Lecture 5 DT cont.

Oct 8 2008



Review of last lecture

e What Is decision tree

 \What decision boundaries do decision trees
produce

— Syntactically different trees can represent the same
decision boundaries

— In such cases, we prefer smaller trees
— flexible hypothesis space

 How to learn a decision tree?
— A greedy approach

— At each step, choose the test that reduce the most
uncertainty about class labels



Choosing the test based on training

error

« Perform 1-step look-ahead search and choose the
attribute that gives the Iowest error rate on the training
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Unfortunately, this measure does not always work well,
because it does not detect cases where we are making

“progress” toward a good tree
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A Better Heuristic from Information

Theory

Let X have the following probability distribution

P(X=0)=py, | P(X=1)=p,
0.2 0.8

The entropy of X, denoted H(X), is defined as

H(X)=-Rlog, R, —Rlog, R
H(X)=-PR/log, P, —...— B, log, P, if there are k possible values

- logP(X=x) measures the surprise of value x:

If P(X=x) Is small, x is a surprising value to take,
-logP(x) Is large

Entropy can be considered as the average surprise of a
random variable, which is also referred to as the
uncertainty of a random variable




Entropy

Entropy Is a concave function downward

H(X)

Minimum uncertainty occurs when p,=0 or 1



Mutual Information

If we use entropy to measure uncertainty, we end up measuring the

mutual information between a candidate test variable X and class

label Y: | g
1(X,Y)=H()-H( | X)

Uncertainty of Y

» Remaining uncertainty of Y
after knowing the value of X

H(Y|X) is called the conditional entropy of Y given X
— Measures the uncertainty of Y after knowing the value of X

H(Y [ X) =) P(X =x)H(Y | X =X)

==Y PO OEP =y | X =0logP(Y =y X =R
| )

The probability of X=x The uncertainty of Y when X=x




2010 H(Y)=0.9183

Xl
P(x1:0):o.66w1):o.3333
12| 8 8 | 2
H(Y[X,=0) H(Y[X;=1)
=-0.6*10g0.6-0.4*log0.4 =-0.8*10g0.8-0.2*l0g0.2
=0.9710 =0.7219

H(Y|X)= 0.6667*0.9710 + 0.3333*0.7219 = 0.8873

1(X1,Y)=0.0304



Information Gain

 This is called the information gain criterion: choose X
that maximizes mutual information between X and y

argmax I (X ;;Y)=argmaxH(Y)-H(Y | X;)
j j
=argminH(Y | X)
j

* Information gain is just one of the methods for selecting
tests in decision tree learning

 There are other methods as well, but they use the same
general approach based on different uncertainty
measures



Choosing the Best Feature: A General
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Issues with Multi-nomial Features

e Multi-nomial features: more than 2 possible values

 Comparing two features, one is binary, the other has 100
possible values, which one you expect to have higher
mutual information with Y?

The conditional entropy of Y given this feature will be low
But is this meaningful?

This bias will inherently prefer such multinomial features to binary
features

Method 1: To avoid this, we can rescale the conditional entropy:

D P(X; =x)H(Y | X; =X)

arg min HY1X,) = arg min —

Method 2: Test for one value versus all of the others

Method 3: Group the values into two disjoint sets and test one set
against the other



Continuous Features

e Test against a threshold

 How to compute the best threshold 6, for X?
— Sort the examples according to X;.

— Move the threshold 0 from the smallest to the
largest value

— Select 6 that gives the best information gain

— Trick: only need to compute information gain
when class label changes



Over-fitting

* Decision tree has a very flexible hypothesis space

e As the nodes increase, we can represent arbitrarily
complex decision boundaries

* This can lead to over-fitting
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Avoid Overfitting

e Early stop

— Stop growing the tree when data split does
not offer large benefit

e Post pruning

— Separate training data into training set and
validating set

— Evaluate impact on validation set when
pruning each possible node

— Greedily prune the node that most improves
the validation set performance
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Revisit some of the Issues

e |s decision tree robust to outliers?

e |Ss decision tree sensitive to Irrelevant
features?

* |Is decision tree computational efficient?



