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ReviewReview

• ClusteringClustering
– Grouping similar objects into clusters

• Hierarchical clusteringHierarchical clustering
– Agglomerative approach (HAC): iteratively merge 

similar clusters 
– Different linkage algorithms for computing distances 

among clusters
• Non hierarchical clustering• Non hierarchical clustering

– K-means: start with a set of initial seeds (ceners), 
iteratively go through reassignment and recenteringiteratively go through reassignment and recentering 
steps until convergence



More about KmeansMore about Kmeans
• It always converges (fast)
• It converges to local optimum 

– Different initial seeds lead to different local optimum, 
t dd thito address this:

• Many random restart and pick the best wrt MSE
• Separate initial seeds far apartp p

• Other problems:
– It is best suited for cases where clusters are all 

spherical and similar in size
– It does not allow an object to partially belong to 

multiple clustersmultiple clusters



Soft vs hard ClusteringSoft vs hard Clustering

• Hard clustering:Hard clustering:
– Data point is deterministically assigned to one 

and only one clusterand only one cluster
– But in reality clusters may overlap

• Soft clustering:• Soft-clustering:
– Data points are assigned to clusters with 

certain probabilitiescertain probabilities



How can we extend Kmeans to 
k f l imake soft clustering

• Given a set of clusters centers μ1, μ2, …, μk, instead of μ1, μ2, , μk,
directly assign all data points to their closest clusters, we 
can assign them partially based on the distances

• If each point only partially belongs to a particular cluster• If each point only partially belongs to a particular cluster, 
when computing the centroid, should we still use it as if it 
was fully there?  



Gaussian for representing a clusterp g
• What exactly is a cluster?

I t iti l it i ti htl k d b ll h lik thi– Intuitively it is a tightly packed ball-shape like thing
• We can use a Gaussian (normal) distribution to 

describe itdescribe it
• Let’s first review what is a Gaussian distribution



Side track: Gaussian DistribtuionSide track: Gaussian Distribtuion

• Univariate Gaussian distribution:Univariate Gaussian distribution:

N(μ, σ2)

μ − mean, center of the mass

σ2 − standard deviation, spread of the mass

• Multivariate Gaussian distribution:
N(μ, Σ)

μ − (μ1, μ2)

Σ − Covariance matrix

σ1
2    σ12

σ12    σ2
2



Mixture of Gaussians
• Assume that we have k clusters in our data
• Each cluster contains data generated from a Gaussian• Each cluster contains data generated from a Gaussian 

distribution
• Overall process of generating data:p g g

– first randomly select one of the clusters according to a prior 
distribution of the clusters

– draw a random sample from the Gaussian distribution of thatdraw a random sample from the Gaussian distribution of that 
particular cluster

• Similar to the generative model we have learned in 
Bayes Classifier difference?Bayes Classifier, difference?
– Here we don’t know the cluster membership of each data point 

(unsupervised)



Clustering using mixture of 
G i d lGaussian models

• Given a set of data points, and assume that weGiven a set of data points, and assume that we 
know there are k clusters in the data, we need 
to:
– Assign the data points to the k clusters (soft 

assignment)
L th i di t ib ti t f h– Learn the gaussian distribution parameters for each 
cluster: μ and Σ



A simpler problemA simpler problem

• If we know the parameters of each Gaussian:If we know the parameters of each Gaussian: 
(μ1,Σ1); (μ2,Σ2); ..., (μΚ,ΣΚ)
– we can compute the probability of each data point 

belonging to each cluster 
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• The same as in making prediction in Bayes 
classifierclassifier



Another simpler problemAnother simpler problem

• If we know what points belong to cluster i,If we know what points belong to cluster i, 
we can estimate the gaussian parameters 
easily:y
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• What we have is slightly different

Cluster 
prior

Cluster 
mean

Cluster 
covariance

• What we have is slightly different –
– For each data point xj, we have P(xj∈Ci|xj) for 

i=1,2,…, Ki 1,2,…, K



Modifications
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A procedure similar to KmeansA procedure similar to Kmeans

• Randomly initialize the Gaussian parametersRandomly initialize the Gaussian parameters 
• Repeat until converge

1. Compute for all data points and all)|( j
i

j CP xx ∈1. Compute for all data points and all 
clusters

This is called the E-step for it computes the expected values of 
the cluster memberships for each data point

)|( iCP xx ∈

the cluster memberships for each data point

2. Re-compute the parameters of each Gaussian 
This is called the M-step for it performs maximum likelihood 

estimation of parameters

















Q:  Why are these two points red when 
th t b l t bl ?they appear to be closer to blue?



K-Means is a Special CaseK Means is a Special Case

• we get K-Means if we make followingwe get K Means if we make following 
restrictions:

All Gaussians have the identity covariance– All Gaussians have the identity covariance 
matrix (i.e., spherical Gaussians)

– Use hard assignment for the E-step to assignUse hard assignment for the E step to assign 
data point to its most likely cluster



Behavior of EMBehavior of EM 

• It is guaranteed to convergeIt is guaranteed to converge
• In practice it may converge slowly, one 

can stop early if the change in logcan stop early if the change in log-
likelihood is smaller than a threshold
Lik K it t l l• Like K-means it converges to a local 
optimum
– Multiple restart is recommended


