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Probability review
Adopted from notes of Andrew W. Moore and Eric 

Xing from CMU
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So far our classifiers are 
deterministic!

• For a given X, the classifiers we learned so far give 
a single predicted y value

• In contrast, a probabilistic prediction  returns a 
probability over the output space
P(y=0|X), P(y=1|X)

• We can easily think of situations when this would 
be very useful!
• Given P(y=1|X) =0.49, P(y=-1|X)=0.51, how would you 

predict?
• What if I tell you it is much more costly to miss an 

positive example than the other way around?  



2

Copyright © Andrew W. Moore Slide 3

Discrete Random Variables
• A is a Boolean-valued random variable if A 

denotes an event, and there is some degree 
of uncertainty as to whether A occurs.

• Examples
• A = The US president in 2023 will be male
• A = You wake up tomorrow with a 

headache
• A = You have Ebola
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Probabilities
• We write P(A) as “the fraction of possible 

worlds in which A is true”
• We could at this point spend 2 hours on the 

philosophy of this.
• But we won’t.
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Visualizing A

Event space of 
all possible 
worlds

Its area is 1
Worlds in which A is False

Worlds in which 
A is true

P(A) = Area of
reddish oval
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Basic axioms

• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B

P(A or B)

BP(A and B)

Simple addition and subtraction

Worlds in which A is False

A
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Elementary Probability Theorems

• P(~A) + P(A) = 1
• P(B) = P(B ^ A) + P(B ^ ~A)
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Multivalued Random Variables
• Suppose A can take on more than 2 values
• A is a random variable with arity k if it can 

take on exactly one value out of {v1,v2, .. 
vk}

• Thus…

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP
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An easy fact about Multivalued 
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)()(
1

21 ∑
=

===∨=∨=
i

j
ji vAPvAvAvAP
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Another fact about Multivalued 
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…
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Elementary Probability in Pictures
1)(

1

==∑
=
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Conditional Probability
• P(A|B) = Fraction of worlds in which B is 

true that also have A true

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu 
is rarer, but if you’re 
coming down with ‘flu 
there’s a 50-50 chance 
you’ll have a headache.”
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Conditional Probability
F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(H|F) = Fraction of flu-inflicted 
worlds in which you have a 
headache

= #worlds with flu and headache
------------------------------------

#worlds with flu

= Area of “H and F” region
------------------------------

Area of “F” region

= P(H ^ F)
-----------

P(F) 
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Definition of Conditional Probability
P(A ^ B) 

P(A|B)  =  -----------
P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat! 
50% of flus are associated with headaches so I must have a 
50-50 chance of coming down with flu”

Is this reasoning good?
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(F ^ H) = …

P(F|H) = …
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What we just did…
P(A ^ B)     P(A|B) P(B)

P(B|A) = ----------- = ---------------
P(A)             P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay 
towards solving a problem in the 
doctrine of chances. Philosophical 
Transactions of the Royal Society of 
London, 53:370-418
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Using Bayes Rule to Gamble

The “Win” envelope 
has a dollar and four 
beads in it

$1.00

The “Lose” envelope 
has three beads and 
no money

Trivial question: someone draws an envelope at random and offers to 
sell it to you. How much should you pay?
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Using Bayes Rule to Gamble

The “Win” envelope 
has a dollar and four 
beads in it

$1.00

The “Lose” envelope 
has three beads and 
no money

Interesting question: before deciding, you are allowed to see one bead 
drawn from the envelope.

Suppose it’s black: How much should you pay? 
Suppose it’s red: How much should you pay?
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Calculation…
$1.00
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Continuous Probability Distribution
• A continuous random variable x can take 

any value in an interval on the real line
• X usually corresponds to some real-valued 

measurements, e.g., today’s lowest temperature 
• It is not possible to talk about the probability of 

a continuous random variable taking an exact 
value --- P(x=56.2)=0

• Instead we talk about the probability of the 
random variable taking a value within a given 
interval P(x∈[50, 60])
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PDF: probability density function
• The probability of X taking value in a given range [x1, 

x2] is defined to be the area under the PDF curve 
between x1 and x2

• We use f(x) to represent the PDF of x
• Note:

• f(x) ≥0
• f(x) can be larger than 1
•

•

∫
∞

∞−

=1)( dxxf

∫=∈
2

1

)(])2,1[(
x

x

dxxfxxXP
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What is the intuitive meaning of f(x)?

If   f (x1)=α*a and f (x2)=a

Then when x is sampled from this distribution, 
you are α times more likely to see that x is “very 
close to” x1 than that x is “very close to” x2
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Some commonly used distributions

xnx pp
x

xnnnxP −−
+−−

= )1(
!

)1()1()( L

Binomial distribution: Binomial(n , p)

the probability to see x heads out of n flips

Multinomial distribution: Multinomial(n , [x1, x2, …, xk])

The probability to see x1 ones, x2 twos, etc, out of n 
dice rolls

kx
k

xx

k
k xxx

nxxxP θθθ L
L

21
21

21
21 !!!
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Continuous Distributions

f

f

f
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

Example: Boolean 
variables A, B, C
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

Example: Boolean 
variables A, B, C

111

011

101

001

110

010

100

000

CBA
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

3. If you subscribe to the axioms of 
probability, those numbers must 
sum to 1.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30
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Using the 
Joint

One you have the JD you can 
ask for the probability of any 
logical expression involving 
your attribute

∑=
E

PEP
 matching rows

)row()(
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Using the 
Joint

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(

Copyright © Andrew W. Moore Slide 34

Inference 
with the 

Joint

∑
∑

=
∧

=

2

 2 1

 matching rows

 and matching rows

2
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21 )row(

)row(
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Inference 
with the 

Joint

∑
∑

=
∧

=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)()|(

E

EE

P

P

EP
EEPEEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612  
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So we have learned that 
• Joint distribution is extremely useful!

we can do all kinds of cool inference
• I’ve got a sore neck: how likely am I to have 

meningitis?
• Many industries grow around Beyesian

Inference: examples include medicine, pharma, 
Engine diagnosis  etc. 

• But, HOW do we get them?
• We can learn from data
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Learning a joint distribution
Build a JD table for your 
attributes in which the 
probabilities are unspecified

The fill in each row with

recordsofnumber total
row matching records)row(ˆ =P

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

Fraction of all records in which
A and B are True but C is False


