Lecture 11
SVM cont.

10-22 2008
What we have done so far

• We have established that we want to find a linear decision boundary whose margin is the largest

• We know how to measure the margin of a linear decision boundary
 – That is: the minimum geometric margin of all training examples
 Geometric margin of a training example = functional margin normalized by the magnitude of \(\mathbf{w} \)

\[
\gamma^i = \frac{y^i (\mathbf{w} \cdot \mathbf{x}^i + b)}{\|\mathbf{w}\|}
\]

• How do we find such a linear decision boundary that has the largest margin?
Maximum Margin Classifier

- This can be formulated as a constrained optimization problem.
 \[
 \begin{aligned}
 \max_{\mathbf{w},b} \gamma \\
 \text{subject to: } y^{(i)} \left(\frac{\mathbf{w} \cdot \mathbf{x}^{(i)} + b}{\|\mathbf{w}\|} \right) \geq \gamma, \quad i = 1, \ldots, N
 \end{aligned}
 \]

- This optimization problem is in a nasty form (quadratic constraints), so we need to do some rewriting

- Eventually we will get the following:
 \[
 \begin{aligned}
 \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \\
 \text{subject to: } y^i (\mathbf{w} \cdot \mathbf{x}^i + b) \geq 1, \quad i = 1, \ldots, N
 \end{aligned}
 \]

Maximizing the geometric margin is equivalent to minimizing the magnitude of \(\mathbf{w} \) subject to maintaining a functional margin of at least 1
Solving the Optimization Problem

\[
\min_{w,b} \frac{1}{2} \|w\|^2
\]
subject to: \(y^i (w \cdot x^i + b) \geq 1, \quad i = 1, \ldots, N \)

• This is a **quadratic programming problem**, i.e., optimizing a quadratic function with linear inequality constraints.

• This is a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.

 – In practice, we can just regard the QP solver as a “black-box” without bothering how it works.

• You will be spared of the excruciating details and jump to …
The solution

- Hold on a sec, we can not really give you a close form solution that you can directly plug in the numbers and compute for an arbitrary data sets
- But, the crystal ball tells us that the solution can always be written in the following form:
 \[w = \sum_{i=1}^{N} \alpha_i y^i x^i, \text{ s.t. } \sum_{i=1}^{N} \alpha_i y^i = 0 \]
- This is the form of the solution for \(w \), \(b \) can be calculated accordingly using some additional steps
- The weight vector is a linear combination of all the training examples
- Importantly, many of the \(\alpha_i \)'s are zeros
- These that have non-zero \(\alpha_i \)'s are called the support vectors
An example

Class 2

\[\alpha_8 = 0.6 \]
\[\alpha_{10} = 0 \]
\[\alpha_7 = 0 \]
\[\alpha_2 = 0 \]
\[\alpha_1 = 0.8 \]

Class 1

\[\alpha_9 = 0 \]
\[\alpha_4 = 0 \]
\[\alpha_3 = 0 \]
\[\alpha_5 = 0 \]

\[w^T x + b = 1 \]
\[w^T x + b = 0 \]
\[w^T x + b = -1 \]
A few important notes regarding the geometric interpretation

- \(w^T x + b = 0 \) gives the decision boundary
- \(w^T x + b = 1 \) positive support vectors lie on this line
- \(w^T x + b = -1 \) negative support vectors lie on this line
- All support vectors have functional margin of 1
- We can think of a decision boundary now as a tube of certain width, no points can be inside the tube
 - Learning involves adjusting the location and orientation of the tube to find the largest fitting tube for the given training set
Summarization So Far

• We defined margin (functional, geometric)
• We demonstrated that we prefer to have linear classifiers with large geometric margin.
• We formulated the problem of finding the maximum margin linear classifier as a quadratic optimization problem
• This problem can be solved using efficient QP algorithms that are available.
• The solutions are very nicely formed
• Do we have our perfect classifier yet?
Non-separable Data and Noise

• What if the data is not linearly separable?

