(Brief) Intro to probability and Density Estimation
Basic notations

• Random Variable
 – referring to an element/event whose status/value is unknown

• Example A = “it will rain tomorrow”

• Domain: (usually denoted by Ω)
 – A = “CS534 will be canceled on Friday”: binary
 – A = “Your CS534 grade”: categorical (discrete)
 – A = “The amount of time you will spend each week on studying for CS534”: continuous
Axioms of probability (Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three axioms:

1. $0 \leq P(A) \leq 1$
2. $P(\text{true}) = 1$, $P(\text{false}) = 0$
3. $P(A \lor B) = P(A) + P(B) - P(A \land B)$
Joint Distribution

• The probability that a set of random variables will take a specific value combination

• Notation: $P(A \land B)$ or $P(A, B)$ - probability that both A and B are true

• Example: $P(\text{Headache, Flu})$

• If two variables are independent then $P(A,B) = P(A)P(B)$
Conditional Probability

• $P(A|B) = \frac{\text{Fraction of worlds in which B is true that also have A true}}{	ext{Total worlds where B is true}}$

• If A and B are independent, $P(A|B) = P(A)$
Conditional Probability

• Some times, knowing one or more random variables can improve upon our prior belief of another random variable.

\[
\begin{align*}
H &= \text{“Have a headache”} \\
F &= \text{“Coming down with Flu”} \\
P(H) &= 1/10 \\
P(F) &= 1/40 \\
P(H|F) &= 1/2
\end{align*}
\]

“Headaches are rare (1/10), but if you’re coming down with ‘flu there’s a 50-50 chance you’ll have a headache.”
Chain Rule

\[P(A \land B) = P(A|B) P(B) \]

- Chain rule can be used to derive the Bayes rule:

\[P(A \land B) = P(A|B) P(B) = P(B|A)P(A) \]

\[P(A \land B) \quad P(A|B) = \quad \frac{P(A \land B)}{P(B)} \]
Probabilistic Inference

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu”

Is this reasoning good?
Probabilistic Inference

H = “Have a headache”
F = “Coming down with Flu”

Prior: the degree of belief in an event in the absence of any other information

\[P(H) = \frac{1}{10} \]
\[P(F) = \frac{1}{40} \]
\[P(H \mid F) = \frac{1}{2} \]

\[P(F \mid H) = \frac{P(F \land H)}{P(H)} = \frac{P(H \mid F)P(F)}{P(H)} = \frac{\frac{1}{40} \times \frac{1}{2}}{\frac{1}{10}} = \frac{1}{8} \]

Posterior: the degree of belief in an event after obtaining some evidential information
More General Forms of Bayes Rule

\[
P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}
\]

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}
\]

\[
P(A=v_i|B) = \frac{P(B|A=v_i)P(A=v_i)}{\sum_{k=1}^{n_A} P(B|A=v_k)P(A=v_k)}
\]
Probability Density Function

- **Discrete distribution:**
 \[\sum_{i} P(X = x_i) = 1 \]

- **Continuous:** Probability density function (PDF) \(f(x) \)
Cumulative density function

• Cumulative Density Function $F(x)$:

$$F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)dt$$

• Properties:

$$\frac{d}{dx} F(x) = f(x)$$

$$P(a \leq x \leq b) = F(b) - F(a) = \int_{a}^{b} f(t)dt$$

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$F(a) \geq F(b) \forall a \geq b$$
Multivariate

• Joint distribution of \(x \) and \(y \) is described by a pdf function \(f(x, y) \):

\[
P \left((x, y) \in A \right) = \int \int_A f(x, y) \, dx \, dy
\]

• Marginal:

\[
f(x) = \int f(x, y) \, dy
\]

• Conditional:

\[
f(x|y) = \frac{f(x, y)}{f(y)}
\]

• Chain rule:

\[
f(x, y) = f(x|y)f(y) = f(y|x)f(x)
\]

• Bayes rule:

\[
f(x|y) = \frac{f(y|x)f(x)}{f(y)} = \frac{f(y|x)f(x)}{\int f(y|x)f(x) \, dx}
\]
Expectations

• Expectation of a random variable of x is the weighted average of all possible values that x can take

• Discrete:

\[\bar{X} = E(X) = \sum_{i} x_i P(X = x_i) \]

• Continuous:

\[\bar{X} = E(X) = \int_{-\infty}^{\infty} x f(x) dx \]
Variance

- $\text{Var}(x)$ describes how far the values of x lie from the expected value of x (mean)

$$\text{Var}(x) = E[(x - \bar{x})^2] = E[x^2] - (\bar{x})^2$$

$$E[x^2] = \int x^2 f(x)dx$$

$$E[g(x)] = \int g(x)f(x)dx$$
Commonly Used Discrete Distributions

Bernoulli distribution: $Ber(p)$

$$P(x) = \begin{cases} 1 - p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases} \Rightarrow P(x) = p^x(1 - p)^{1-x}$$

