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Review

» Clustering
— Grouping similar objects into clusters

* Hierarchical clustering

— Agglomerative approach (HAC): iteratively merge
similar clusters

— Different linkage algorithms for computing distances
among clusters
* Non hierarchical clustering

— K-means: start with a set of initial seeds (ceners),
iteratively go through reassignment and recentering
steps until convergence



More about Kmeans

* |t always converges (fast)

* |t converges to local optimum

— Different initial seeds lead to different local optimum,
to address this:
« Many random restart and pick the best wrt MSE
« Separate initial seeds far apart

* Other problems:

— It is best suited for cases where clusters are all
spherical and similar in size

— It does not allow an object to partially belong to
multiple clusters



Soft vs hard Clustering

» Hard clustering:

— Data point is deterministically assigned to one
and only one cluster

— But in reality clusters may overlap
» Soft-clustering:

— Data points are assigned to clusters with
certain probabilities



How can we extend Kmeans to
make soft clustering

» Given a set of clusters centers py,, Yo, ..., M, instead of
directly assign all data points to their closest clusters, we
can assign them partially based on the distances

 If each point only partially belongs to a particular cluster,
when computing the centroid, should we still use it as if it
was fully there?



Gaussian for representing a cluster

« What exactly is a cluster?
— Intuitively it is a tightly packed ball-shape like thing

« We can use a Gaussian (normal) distribution to
describe it

 Let’s first review what is a Gaussian distribution



Side track: Gaussian Distribtuion

 Univariate Gaussian distribution:
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Mixture of Gaussians

Assume that we have k clusters in our data

Each cluster contains data generated from a Gaussian
distribution

Overall process of generating data:

— first randomly select one of the clusters according to a prior
distribution of the clusters

— draw a random sample from the Gaussian distribution of that
particular cluster

Similar to the generative model we have learned in

Bayes Classifier, difference?

— Here we don'’t know the cluster membership of each data point
(unsupervised)



Clustering using mixture of
Gaussian models

« Given a set of data points, and assume that we
know there are k clusters in the data, we need
to:

— Assign the data points to the k clusters (soft
assignment)

— Learn the gaussian distribution parameters for each
cluster: pand X



A simpler problem

 |f we know the parameters of each Gaussian:
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— we can compute the probability of each data point
belonging to each cluster
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 The same as in making prediction in Bayes
classifier



Another simpler problem

* If we know what points belong to cluster |,
we can estimate the gaussian parameters
easily:
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* What we have is slightly different —

— For each data point x), we have P(xeC |x) for
i=1,2,..., K



Modifications
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A procedure similar to Kmeans

Randomly initialize the Gaussian parameters

Repeat until converge

1. Compute P(x' eC, |x') for all data points and all
clusters

This is called the E-step for it computes the expected values of
the cluster memberships for each data point

2. Re-compute the parameters of each Gaussian

This is called the M-step for it performs maximum likelihood
estimation of parameters






After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration




After 6th iteration




After 20th iteration

Q: Why are these two points red when
they appear to be closer to blue?



K-Means is a Special Case

* we get K-Means if we make following
restrictions:

— All Gaussians have the identity covariance
matrix (i.e., spherical Gaussians)

— Use hard assignment for the E-step to assign
data point to its most likely cluster



Behavior of EM

* It Is guaranteed to converge

* In practice it may converge slowly, one
can stop early if the change in log-
likelihood is smaller than a threshold

* Like K-means it converges to a local
optimum
— Multiple restart is recommended



