
Lecture 10
Support Vector Machines

Oct - 20 - 2008



Linear SeparatorsLinear Separators

• Which of the linear separators is optimal? p p
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Concept of MarginConcept of Margin

• Recall that in Perceptron we learned thatRecall that in Perceptron, we learned that 
the convergence rate of the Perceptron
algorithm depends on a concept calledalgorithm depends on a concept called 
margin



Intuition of Margin
• Consider points A, B, and C
• We are quite confident in our +A w · x + b = 0q

prediction for A because it is 
far from the decision 
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w · x + b = 0
w · x + b > 0

boundary.
• In contrast, we are not so 

confident in our prediction for 
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C because a slight change in 
the decision boundary may 
flip the decision.
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flip the decision. 

Given a training set, we would like to make all of our 
di ti t d fid t! Thi b t d bpredictions correct and confident! This can be captured by 

the concept of margin



Functional Marging
• One possible way to define margin: 

• We define this as the functional margin of the linear 
classifier w.r.t training example ( xi, yi )

• The large the value, the better – really?

• What if we rescale (w, b) by a factor α, consider the 
linear classifier specified by (αw, αb) 

Decision boundary remain the same– Decision boundary remain the same

– Yet, functional margin gets multiplied by α

– We can change the functional margin of a linear classifierWe can change the functional margin of a linear classifier 
without changing anything meaningful

– We need something more meaningful



What we really wantWhat we really want
+A w · x + b = 0

+ ++ −
B

w · x + b = 0

++ +

+

−
−

− −+

+
−

− −
−

−

C

We want the distances between the examples and the decision boundary to be 
large – this quantity is what we call geometric margin

But how do we compute the geometric margin of a data point w.r.t a particular 
line (parameterized by w and b)? 



Some basic facts about linesSome basic facts about lines

w · x + b = 0
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Geometric Margin
+A

• The geometric margin of (w, b) 
w.r.t. x(i) is the distance from x(i) to 
the decision surface + +
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the decision surface
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• Given training set S={(xi, yi): i=1,…, N}, the geometric  
margin of the classifier w.r.t. S is
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Note that the points closest to the boundary are called the supportNote that the points closest to the boundary are called the support 
vectors – in fact these are the only points that really matters, other 
examples are ignorable



What we have done so farWhat we have done so far

• We have established that we want to find aWe have established that we want to find a 
linear decision boundary whose margin is the 
largest

• We know how to measure the margin of a linear 
decision boundary

• Now what?
• We have a new learning objective

– Given a linearly separable (will be relaxed later)
training set S={(xi, yi): i=1,…, N}, we would like to find 
a linear classifier (w b) with maximum margina linear classifier (w, b) with maximum margin. 



Maximum Margin Classifier
• This can be represented as a constrained optimization 

problem. 
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• This optimization problem is in a nasty form so we
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• This optimization problem is in a nasty form, so we 
need to do some rewriting

• Let γ’ = γ ⋅ ||w||, we can rewrite this asγ γ || ||
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Maximum Margin Classifier
• Note that we can arbitrarily rescale w and b to make the 

functional margin     large or small'γg g
• So we can rescale them such that     =1 

'max γ

γ
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Maximizing the geometric margin is equivalent to minimizing the magnitude of 
w subject to maintaining a functional margin of at least 1



Solving the Optimization Problem
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• This results in a quadratic optimization problem with 
li i lit t i t

Niby ii ,,1  ,1)( :subject to L=≥+⋅xw

linear inequality constraints.
• This is a well-known class of mathematical 

programming problems for which several (non-trivial)programming problems for which several (non trivial) 
algorithms exist.
– In practice, we can just regard the QP solver as a 

“black box” without bothering how it works“black-box” without bothering how it works
• You will be spared of the excruciating details and 

jump tojump to



The solution 
• We can not give you a close form solution that you can 

directly plug in the numbers and compute for an arbitrary y p g p y
data sets

• But, the solution can always be written in the following 
form NNform

• This is the form of w b can be calculated accordingly
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This is the form of w, b can be calculated accordingly 
using some additional steps

• The weight vector is a linear combination of all the 
training examples 

• Importantly, many of the αi’s are zeros
These points that have non zero ’s are the support• These points that have non-zero αi’s are the support 
vectors



A Geometrical InterpretationA Geometrical Interpretation
Class 2

α8=0.6 α10=0

α2=0α5=0
α7=0

α6=1.4

α1=0.8
α4=0

6

Class 1
α3=0

α9=0



A few important notes regarding 
the geometric interpretation

• gives the decision boundarygives the decision boundary
• positive support vectors lie on this 

line
• negative support vectors lie on 

this line
• We can think of a decision boundary now as a 

tube of certain width, no points can be inside the 
tube
– Learning involves adjusting the location and 

i t ti f th t b t fi d th l t fitti t b forientation of the tube to find the largest fitting tube for 
the given training set


