Probability review

Adopted from notes of Andrew W. Moore and Eric Xing from CMU

So far our classifiers are deterministic!

- For a given X, the classifiers we learned so far give a single predicted y value
- In contrast, a probabilistic prediction returns a probability over the output space

$$
P(y=0 \mid X), P(y=1 \mid X)
$$

- We can easily think of situations when this would be very useful!
- Given $P(y=1 \mid X)=0.49, P(y=-1 \mid X)=0.51$, how would you predict?
- What if I tell you it is much more costly to miss an positive example than the other way around?

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- $\mathrm{A}=$ The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- $\mathrm{A}=$ You have Ebola

Probabilities

- We write $\mathrm{P}(\mathrm{A})$ as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Visualizing A

Event space of all possible worlds

Its area is 1

Basic axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

Elementary Probability Theorems

- $P(\sim A)+P(A)=1$
- $P(B)=P(B \wedge A)+P(B \wedge \sim A)$

Multivalued Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{21}\right.$.. $\left.v_{k}\right\}$
- Thus...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

An easy fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
\begin{aligned}
& \text { sy to prove that } \\
& \qquad P\left(A=v_{1} \vee A=v_{2} \vee A=v_{i}\right)=\sum_{j=1}^{i} P\left(A=v_{j}\right)
\end{aligned}
$$

An easy fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
P\left(A=v_{1} \vee A=v_{2} \vee A=v_{i}\right)=\sum_{j=1}^{i} P\left(A=v_{j}\right)
$$

- And thus we can prove

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

Another fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

- It's easy to prove that

$$
\begin{aligned}
& \text { It's easy to prove that } \\
& P\left(B \wedge\left[A=v_{1} \vee A=v_{2} \vee A=v_{i}\right]\right)=\sum_{j=1}^{i} P\left(B \wedge A=v_{j}\right)
\end{aligned}
$$

Another fact about Multivalued Random Variables:

- Using the axioms of probability...

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

- And assuming that A obeys...

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee A=v_{k}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { - It's easy to prove that } \\
& P\left(B \wedge\left[A=v_{1} \vee A=v_{2} \vee A=v_{i}\right]\right)=\sum_{j=1}^{i} P\left(B \wedge A=v_{j}\right)
\end{aligned}
$$

- And thus we can prove

$$
P(B)=\sum_{j=1}^{k} P\left(B \wedge A=v_{j}\right)
$$

Elementary Probability in Pictures

$$
\begin{aligned}
& \sum_{j=1}^{k} P\left(A=v_{j}\right)=1 \\
& P(B)=\sum_{j=1}^{k} P\left(B \wedge A=v_{j}\right)
\end{aligned}
$$

Conditional Probability

- $P(A \mid B)=$ Fraction of worlds in which B is true that also have A true

H = "Have a headache" F = "Coming down with Flu"

$P(H)=1 / 10$
$P(F)=1 / 40$ $P(H \mid F)=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Conditional Probability

H = "Have a headache"
$\mathrm{F}=$ "Coming down with Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$\mathrm{P}(\mathrm{H} \mid \mathrm{F})=$ Fraction of flu-inflicted worlds in which you have a headache
= \#worlds with flu and headache \#worlds with flu
= Area of "H and F" region
Area of " F " region
$=P\left(H^{\wedge} F\right)$
$P(F)$

Definition of Conditional Probability
$P(A \wedge B)$
$P(A / B)=--------$ $P(B)$

Corollary: The Chain Rule
$P(A \wedge B)=P(A / B) P(B)$

Probabilistic Inference

$H=$ "Have a headache"
$F=$ "Coming down with Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

One day you wake up with a headache. You think: "Drat! 50\% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Probabilistic Inference

$\mathrm{H}=$ "Have a headache"
F = "Coming down with Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \wedge H)=\ldots$
$P(F \mid H)=\ldots$

What we just did...
 $P(B \mid A)=-\cdots(A \wedge B) \quad P(A \mid B) P(B)$

This is Bayes Rule

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Trivial question: someone draws an envelope at random and offers to sell it to you. How much should you pay?

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Interesting question: before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay?
Suppose it's red: How much should you pay?

Calculation...