$E(x) = p$
$Var(x) = p(1 - p)$

Binomial distribution: $x \sim Binomial(n, p)$

the probability to see x heads out of n flips

$$P(x = k) = \binom{n}{k}p^k(1 - p)^{n-k}$$

$E(x) = np$
$Var(x) = np(1 - p)$
Continuous Distributions

- Uniform: equal probability within region \([a,b]\)

\[
x \sim U(a, b)
\]

\[
f(x) = \begin{cases}
\frac{1}{b-a} & a \leq x \leq b \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[x] = \frac{a + b}{2}
\]

\[
Var(x) = \frac{a^2 + ab + b^2}{3}
\]
Gaussian (Normal)

- If we look at the height of woman in the US, it will approximately look like Gaussian

\[x \sim N(\mu, \sigma^2) \]

\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[E[x] = \mu \]

\[Var(x) = \sigma^2 \]
Central Limit Theorem

The sum of a large number of independent random variables is approximately Gaussian

Average proportion of heads in a fair coin toss, over a large number of sequences of coin tosses.
Multivariate Gaussian

\[x = (x_1, \ldots, x_N)^T, \quad x \sim N(\mu, \Sigma) \]

\[f(x) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)} \]

\[E[x] = \mu = (E[x_1], \ldots, E[x_N])^T \]

\[Var(x) \rightarrow \Sigma = \begin{pmatrix} Var(x_1) & Cov(x_1, x_2) & \cdots & Cov(x_1, x_N) \\ Cov(x_2, x_1) & Var(x_2) & \cdots & Cov(x_2, x_N) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(x_N, x_1) & Cov(x_N, x_2) & \cdots & Var(x_N) \end{pmatrix} \]

\[Cov(x, y) = E((x - \bar{x})(y - \bar{y})) \]
Density Estimation

• Estimate the distribution (or conditional distribution) of a random variable

• Types of variables
 – Binary: coin flip (p)
 – Discrete: dice, grades ($p_i = P(X = x_i)$)
 – Continuous: height, weight, temperature (e.g, μ and Σ for Guassian)
Maximum Likelihood Principle

We can define the likelihood of the data given the model as follows:

$$\hat{P}(\text{dataset} \mid M) = \hat{P}(x_1 \land x_2 \ldots \land x_n \mid M) = \prod_{k=1}^{n} \hat{P}(x_k \mid M)$$

For example, M is

- The probability of ‘head’ for a coin flip
- The probabilities of observing 1, 2, 3, 4 and 5 for a dice
- etc.

M is our model (usually a collection of parameters)
Maximum Likelihood Principle

\[\hat{P}(\text{dataset} \mid M) = \hat{P}(x_1 \land x_2 \ldots \land x_n \mid M) = \prod_{k=1}^{n} \hat{P}(x_k \mid M) \]

- Our goal is to determine the values for the parameters in \(M \)
- We can do this by maximizing the probability of generating the observed samples
- For example, let \(\Theta \) be the probabilities for a coin flip
- Then
 \[L(x_1, \ldots, x_n \mid \Theta) = p(x_1 \mid \Theta) \ldots p(x_n \mid \Theta) \]
- The observations (different flips) are assumed to be independent
- For such a coin flip with \(P(H)=q \) the best assignment for \(\Theta_h \) is
 \[\text{argmax}_q = \#H/#\text{samples} \]
- Why?
Maximum Likelihood Principle: Binary variables

• For a binary random variable A with $P(A=1)=q$
 \[\text{argmax}_q = \frac{#1}{#\text{samples}} \]

• Why?

Data likelihood:
\[P(D \mid M) = q^{m_1}(1-q)^{n_2} \]

We would like to find:
\[\text{arg max}_q q^{m_1}(1-q)^{n_2} \]
Maximum Likelihood Principle

Data likelihood: \(P(D | M) = q^{n_1} (1-q)^{n_2} \)

We would like to find: \(\arg \max_q q^{n_1} (1-q)^{n_2} \)

\[
\frac{\partial}{\partial q} q^{n_1} (1-q)^{n_2} = n_1 q^{n_1-1} (1-q)^{n_2} - q^n n_2 (1-q)^{n_2-1}
\]

\[
\frac{\partial}{\partial q} = 0 \Rightarrow
\]

\[
n_1 q^{n_1-1} (1-q)^{n_2} - q^n n_2 (1-q)^{n_2-1} = 0 \Rightarrow
\]

\[
q^{n_1-1} (1-q)^{n_2-1} (n_1 (1-q) - q n_2) = 0 \Rightarrow
\]

\[
n_1 (1-q) - q n_2 = 0 \Rightarrow
\]

\[
n_1 = n_1 q + n_2 q \Rightarrow
\]

\[
q = \frac{n_1}{n_1 + n_2}
\]
Log Probabilities

When working with products, probabilities of entire datasets often get too small. A possible solution is to use the log of probabilities, often termed ‘log likelihood’

$$\log \hat{P}(\text{dataset} \mid M) = \log \prod_{k=1}^{n} \hat{P}(x_k \mid M) = \sum_{k=1}^{n} \log \hat{P}(x_k \mid M)$$

Maximizing this likelihood function is the same as maximizing $P(\text{dataset} \mid M)$

Log values between 0 and 1

In some cases moving to log space would also make computation easier (for example, removing the exponents)