Lecture 8

Oct 15th 2008
Bayes Classifiers in a nutshell

1. Learn the $P(X_1, X_2, \ldots X_m \mid Y=v_i)$ for each value v_i

3. Estimate $P(Y=v_i)$ as fraction of records with $Y=v_i$.

4. For a new prediction:

$$Y^{\text{predict}} = \arg\max_{v} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

$$= \arg\max_{v} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)$$

Estimating the joint distribution of $X1, X2, \ldots X_m$ given y can be problematic!
Joint Density Estimator Overfits

• Typically we don’t have enough data to estimate the joint distribution accurately
• So we make some bold assumptions to simplify the joint distribution
Naïve Bayes Assumption

- Assume that each attribute is independent of any other attributes given the class label

\[
P(X_1 = u_1 \cdots X_m = u_m \mid Y = v_i) \\
= P(X_1 = u_1 \mid Y = v_i) \cdots P(X_m = u_m \mid Y = v_i)
\]
A note about independence

• Assume A and B are Boolean Random Variables. Then
 “A and B are independent” if and only if
 \[P(A | B) = P(A) \]

• “A and B are independent” is often notated as
 \(A \perp B \)
Independence Theorems

• Assume $P(A|B) = P(A)$
• Then $P(A \cap B) =$

= $P(A) \cdot P(B)$

• Assume $P(A|B) = P(A)$
• Then $P(B|A) =$

= $P(B)$
Independence Theorems

- Assume $P(A | B) = P(A)$
- Then $P(\sim A | B) = P(\sim A)$

- Assume $P(A | B) = P(A)$
- Then $P(A | \sim B) = P(A)$
Examples of independent events

• Two separate coin tosses
• Consider the following four variables:
 – T: Toothache (I have a toothache)
 – C: Catch (dentist’s steel probe catches in my tooth)
 – A: Cavity
 – W: Weather
 – \(p(T, C, A, W) = p(T, C, A) \cdot p(W) \)
Conditional Independence

• \(p(X_1 | X_2, y) = p(X_1 | y) \)
 – \(X_1 \) and \(X_2 \) are conditionally independent given \(y \)

• If \(X_1 \) and \(X_2 \) are conditionally independent given \(y \), then we have
 – \(p(X_1, X_2 | y) = p(X_1 | y) p(X_2 | y) \)
Example of conditional independence

- T: Toothache (I have a toothache)
- C: Catch (dentist’s steel probe catches in my tooth)
- A: Cavity

T and C are conditionally independent given A:
\[P(T, C|A) = P(T|A) \cdot P(C|A) \]

So, events that are not independent from each other might be conditionally independent given some fact.

It can also happen the other way around. Events that are independent might become conditionally dependent given some fact.

B = Burglar in your house; A = Alarm (Burglar) rang in your house
E = Earthquake happened
B is independent of E (ignoring some possible connections between them)
However, if we know A is true, then B and E are no longer independent. Why?
P(B|A) >> P(B|A, E) Knowing E is true makes it much less likely for B to be true.
Naïve Bayes Classifier

• Assume you want to predict output Y which has arity n_Y and values $v_1, v_2, \ldots, v_{n_Y}$.

• Assume there are m input attributes called $X=(X_1, X_2, \ldots, X_m)$.

• Learn a conditional distribution of $p(X|y)$ for each possible y value, $y = v_1, v_2, \ldots, v_{n_Y}$, we do this by:

 – Break training set into n_Y subsets called $DS_1, DS_2, \ldots, DS_{n_Y}$ based on the y values, i.e., $DS_i =$ Records in which $Y=v_i$

 – For each DS_i, learn a joint distribution of input distribution

\[
P(X_1 = u_1 \cdots X_m = u_m | Y = v_i) \\
= P(X_1 = u_1 | Y = v_i) \cdots P(X_m = u_m | Y = v_i)
\]

\[
Y^{\text{predict}} = \arg\max_v P(X_1 = u_1 | Y = v) \cdots P(X_m = u_m | Y = v) P(Y = v)
\]
Apply Naïve Bayes, and make prediction for (1,0,1)?

1. Learn the prior distribution of y.
 \[P(y=0) = 1/2, \quad P(y=1) = 1/2 \]

2. Learn the conditional distribution of \(x_i \) given y for each possible y values
 \[p(X_1 | y=0), \quad p(X_1 | y=1) \]
 \[p(X_2 | y=0), \quad p(X_2 | y=1) \]
 \[p(X_3 | y=0), \quad p(X_3 | y=1) \]

For example, \(p(X_1 | y=0) \):
\[P(X_1=1 | y=0) = 2/3, \quad P(X_1=0 | y=0) = 1/3 \]
...