Continuous Probability Distribution

- A continuous random variable x can take any value in an interval on the real line
- X usually corresponds to some real-valued measurements, e.g., today's lowest temperature
- It is not possible to talk about the probability of a continuous random variable taking an exact value --- $P(x=56.2)=0$
- Instead we talk about the probability of the random variable taking a value within a given interval $P(x \in[50,60])$

PDF: probability density function

- The probability of X taking value in a given range [x 1 , $x 2$] is defined to be the area under the PDF curve between x 1 and x 2
- We use $f(x)$ to represent the PDF of x
- Note:
- $f(x) \geq 0$
- $f(x)$ can be larger than 1
- $\int_{-\infty}^{\infty} f(x) d x=1$
- $P(X \in[x 1, x 2])=\int_{x 1}^{x 2} f(x) d x$

What is the intuitive meaning of $f(x)$?

If $f(\mathrm{x} 1)=\alpha^{*}$ a and $f(\mathrm{x} 2)=\mathrm{a}$

Then when x is sampled from this distribution, you are α times more likely to see that x is "very close to" $x 1$ than that x is "very close to" $x 2$

Some commonly used distributions

Bernoulli distribution: $\operatorname{Ber}(p)$

$$
P(x)=\left\{\begin{array}{ll}
1-p & \text { for } x=0 \\
p & \text { for } x=1
\end{array} \quad \Rightarrow \quad P(x)=p^{x}(1-p)^{1-x}\right.
$$

Binomial distribution: Binomial(n, p)
the probability to see x heads out of n flips

$$
P(x)=\frac{n(n-1) \cdots(n-x+1)}{x!} p^{x}(1-p)^{n-x}
$$

Multinomial distribution: Multinomial($\mathrm{n},\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right]$)
The probability to see x_{1} ones, x_{2} twos, etc, out of n dice rolls

$$
P\left(\left[x_{1}, x_{2}, \ldots, x_{k}\right]\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} \theta_{1}^{x_{1}} \theta_{2}^{x_{2}} \cdots \theta_{k}^{x_{k}}
$$

Continuous Distributions

Uniform Probability Density Function

$$
\begin{aligned}
f^{\prime}(x) & =1 /(b-a) & & \text { for } a \leq x \leq b \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

Normal (Gaussian) Probability Density Function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Exponential Probability Distribution

$$
f(x)=\frac{1}{\mu} e^{-x / \mu}
$$

The Joint Distribution
 Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values,

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those numbers must sum to 1 .

\mathbf{A}	\mathbf{B}	\mathbf{C}	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint

One you have the JD you can ask for the probability of any logical expression involving your attribute

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

$P($ Poor Male $)=0.4654$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Inference with the Joint

gender hours_worked wealth		
Female v0:40.5-	poor	0.253122
	rich	0.0245895
v1:40.5+	poor	0.0421768
	rich	0.0116293
Male v0:40.5-	poor	0.331313
	rich	0.0971295
v1:40.5+	poor	0.134106
	rich	0.105933
$P\left(E_{1} \wedge E_{2}\right)$	rows m	$\sum_{\text {ching } E_{1}} P$
$P\left(E_{2}\right)$	rows	$\sum_{\text {natching } E_{2}} P(\mathbf{r}$

Inference with the Joint

$\left.\begin{array}{|llll|}\hline \begin{array}{llll|}\hline \text { gender } & \text { hours_worked } & \text { wealth } \\ \text { Female } & \text { v0:40.5- } & \text { poor } & 0.253122\end{array} \\ \hline & \text { rich } & 0.0245895\end{array}\right]$
$P($ Male \mid Poor $)=0.4654 / 0.7604=0.612$

So we have learned that

- Joint distribution is extremely useful! we can do all kinds of cool inference
- I've got a sore neck: how likely am I to have meningitis?
- Many industries grow around Beyesian Inference: examples include medicine, pharma, Engine diagnosis etc.
- But, HOW do we get them?
- We can learn from data

Learning a joint distribution

Build a JD table for your attributes in which the probabilities are unspecified

A	B	C	Prob
0	0	0	$?$
0	0	1	$?$
0	1	0	$?$
0	1	1	$?$
1	0	0	$?$
1	0	1	$?$
1	1	0	$?$
1	1	1	$?$

Fraction of all records in which
A and B are True but C is False

The fill in each row with
$\hat{P}($ row $)=\frac{\text { records matching row }}{\text { total number of records }}$

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	$\mathbf{0 . 2 5}$
1	1	1	0.10

