
Lecture 2
Linear ModelsLinear Models

Last lecture

• You have learned about what is machine learning
– Supervised learning

– Unsupervised learning

– Reinforcement learning

• You have seen an example learning problem and the • You have seen an example learning problem and the
general process that one goes through to design a
learning system, which involves determining:

– Types of training experience

– Target function

– Representation of the learned function

– Learning algorithm

Supervised learning

Let’s look at the problem of spam filtering

Now anyone can learn how to earn $200 - $943 per day or More ! If you can type (hunt and peck is ok to
start) and fill in forms, you can score big! So don't delay waiting around for the next opportunity...it is
knocking now! Start here: http://redbluecruise.com/t/c/381/polohoo/yz37957.html

Do you Have Poetry that you think should be worth $10,000.00 USD, we do!.. Enter our International
Open contest and see if you have what it takes. To see details or to enter your own poem, Click link
below. http://e-suscriber.com/imys?e=0sAoo4q9s4zYYUoYQ&m=795314&l=0

View my photos!
I invite you to view the following photo album(s): zak-month27

Hey have you seen my new pics yet???? Me and my girlfreind would love it if you would
come chat with us for a bit.. Well join us if you interested. Join live web cam chat here:
http://e-commcentral.com/imys?e=0sAoo4q9s4zYYUoYQ&m=825314&l=0

Let’s look at the design choices

• Learning experience?

– Past emails and whether they are considered spam or
not (you can also choose to use non-spam or spam
emails only, but that will require different choices later
on)on)

• Target function?

– Email -> spam or not

• Representation of the function?

– ?

• Learning algorithm

– ?

We will focus mostly on these
two aspects in this class. In
some cases, you will also need
to pay attention to the first two
questions.

Continue with the design choices

• Representation of the function (email -> spam or not) ?

• First of all, how to represent an email?

– Use bag-of-words to represent an email

– This will turn an email into a collection of features, e.g., where
each feature describe whether a particular word is present in the
email

• This gives us the standard supervised classification
problem typically seen in text books and papers
– Training set: a set of examples (instances, objects) with class

labels, e.g., positive (spam) and negative (non spam)

– Input representation: an example is described by a set of attributes
(e.g., whether “$” is present, etc.)

– Given an unseen email, and its input representation, predict its

label

• Next question: what function forms to use?

Linear Threshold Units (McCulloch & Pitts 1943)

x1

x2

x

w1

w2

wn

y







−

>++
= ∑

=

otherwise1

0if1
1

0

n

i

ii xww
y

w0

1

• Assume each feature xj and weight wj is a real number

• LTU computes w • x and takes threshold it to produce the
prediction y

• Why linear model?
– Simplest model – fewer parameters to learn

– Visually intuitive - drawing a straight line to separate positive from negative

xn
wn

Geometric view

+

-
+

+

+
- -

1
x2

x1+x2=1
Referred to as

decision boundary

+

W=(1,1), points to
the positive side

- +
- -
- -
-

1

x1

decision boundary

-

A Canonical Representation

• Given a training example: (<x1, x2, …, xm>, y)

• transform it to (<1, x1, x2, …, xm>, y)

• The parameter vector will then be

w = <w0, w1, w2, …, wm>

• Given a training set, we need to learn

g(x,w) = w01 +w1x1+w2x2+…+wmxm = w · x

Dot (or inner) product: takes two
equal-length vectors, and returns the
sum of their component-wise product

g(x,w) = w01 +w1x1+w2x2+…+wmxm = w · x

• Or equivalently h(x,w) = sign(g(x,w))

• To differentiate the learned function and the true underlying function,
it is common to refer to the learned function as a hypothesis (each
unique set of parameter values is one hypothesis)

• A prediction is correct if y·g(x,w) >0 (or y·h(x,w)>0)

Geometrically, using the canonical
representation translates to two things:

1.It will increase the input space dimension
by 1, and

2.the decision boundary now always passes
through the origin.through the origin.

Geometric view

+ +

1
x2

-
+

+

+
- -
- -
-

1

x1

How to learn: the perceptron
algorithm

The goal of learning is to find a weight vector w such that its decision
boundary correctly separate positive examples from negative
examples.

regionsdecision different into spaceinput separatesthat

boundarydecision linear a defines 0...equation The 110 =+++ mm xwxww

examples.

How can we achieve this?

Perceptron is one approach. It starts with some vector w and
incrementally update w when it makes a mistake.

