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Oct 3 2008



Review of last lecture

• A supervised learning example – spam 
filter, and the design choices one need to 
make for this problem
– use bag-of-words to represent emails
– linear functions as our functional forms to 

learn: produces linear decision boundaries
– The perceptron algorithm for learning the 

function: online vs. batch



Reviews
• Geometric properties of a linear decision 

boundary as represented by 
g(x,w) = w · x = 0

The reading posted online (by William Cohen from 
CMU) contains a good explanation of this.
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Visually, x · w is 
the distance you 
get if you “project 
x onto w”
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w · x = 0  gives the line
perpendicular to w, which  
divides the points classified 
as positive from the points 
classified as negative.

In 3d: line plane
In 4d: plane hyperplane
…

Courtesy of William Cohen, CMU



Review cont

• Perceptron algorithm:
– Start with a random w
– Update if make an mistake (what does this 

update do?)
• When is the perceptron algorithm 

guaranteed to converge?
• What happens if this is not satisfied?
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repeat

...,0)(0,0,0,   Let
Store a collection of linear 
separators w0, w1,…, along with 
their survival time c0, c1, …

The c’s can be good measures of 
reliability of the w’s. 

For classification, take a weighted 
vote among all separators:



What is now we have more than 
two classes?

• We learn one LTU for each class

– The training is done on a transformed data set where 
class k examples are considered positive, the others 
considered negative

• Classify x to according to

• This is called a linear machine
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When the data is not linearly separable, a 
different approach is to classify an email 
by asking the question “ which of the 
training email does this one look most 
similar to” – this is the basic idea behind 
our next learning algorithm



Nearest Neighbor Algorithm
• Remember all training examples
• Given a new example x, find the its closest training 

example <xi, yi> and predict yi

• Euclidean distance (straight line distance):
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New example

Note that || * || represents the length 
(magnitude) of the vector. | * | is mainly 
used for norm of a scalar.



Decision Boundaries: The Voronoi Diagram

• Given a set of points, 
a Voronoi diagram 
describes the areas 
that are nearest to 
any given point.

• These areas can be 
viewed as zones of 
control.



Voroni diagram

• Demo
http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/index.html.en



Decision Boundaries: 
Subset of the Voronoi Diagram

• Each example controls its own 
neighborhood

• Create the voroni diagram

• Decision boundary are formed 
by only retaining these line 
segments separating different 
classes. 

• The more examples stored, the 
more complex the decision 
boundaries can become



Decision Boundaries

With large number of examples 
and noise in the labels, the 
decision boundary can become 
nasty!

How to deal with this issue?



K-Nearest Neighbor
Example:

K = 4 New example

Find the k nearest neighbors and have them vote.  



Effect of K 

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

K=1 K=15

Larger k produces smoother boundaries, why?
• The impact of class label noises canceled out by one another

But when k is too large, what will happen?
• Oversimplified boundaries, say k=N, we always predict the majority 

class 



Question: how to choose k?
• Can we choose k to minimize the mistakes that we make 

on training examples (training error)?
• Question: 1-nn’s training error is 0, why is that?

K=1K=20

Model complexity



Model Selection
• Choosing k for k-nn is just one of the many model selection 

problems we face in machine learing
– Choosing k-nn over LTU is also a model selection problem
– This is a heavily studied topic in machine learning, and is of crucial 

importance in practice
• If we use training error to select models, we will always choose more 

complex ones

Increasing Model complexity
(e.g., as we decreases k for knn)

Overfitting



Use a Validation Set

• We can keep part of the labeled data apart as 
validation data

• Evaluate different k values based on the 
prediction accuracy on the validation data

• Choose k that minimize validation error

Training Validation Testing



• When labeled set is small, we might not be able to get 
a big enough validation set (why do we need large 
validation set?)

• Solution: cross validation

Train on S2, S3, S4, S5, test on S1

Train on S1, S3, S4, S5, test on S2

Train on S1, S2, S3, S4, test on S5

ε1
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Practical issues with KNN
• Suppose we want to build a model to predict a person’s shoe size
• Use the person’s height and weight to make the prediction
• P1: (6’, 175),  P2: (5.7,168), PQ:(6.1’, 170)

• There is a problem with this what is it?

551.0 22 ≈+=P1)D(PQ, 04.224.0 22 ≈+=P2)D(PQ,

Because weight has a much larger range of values, the 
differences look bigger numerically.

Features should be normalized to have the same range of 
values (e.g., [0,+1]), otherwise features with larger ranges will 
be treated as more important.



Practical issues with KNN

• Our data may also contain the GPAs
• Should we include this attribute into the 

calculate?
• When collecting data, people tend to collect as 

much information as possible regardless 
whether they are useful for the question in hand

• Recognize and remove such attributes when 
building your classification models



Other issues
• It can be computationally 

expensive to find the 
nearest neighbors!
– Speed up the computation 

by using smart data 
structures to quickly search 
for approximate solutions

• For large data set, it 
requires a lot of memory
– Remove unimportant 

examples



Final words on KNN
• KNN is what we call lazy learning (vs. eager learning) 

– Lazy: learning only occur when you see the test example
– Eager: learn a model before you see the test example, training 

examples can be thrown away after learning
• Advantage:

– Conceptually simple, easy to understand and explain
– Very flexible decision boundaries
– Not much learning at all!

• Disadvantage
– It can be hard to find a good distance measure
– Irrelevant features and noise can be very detrimental
– Typically can not handle more than 30 attributes
– Computational cost: requires a lot computation and memory