• We may have noise in data, and maximum margin classifier is not robust to noise!
Soft Margin

• Allow functional margins to be less than 1

Originally functional margins need to satisfy:

\[y^i(w \cdot x^i + b) \geq 1 \]

Now we allow it to be less than 1:

\[y^i(w \cdot x^i + b) \geq 1 - \xi_i \]

The objective ftn also change to:

\[\min_{w,b} \|w\|^2 + c \sum_{i=1}^{N} \xi_i \]
Soft-Margin Maximization

\[
\begin{align*}
\min_{w,b} & \|w\|^2 \\
\text{subject to} & : \quad y^i (w \cdot x^i + b) \geq 1, \quad i = 1, \ldots, N
\end{align*}
\]

\[
\begin{align*}
\min_{w,b} & \|w\|^2 + c \sum_{i=1}^{N} \zeta_i \\
\text{subject to} & : \quad y^i (w \cdot x^i + b) \geq 1 - \zeta_i, \quad i = 1, \ldots, N \\
\zeta_i & \geq 0, \quad i = 1, \ldots, N
\end{align*}
\]

- Introduce **slack variables** \(\zeta_i \) to allow some examples to have functional margins smaller than 1
- **Effect of parameter** \(c \)
 - Controls the tradeoff between maximizing the margin and fitting the training examples
 - Large \(c \): slack variables incur large penalty, so the optimal solution will try to avoid them
 - Small \(c \): small cost for slack variables, we can sacrifice a few training examples to ensure that the classifier margin is large
Solutions to SVM

\[w = \sum_{i=1}^{N} \alpha_i y^i x^i, \quad \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y^i = 0 \]

No soft margin

\[w = \sum_{i=1}^{N} \alpha_i y^i x^i, \quad \text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y^i = 0 \text{ and } 0 \leq \alpha_i \leq c \]

With soft margin

- c controls the tradeoff between maximizing margin and fitting training data
- It’s effect is to put a **box constraint** on \(\alpha \), the weights of the support vectors
- It limits the influence of individual support vectors (maybe outliers)
- In practice, c can be set by cross-validation
How to make predictions?

For classifying with a new input \(z \)

Compute

\[
 w \cdot z + b = \left(\sum_{j=1}^{s} \alpha_{t_j} y_j^t x_j^t \right) \cdot z + b = \sum_{j=1}^{s} \alpha_{t_j} y_j^t (x_j^t \cdot z) + b
\]

classify \(z \) as + if positive, and - otherwise

Note: \(w \) need not be formed explicitly, we can classify \(z \) by taking inner products with the support vectors

Further, the learning of \(w \) and the prediction using \(w \) both can be achieved using inner product between pair of input points – this lends itself naturally to handling cases that are not linearly separable by replacing the inner product with something that is called kernel function.
Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?
Mapping the input to a higher dimensional space can solve the linearly inseparable cases.
Non-linear SVMs: Feature Spaces

- General idea: For any data set, the original input space can always be mapped to some higher-dimensional feature space such that the data is linearly separable:

\[x \rightarrow \Phi(x) \]
Example: Quadratic Feature Space

- Assume m input dimensions
 \[\mathbf{x} = (x_1, x_2, \ldots, x_m) \]
- Number of quadratic terms:
 \[1 + m + m + m(m-1)/2 \approx m^2 \]
- The number of dimensions increase rapidly!