Let wt be current weight vector, and suppose it makes a mistake
on example <x, y>, that is to say y·wt·x <0. The perceptron
update rule is: wt+1 = wt + y·x

Perceptron Algorithm

ii

ii

 · u

 , yi

xw

 x: example training Accept

Repeat

...,0)(0,0,0, w Let

←

←

)(

ii

ii

y

 · uy

 · u

xww

 if

xw

+←

<=

←

0

Effect of Perceptron Updating Rule

• Mathematically speaking

y · wt+1·x = y · (wt+y·x) · x = y · wt · x + y2||x||2

> y · wt · x

The updating rule makes y· wt ·x more positive, thus can
potentially correct the mistakepotentially correct the mistake

• Geometrically

+

+

+

wt

Step t Step t+1
_

+

+

wt

_

+

Online vs Batch

• We call the above perceptron algorithm an
online algorithm

• Online algorithms perform learning each
time it receives an training exampletime it receives an training example

• In contrast, batch learning algorithms
collect a batch of training examples and
learn from them all at once.

Batch Perceptron Algorithm

=

←

←

=

1

,...,1)(

N i

delta

N, i , y
ii

do to for

 ...,0)(0,0,0,

do

...,0)(0,0,0, w Let

x examples training :Given

ε

η

<

+←

←

⋅+←

<=

←

||

/

0

delta

delta

Ndeltadelta

ydeltadelta

 · uy

 · u

ii

ii

ii

 until

ww

x

 if

xw

Good news
• If there is a linear decision boundary that correctly

classify all training examples, this algorithm will find it

• Formally speaking, this is the convergence Property:

For linearly separable data (i.e., there exists an linear
decision boundary that perfectly separates positive and
negative training examples), the perceptron algorithm negative training examples), the perceptron algorithm
converges in a finite number of steps.

• Why? If you are mathematically curious, read the
following slide, you will find the answer.

• And how many steps? If you are practically curious, read
the following slide, answer is in there too.

• The further good news is that you are not required to
master this material, they are just for the curious ones

Proof

t

t
t

ww

ww
wwine

⋅

⋅
=

*

*
*),(cos

tt

t

tt

tt xywwwxywwww
*

1

*

1

**
)(+⋅=+⋅=⋅

−−

examples all for i.e., , margin a withexamples all classify that Assume γγ >yxww
**

 step, th at wour be and vector,solution a be wLet

amount bounded lower a by vectorsolution a to closer vectorweight
 the moves update each that show to need just wee,convergenc show To

*
twt

γγγγ ttwwwwwwxywwwww tt

tt

tt =+>>+⋅>+⋅>+⋅=⋅
−−− 0

*

2

*

1

**

1

** ...2

22

11

222

1

2

1

2
2 t

t

tt

t

tt

t

tt

tt xwxywxywxyww +<++=+=
−−−− 1111 2 ttttt xwxywxywxyww +<++=+=
−−−−

D by bounded are x that Assume

222

2

22

1

22

1

2
...2 tDDwDwxww tt

t

tt <<+<+<+<
−−−

2***

*
*),(cos

tDw

t

ww

t

ww

ww
wwine

tt

t
t

⋅

>
⋅

>
⋅

⋅
=

γγ

2
*

2
2

*

2*
1

w
Dt

wD
t

tDw

t γ

γ

γ
<⇒<⇒<

⋅ 1 2 3

x1

1

2

3
x2

Margin
• is referred to as the margin

– The bigger the margin, the easier the
classification problem is, the perceptron
algorithm will likely find the solution faster!

– Side story: the bigger the margin, the more

2
*

2

w

γ

– Side story: the bigger the margin, the more
confident we are about our prediction, which
makes it desirable to find the one that gives
the maximum margin

– Later in the course this concept will be core to
one of the recent most exciting developments
in the ML field – support vector machine

Bad news

What about non-linearly separable cases!

In such cases the algorithm will never stop! How to fix?

One possible solution: look for decision boundary that make as few
mistakes as possible – NP-hard (refresh your 325 memory!)

ii

ii

 · u

 , yi

xw

 x: example training Take

N1,...,i for

...,0)(0,0,0, w Let

←

=

←

)(

ii

ii

y

 · uy

 · u

xww

 if

xw

+←

<

←

0

),

00

0

←

=

=

i

n

i

ii

 · u

yxi

c

w

xw

(: example Take

repeat

...,0)(0,0,0, Let

Store a collection of linear
separators w0, w1,…, along with
their survival time c0, c1, …

The c’s can be good measures of

1

1

0

0

1

1

+=

+=

=

+←

<=

←

+

+

nn

n

ii

nn

ii

n

cc

nn

c

y

 · uy

 · u

else

xww

 if

xw
reliability of the w’s.

For classification, take a weighted
vote among all separators:

