Lecture 18

Nov 07 2008

Review

- Clustering
 - Grouping similar objects into clusters
- Hierarchical clustering
 - Agglomerative approach (HAC): iteratively merge similar clusters
 - Different linkage algorithms for computing distances among clusters
- Non hierarchical clustering
 - K-means: start with a set of initial seeds (ceners), iteratively go through reassignment and recentering steps until convergence

More about Kmeans

- It always converges (fast)
- It converges to local optimum
 - Different initial seeds lead to different local optimum, to address this:
 - Many random restart and pick the best wrt MSE
 - Separate initial seeds far apart
- Other problems:
 - It is best suited for cases where clusters are all spherical and similar in size
 - It does not allow an object to partially belong to multiple clusters

Soft vs hard Clustering

- Hard clustering:
 - Data point is deterministically assigned to one and only one cluster
 - But in reality clusters may overlap
- Soft-clustering:
 - Data points are assigned to clusters with certain probabilities

How can we extend Kmeans to make soft clustering

• Given a set of clusters centers $\mu_1, \mu_2, ..., \mu_k$, instead of directly assign all data points to their closest clusters, we can assign them **partially based on the distances**

 If each point only partially belongs to a particular cluster, when computing the centroid, should we still use it as if it was fully there?

Gaussian for representing a cluster

- What exactly is a cluster?
 - Intuitively it is a tightly packed ball-shape like thing
- We can use a Gaussian (normal) distribution to describe it
- Let's first review what is a Gaussian distribution

Side track: Gaussian Distribuion

• Univariate Gaussian distribution:

N(μ, σ²)

- $\mu~$ mean, center of the mass
- $\sigma^2\,$ standard deviation, spread of the mass
- Multivariate Gaussian distribution:

Ν(μ, Σ)

- $\mu (\mu_1, \mu_2)$
- Σ Covariance matrix

$$\begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

Mixture of Gaussians

- Assume that we have k clusters in our data
- Each cluster contains data generated from a Gaussian distribution
- Overall process of generating data:
 - first randomly select one of the clusters according to a prior distribution of the clusters
 - draw a random sample from the Gaussian distribution of that particular cluster
- Similar to the generative model we have learned in Bayes Classifier, difference?
 - Here we don't know the cluster membership of each data point (unsupervised)

Clustering using mixture of Gaussian models

- Given a set of data points, and assume that we know there are k clusters in the data, we need to:
 - Assign the data points to the k clusters (soft assignment)
 - Learn the gaussian distribution parameters for each cluster: μ and Σ

A simpler problem

- If we know the parameters of each Gaussian: $(\mu_1, \Sigma_1); (\mu_2, \Sigma_2); ..., (\mu_K, \Sigma_K)$
 - we can compute the probability of each data point belonging to each cluster

$$P(x \in C_i | x) = \frac{P(x | x \in C_i) P(C_i)}{P(x)}$$

\$\propto \alpha_i * \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp[-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)]\$

The same as in making prediction in Bayes
 classifier

Another simpler problem

 If we know what points belong to cluster i, we can estimate the gaussian parameters easily:

$$\alpha_{i} = \frac{n_{i}}{n} \qquad \hat{\mu}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x}^{j} \in C_{i}} \mathbf{x}^{j} \qquad \hat{\Sigma}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x}^{j} \in C_{i}} (\mathbf{x}^{j} - \hat{\mu}_{i}) (\mathbf{x}^{j} - \hat{\mu}_{i})^{T}$$
Cluster
Cluster
Cluster
mean
Cluster
covariance

What we have is slightly different –
 For each data point x^j, we have P(x^j∈C_i|x^j) for i=1,2,..., K

Modifications

Cluster covariance

$$\hat{\Sigma}_{i} = \frac{\sum_{j=1,\dots,n} P(\mathbf{x}^{j} \in C_{i} | \mathbf{x}^{j}) (\mathbf{x}^{j} - \hat{\mu}_{i}) (\mathbf{x}^{j} - \hat{\mu}_{i})^{T}}{\sum_{j=1,\dots,n} P(\mathbf{x}^{j} \in C_{i} | \mathbf{x}^{j})}$$

A procedure similar to Kmeans

- Randomly initialize the Gaussian parameters
- Repeat until converge
 - 1. Compute $P(\mathbf{x}^{j} \in C_{i} | \mathbf{x}^{j})$ for all data points and all clusters

This is called the E-step for it computes the expected values of the cluster memberships for each data point

2. Re-compute the parameters of each Gaussian This is called the M-step for it performs maximum likelihood estimation of parameters

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Q: Why are these two points red when they appear to be closer to blue?

K-Means is a Special Case

- we get K-Means if we make following restrictions:
 - All Gaussians have the identity covariance matrix (i.e., spherical Gaussians)
 - Use hard assignment for the E-step to assign data point to its most likely cluster

Behavior of EM

- It is guaranteed to converge
- In practice it may converge slowly, one can stop early if the change in loglikelihood is smaller than a threshold
- Like K-means it converges to a local optimum
 - Multiple restart is recommended