To predict for (1,0,1):
\[
P(y=0 | (1,0,1)) = \frac{P((1,0,1) | y=0)P(y=0)}{P((1,0,1))} \\
P(y=1 | (1,0,1)) = \frac{P((1,0,1) | y=1)P(y=1)}{P((1,0,1))}
\]
Final Notes about (Naïve) Bayes Classifier

- Any density estimator can be plugged in to estimate $p(X_1, X_2, ..., X_m \mid y)$, or $p(X_i \mid y)$ for Naïve bayes

- Real valued attributes can be modeled using simple distributions such as Gaussian (Normal) distribution

- Zero probabilities are painful for both joint and naïve. A hack called Laplace smoothing can help!
 - Original estimation:
 $$P(X_1=1 \mid y=0) = \frac{(\text{# of examples with } y=0, X_1=1)}{(\text{# of examples with } y=0)}$$
 - Smoothed estimation (never estimate zero probability):
 $$P(X_1=1 \mid y=0) = \frac{(1+ \text{# of examples with } y=0, X_1=1)}{(k+ \text{# of examples with } y=0)}$$

- Naïve Bayes is wonderfully cheap and survives tens of thousands of attributes easily
Bayes Classifier is a **Generative Approach**

- Generative approach:
 - Learn $p(y)$, $p(X|y)$, and then apply Bayes rule to compute $p(y|X)$ for making predictions
 - This is in essence assuming that each data point is *independently, identically distributed (i.i.d)*, and generated following a **generative process** governed by $p(y)$ and $p(X|y)$
• Generative approach is just one type of learning approaches used in machine learning
 – Learning a correct generative model is difficult
 – And sometimes unnecessary
• KNN and DT are both what we call discriminative methods
 – They are not concerned about any generative models
 – They only care about finding a good discriminative function
 – For KNN and DT, these functions are deterministic, not probabilistic
• One can also take a probabilistic approach to learning discriminative functions
 – i.e., Learn $p(y|X)$ directly without assuming X is generated based on some particular distribution given y (i.e., $p(X|y)$)
 – Logistic regression is one such approach
Logistic Regression

• First let’s look at the term regression
• Regression is similar to classification, except that the y value we are trying to predict is a continuous value (as opposed to a categorical value)

Classification: Given income, savings, predict loan applicant as “high risk” vs “low risk”

Regression: Given income, savings, predict credit score
Linear regression

• Essentially try to fit a straight line through a clouds of points
• Look for \(w = [w_1,w_2,...,w_m] \)
 \(\hat{y} = w_0 + w_1x_1 + ... + w_mx_m \) and \(\hat{y} \) is as close to \(y \) as possible
• Logistic regression can be think of as extension of linear regression to the case where the target value \(y \) is binary
Logistic Regression

• Because y is binary (0, or 1), we can not directly use linear function of x to predict y

• Instead, we use linear function of x to predict the log odds of $y=1$:

$$
\log \frac{P(y = 1 \mid x)}{P(y = 0 \mid x)} = w_0 + w_1 x_1 + \ldots + w_m x_m
$$

• Or equivalently, we predict:

$$
P(y = 1 \mid x) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \ldots + w_m x_m)}}
$$
Learning \(\mathbf{w} \) for logistic regression

- Given a set of training data points, we would like to find a weight vector \(\mathbf{w} \) such that
 \[
P(y = 1 \mid x) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \ldots + w_m x_m)}}
 \]
 is large (e.g. 1) for positive training examples, and small (e.g. 0) otherwise

- This can be captured in the following objective function:
 \[
 L(\mathbf{w}) = \sum_{i} \log P(y^i \mid \mathbf{x}^i, \mathbf{w})
 \]
 Note that the superscript \(i \) is an index to the examples in the training set
 \[
 = \sum_{i} [y^i \log P(y^i = 1 \mid \mathbf{x}^i, \mathbf{w}) + (1 - y^i) \log(1 - P(y^i = 1 \mid \mathbf{x}^i, \mathbf{w}))]
 \]

This is called the likelihood function of \(\mathbf{w} \), and by maximizing this objective function, we perform what we call “maximum likelihood estimation” of the parameter \(\mathbf{w} \).
Optimizing $L(w)$

- Unfortunately this does not have a close form solution
- Instead, we iteratively search for the optimal w
- Start with a random w, iteratively improve w (similar to Perceptron)
Logistic regression learning

Given: training examples \((x^i, y^i), \ i = 1, \ldots, N\)

Let \(w \leftarrow (0, 0, 0, \ldots, 0)\)

Repeat until convergence

\[d \leftarrow (0, 0, 0, \ldots, 0) \]

For \(i = 1\) to \(N\) do

\[\hat{y} \leftarrow \frac{1}{1 + e^{-w \cdot x^i}} \]

\[error = y^i - \hat{y} \]

\[d = d + error \cdot x^i \]

\[w \leftarrow w + \eta d \]

Learning rate
Logistic regression learns LTU

• We predict \(y=1 \) if \(P(y=1|X)>P(y=0|X) \)

• You can show that this lead to a linear decision boundary