You may be wondering about the $\sqrt{2}$
At least they won’t hurt anything!
You will find out why they are there soon!
Dot product in quadratic feature space

\[
\Phi(a) \cdot \Phi(b) = \begin{pmatrix}
1 \\
\sqrt{2}a_1 \\
\sqrt{2}a_2 \\
\vdots \\
\sqrt{2}a_m \\
a_1^2 \\
a_2^2 \\
\vdots \\
a_m^2 \\
\sqrt{2}a_1a_2 \\
\sqrt{2}a_1a_3 \\
\vdots \\
\sqrt{2}a_1a_m \\
\sqrt{2}a_2a_3 \\
\vdots \\
\sqrt{2}a_2a_m \\
\vdots \\
\sqrt{2}a_{m-1}a_m
\end{pmatrix} \cdot \begin{pmatrix}
1 \\
\sqrt{2}b_1 \\
\sqrt{2}b_2 \\
\vdots \\
\sqrt{2}b_m \\
b_1^2 \\
b_2^2 \\
\vdots \\
b_m^2 \\
\sqrt{2}b_1b_2 \\
\sqrt{2}b_1b_3 \\
\vdots \\
\sqrt{2}b_1b_m \\
\sqrt{2}b_2b_3 \\
\vdots \\
\sqrt{2}b_2b_m \\
\vdots \\
\sqrt{2}b_{m-1}b_m
\end{pmatrix}
\]

= \begin{pmatrix}
1 \\
+ \sum_{i=1}^{m} 2a_ib_i \\
+ \sum_{i=1}^{m} a_i^2b_i^2
\end{pmatrix} = \sum_{i=1}^{m} \sum_{j=1}^{m} 2a_i a_j b_i b_j

\]

\[
\Phi(a) \cdot \Phi(b) = 1 + 2 \sum_{i=1}^{m} a_i b_i + \sum_{i=1}^{m} a_i^2 b_i^2 + \sum_{i=1}^{m} \sum_{j=1}^{m} 2a_i a_j b_i b_j
\]

Now let’s just look at another interesting function of (a·b):

\[
(a \cdot b + 1)^2 = (a \cdot b)^2 + 2(a \cdot b) + 1
\]

= \left(\sum_{i=1}^{m} a_i b_i \right)^2 + 2 \sum_{i=1}^{m} a_i b_i + 1

= \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j b_i b_j + 2 \sum_{i=1}^{m} a_i b_i + 1

= \sum_{i=1}^{m} a_i^2 b_i^2 + 2 \sum_{i=1}^{m} \sum_{j=i+1}^{m} a_i a_j b_i b_j + 2 \sum_{i=1}^{m} a_i b_i + 1

They are the same! And the later only takes O(m) to compute!
Kernel Functions

• If every data point is mapped into high-dimensional space via some transformation $x \rightarrow \phi(x)$, the inner product that we need to compute for classifying a point x becomes:

 $$<\phi(x^i) \cdot \phi(x)>$$ for all support vectors x^i

• A kernel function is a function that is equivalent to an inner product in some feature space.

 $$k(a,b) = <\phi(a) \cdot \phi(b)>$$

• We have seen the example:

 $$k(a,b) = (a \cdot b + 1)^2$$

 This is equivalent to mapping to the quadratic space!
More kernel functions

- Linear kernel: \(k(a,b) = (a \cdot b) \)
- Polynomial kernel: \(k(a,b) = (a \cdot b + 1)^d \)
- Radial-Basis-Function kernel:
 \[
 K(a, b) = \exp \left(-\frac{(a - b)^2}{2\sigma^2} \right)
 \]

In this case, the corresponding mapping \(\phi(x) \) is *infinite-dimensional*! Lucky that we don’t have to compute the mapping explicitly!

\[
w \cdot \Phi(z) + b = \sum_{j=1}^{s} \alpha_{i,j} y_i^{t,j} (\Phi(x_i^{t,j}) \cdot \Phi(z)) + b = \sum_{j=1}^{s} \alpha_{i,j} y_i^{t,j} K(x_i^{t,j} \cdot z) + b
\]

Note: We will not get into the details but the learning of \(w \) can be achieved by using kernel functions as well!
Nonlinear SVM summary

• Map the input space to a high dimensional feature space and learn a linear decision boundary in the feature space
• The decision boundary will be nonlinear in the original input space
• Many possible choices of kernel functions
 – How to choose? Most frequently used method: cross-validation