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Linear Separators

 Which of the linear separators is optimal?




Concept of Margin

* Recall that in Perceptron, we learned that
the convergence rate of the Perceptron
algorithm depends on a concept called
margin



Intuition of Margin

e Consider points A, B, and C

« We are quite confident in our
prediction for A because it is
far from the decision
boundary.

e [n contrast, we are not so
confident in our prediction for
C because a slight change In
the decision boundary may
flip the decision.

Given a training set, we would like to make all of our
predictions correct and confident! This can be captured by
the concept of margin




Functional Margin

One possible way to define margin:

i i Note that 7 >0 if
— YW - X b
Y Y ( + ) classified correctly

We define this as the functional margin of the linear
classifier w.r.t training example ( x', y')

The large the value, the better — really?
What if we rescale (w, b) by a factor o, consider the
linear classifier specified by (aw, ab)

— Decision boundary remain the same

— Yet, functional margin gets multiplied by o

— We can change the functional margin of a linear classifier
without changing anything meaningful

— We need something more meaningful



What we really want

w'x+b=0

We want the distances between the examples and the decision boundary to be
large — this quantity is what we call geometric margin

But how do we compute the geometric margin of a data point w.r.t a particular
line (parameterized by w and b)?



Some basic facts about lines




Geometric Margin

 The geometric margin of (w, b)
w.r.t. x0) is the distance from x{ to
the decision surface

e This distance can be computed as

\
e Given training set S={(x!, y): i=1,..., N}, the geometric
margin of the classifier w.r.t. S is \

= min y®» ~
7 i:1---N7/

Note that the points closest to the boundary are called the support
vectors — in fact these are the only points that really matters, other
examples are ignorable




What we have done so far

We have established that we want to find a

linear decision boundary whose margin is the
largest

We know how to measure the margin of a linear
decision boundary

Now what?

We have a new learning objective

— Given a linearly separable (will be relaxed later)
training set S={(x}, y): i=1,..., N}, we would like to find
a linear classifier (w, b) with maximum margin.



Maximum Margin Classifier

This can be represented as a constrained optimization
problem.

max y
w,b

(i) (W . X(i) + b)

subjectto: vy >y, 1=1---'N

vl

This optimization problem is in a nasty form, so we
need to do some rewriting

Lety' = v - ||w||, we can rewrite this as

maxL

o fwl] o
subjectto: y'(w-x'+b)>y", i=1---,N




Maximum Margin Classifier

* Note that we can arbitrarily rescale w and b to make the
functional marginy ' large or small

« So we can rescale them such that 7 =1

maxL

"o |wl

subjectto: y'(w-x'+b)>y', i=1---,N

U

max — (or equivalently min|w|’)
S

subjectto: y'(w-x'+b)>1 i=1---,N

Maximizing the geometric margin is equivalent to minimizing the magnitude of
w subject to maintaining a functional margin of at least 1



Solving the Optimization Problem

1
min —
w,b 2

subjectto: y'(w-x'+b)>1, i=1---,N

2
Wi

* This results in a quadratic optimization problem with
linear inequality constraints.

e This is a well-known class of mathematical

programming problems for which several (non-trivial)
algorithms exist.

— In practice, we can just regard the QP solver as a
“black-box” without bothering how it works

* You will be spared of the excruciating details and
jump to



The solution

 We can not give you a close form solution that you can
directly plug in the numbers and compute for an arbitrary
data sets

e But, the solution can always be written in the following

f o .
o szN:aiy'X',S.t.ZN:aiy' =0
=1 =1

e This is the form of w, b can be calculated accordingly
using some additional steps

 The weight vector is a linear combination of all the
training examples

* Importantly, many of the a.,'s are zeros

e These points that have non-zero o,'s are the support
vectors



A Geometrical Interpretation
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A few important notes regarding
the geometric interpretation

« wix4+b=0 gives the decision boundary

« w'x+b=1 positive support vectors lie on this
line

e wlx 4 b= —1negative support vectors lie on
this line

 We can think of a decision boundary now as a
tube of certain width, no points can be inside the

tube

— Learning involves adjusting the location and
orientation of the tube to find the largest fitting tube for
the given training set



