

So far our classifiers are deterministic!

- For a given X, the classifiers we learned so far give a single predicted y value
- In contrast, a probabilistic prediction returns a probability over the output space

P(y=0|X), P(y=1|X)

Copyright © Andrew W. Moon

- We can easily think of situations when this would be very useful!
 - Given P(y=1|X) =0.49, P(y=-1|X)=0.51, how would you predict?
 - What if I tell you it is much more costly to miss an positive example than the other way around?

Multivalued Random Variables • Suppose A can take on more than 2 values • A is a *random variable with arity k* if it can take on exactly one value out of $\{v_{1v}, v_{2v}, ..., v_k\}$ • Thus... $P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$ $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

An easy fact about Multivalued Random Variables:

• Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

• And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$

It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{j=1}^{i} P(A = v_j)$$

Slide 9

Copyright © Andrew W. Moore

An easy fact about Multivalued Random Variables:

• Using the axioms of probability...

$$0 \le P(A) \le 1, P(\text{True}) = 1, P(\text{False}) = 0$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$
• And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \ne j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$
• It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{j=1}^{i} P(A = v_j)$$
• And thus we can prove

$$\sum_{j=1}^{k} P(A = v_j) = 1$$

Another fact about Multivalued Random Variables:

• Using the axioms of probability... $0 \le P(A) \le 1, P(True) = 1, P(False) = 0$ P(A or B) = P(A) + P(B) - P(A and B)• And assuming that A obeys... $P(A = v_i \land A = v_j) = 0 \text{ if } i \ne j$ $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$ • It's easy to prove that $P(B \land [A = v_1 \lor A = v_2 \lor A = v_i]) = \sum_{j=1}^{i} P(B \land A = v_j)$ • And thus we can prove $P(B) = \sum_{j=1}^{k} P(B \land A = v_j)$

Build a JD table for your attributes in which the probabilities are unspecified				The fill in each row with				
A	В	С	Prob	$P(row) = \frac{S}{total number of records}$				
)	0	0	?	ī		-	0	Duch
)	0	1	?		A	B	C	
)	1	0	?		0	0	1	0.50
)	1	1	?		0	1	0	0.05
1	0	0	?		0	1	1	0.10
	0	1	?		1	0	0	0.05
L	1	0	?		1	0	1	0.00
		1	?	·	1	1	0	0.25
					-	-		