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Review from last lecture

Nearest neighbor classifier
— Alazy learning algorithm

— Decision boundary can be obtained by the Voronoi diagram of the training
set

— Complex, sensitive to label noise

K-nearest neighbor, how to select k? a model selection problem
— Use training error — bad idea

— Use validation error — better

— Use cross-validation error — even better
Issues with KNN

— Features need to be normalized to the same range

— Computational cost — high

— lIrrelevant features — bad for kNN, which assumes all features are equally
important

— Last but not least: finding the right distance metric can be difficult



e So far we've learned two classifiers
— Perceptron: LTU
— KNN: complex decision boundary

 We have paid special attention on some of the
Issues such as
— |Is the learning algorithm robust to outliers?

— |Is the learning algorithm sensitive to irrelevant
features?

— |Is the algorithm computationally scalable?

— We will continue to pay attention to these issues as
we introduce more learning algorithms



Decision Tree
One of the most popular
off-the-shelf classifiers




What Is decision tree: an
example
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Chutlook

Definition RN
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Internal nodes (rectangles)
— Each node presents a test on a particular attribute
— Multiple possible outcomes lead to branches of the tree

— For discrete attributes (outlook = sunny, overcast or wind)
* n possible values -> n branches

— Continuous attributes ( temperature = 87 F)?
Leaf nodes (elipses)
— Each assign a class label to all examples that end up there,




Decision Tree Decision Boundaries

« Decision Trees divide the input space into axis-parallel rectangles
and label each rectangle with one of the K classes
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Characteristics of Decision Trees

* Decision trees have many appealing properties
— Similar to human decision process, easy to understand
— Handle both Discrete and Continuous features
— Highly flexible hypothesis space, as the # of nodes (or depth)

of tree increases, decision tree can represent increasingly
complex decision boundaries

Definition: Hypothesis space

The space of solutions that a learning algorithm can possibly output. For
example,
* For Perceptron: the hypothesis space is the space of all straight
lines
* For nearest neighbor: the hypothesis space is infinitely complex
» For decision tree: it is a flexible space, as we increase the depth of
the tree, the hypothesis space grows larger and larger




DT can represent arbitrarily complex
decision boundaries
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If needed, we can keep growing the tree until all examples are
correctly classified, although it may not be the best idea.




So far we have looked at what is a decision tree, and what kind of
decision boundaries decision trees produce, and its apealling
properties. We now need to address:

How to learn decision trees

Goal: Find a decision tree h that achieves minimum
misclassification errors on the training data

As our previous slides suggest, we can always achieve this by using
large trees

In fact, we can achieve this trivially: just create a decision tree with
one path from root to leaf for each training example

— Problem: Such a tree would just memorize the training data. It would
not generalize to new data points — i.e., capture regularities that are
applicable to unseen data

Alternatively: find the smallest tree h that minimizes training error
— Problem: This is NP-Hard




Greedy Learning For DT

There are different ways to construct trees from data. We will
focus on the top-down, greedy search approach:

Instead of trying to optimize the whole tree together, we try to
find one test at a time.

Basic idea: (assuming discrete features, relaxed later)

1. Choose the best attribute a* to place at the root of the
tree.

2. Separate training set S into subsets {S,, S,, .., S,} where
each subset S, contains examples having the same value for
a*

3. Recursively apply the algorithm on each new subset
until examples have the same class or there are few of them.



Building DT: an example
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One possible question: is x < 0.5?
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Now we feel much better because the uncertainty in
each leaf node is much reduced!



Building a decision tree

. Choose the best attribute a* to place at the root of the tree.

What do we mean by “best” — reduce the most uncertainty about our
decision of the class labels

. Separate the training set S into subsets {S,, S,, .., S,} where each
subset S; contains examples having the same value for a*

. Recursively apply the algorithm on each new subset until all examples
have the same class label



Choosing split: example
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# of training mistakes can be used as a measure of uncertainty



