our
decision of the class labels

. Separate the training set S into subsets {S,, S,, .., S,} where each
subset S; contains examples having the same value for a*

. Recursively apply the algorithm on each new subset until all examples
have the same class label

Choosing split: example

of training examples y=0

of training examples y=1
L1 Lo T3 | Y l
O 0 0|1 414
0 0 110 x] «—— Candidate test
O 1 1 |1
1 0 0|0 13 301
1 O 1 |1 /
1 1 0|0 1+3= # of training examples with x1=0
1 1 1 |0
Training examples 4| 4 44
X2 x3
M M
212 212 2|2 212

of training mistakes can be used as a measure of uncertainty

