
Lecture 3

Oct 3 2008

Review of last lecture

• A supervised learning example – spam
filter, and the design choices one need to
make for this problem
– use bag-of-words to represent emails
– linear functions as our functional forms to

learn: produces linear decision boundaries
– The perceptron algorithm for learning the

function: online vs. batch

Reviews
• Geometric properties of a linear decision

boundary as represented by
g(x,w) = w · x = 0

The reading posted online (by William Cohen from
CMU) contains a good explanation of this.

w

-W

Visually, x · w is
the distance you
get if you “project
x onto w”

X1

x2
X1 .

 w

X2 .
 w

w · x = 0 gives the line
perpendicular to w, which
divides the points classified
as positive from the points
classified as negative.

In 3d: line plane
In 4d: plane hyperplane
…

Courtesy of William Cohen, CMU

Review cont

• Perceptron algorithm:
– Start with a random w
– Update if make an mistake (what does this

update do?)
• When is the perceptron algorithm

guaranteed to converge?
• What happens if this is not satisfied?

1

1
0

0

),

0

1

1

0

0

+=

+=
=

+←

<=

←

=
=

+

+

nn

n

ii
nn

ii

i
n

i

ii

cc

nn
c

y
 · uy

 · u
yxi

c
w

else

xww
 if

xw
(: example Take

repeat

...,0)(0,0,0, Let
Store a collection of linear
separators w0, w1,…, along with
their survival time c0, c1, …

The c’s can be good measures of
reliability of the w’s.

For classification, take a weighted
vote among all separators:

What is now we have more than
two classes?

• We learn one LTU for each class

– The training is done on a transformed data set where
class k examples are considered positive, the others
considered negative

• Classify x to according to

• This is called a linear machine

,...,ckh kk 1)(=⋅= xwx

)(maxarg xk
k

hy =)

When the data is not linearly separable, a
different approach is to classify an email
by asking the question “ which of the
training email does this one look most
similar to” – this is the basic idea behind
our next learning algorithm

Nearest Neighbor Algorithm
• Remember all training examples
• Given a new example x, find the its closest training

example <xi, yi> and predict yi

• Euclidean distance (straight line distance):

∑ −=−
j

i
jj

i xx 22)(xx

New example

Note that || * || represents the length
(magnitude) of the vector. | * | is mainly
used for norm of a scalar.

Decision Boundaries: The Voronoi Diagram

• Given a set of points,
a Voronoi diagram
describes the areas
that are nearest to
any given point.

• These areas can be
viewed as zones of
control.

Voroni diagram

• Demo
http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/index.html.en

Decision Boundaries:
Subset of the Voronoi Diagram

• Each example controls its own
neighborhood

• Create the voroni diagram

• Decision boundary are formed
by only retaining these line
segments separating different
classes.

• The more examples stored, the
more complex the decision
boundaries can become

Decision Boundaries

With large number of examples
and noise in the labels, the
decision boundary can become
nasty!

How to deal with this issue?

K-Nearest Neighbor
Example:

K = 4 New example

Find the k nearest neighbors and have them vote.

Effect of K

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

K=1 K=15

Larger k produces smoother boundaries, why?
• The impact of class label noises canceled out by one another

But when k is too large, what will happen?
• Oversimplified boundaries, say k=N, we always predict the majority

class

Question: how to choose k?
• Can we choose k to minimize the mistakes that we make

on training examples (training error)?
• Question: 1-nn’s training error is 0, why is that?

K=1K=20

Model complexity

Model Selection
• Choosing k for k-nn is just one of the many model selection

problems we face in machine learing
– Choosing k-nn over LTU is also a model selection problem
– This is a heavily studied topic in machine learning, and is of crucial

importance in practice
• If we use training error to select models, we will always choose more

complex ones

Increasing Model complexity
(e.g., as we decreases k for knn)

Overfitting

Use a Validation Set

• We can keep part of the labeled data apart as
validation data

• Evaluate different k values based on the
prediction accuracy on the validation data

• Choose k that minimize validation error

Training Validation Testing

• When labeled set is small, we might not be able to get
a big enough validation set (why do we need large
validation set?)

• Solution: cross validation

Train on S2, S3, S4, S5, test on S1

Train on S1, S3, S4, S5, test on S2

Train on S1, S2, S3, S4, test on S5

ε1

ε2

ε5

∑
=

=
5

15
1

i
iεεA 5-fold cross validation

Practical issues with KNN
• Suppose we want to build a model to predict a person’s shoe size
• Use the person’s height and weight to make the prediction
• P1: (6’, 175), P2: (5.7,168), PQ:(6.1’, 170)

• There is a problem with this what is it?

551.0 22 ≈+=P1)D(PQ, 04.224.0 22 ≈+=P2)D(PQ,

Because weight has a much larger range of values, the
differences look bigger numerically.

Features should be normalized to have the same range of
values (e.g., [0,+1]), otherwise features with larger ranges will
be treated as more important.

Practical issues with KNN

• Our data may also contain the GPAs
• Should we include this attribute into the

calculate?
• When collecting data, people tend to collect as

much information as possible regardless
whether they are useful for the question in hand

• Recognize and remove such attributes when
building your classification models

Other issues
• It can be computationally

expensive to find the
nearest neighbors!
– Speed up the computation

by using smart data
structures to quickly search
for approximate solutions

• For large data set, it
requires a lot of memory
– Remove unimportant

examples

Final words on KNN
• KNN is what we call lazy learning (vs. eager learning)

– Lazy: learning only occur when you see the test example
– Eager: learn a model before you see the test example, training

examples can be thrown away after learning
• Advantage:

– Conceptually simple, easy to understand and explain
– Very flexible decision boundaries
– Not much learning at all!

• Disadvantage
– It can be hard to find a good distance measure
– Irrelevant features and noise can be very detrimental
– Typically can not handle more than 30 attributes
– Computational cost: requires a lot computation and memory

