Model Selection and Regularization
General Model Selection Problem

• Assume that we have a set of models
 \(M = \{M_1, M_2, \ldots, M_d\} \) that we are trying to select from. Some examples include:

• **Feature Selection:** each \(M_i \) corresponds to using a different feature subset from a large set of potential features

• **Algorithm Selection:** each \(M_i \) corresponds to an algorithm, e.g., Naïve Bayes, Logistic Regression, DT ...

• **Parameter selection:** each \(M_i \) corresponds to a particular parameter choice, e.g., the choice of kernel and C for SVM
Approaches to Model Selection

• Holdout and Cross-validation methods
 – Experimentally determine when overfitting occurs

• Penalty methods
 – MAP Penalty
 – Minimum Description Length
 – Many others

• Ensembles
 – Instead of choosing, consider many possibilities and let them vote
Simple Holdout Method

1. Divide training set S into S_{train} and S_{valid}
2. Train each model M_i on S_{train} to get a hypothesis h_i
3. Choose and output h_i with the smallest error rate on S_{valid}

Could retrain the selected model on the whole dataset to get the final hypothesis h - this will improve the original h_i because of more training data
Notes on hold-out methods

• Hold-out method often used for choosing among nested hypotheses:
 – Deciding # of training epochs for Neural net
 – Deciding when to stop growing or pruning a decision tree
 – Deciding when to stop growing an ensemble

Example:
Selecting # of epochs for neural net
Issues

• It wastes part of the data
 – The model selection choice is still made using only part of the data
 – Still possible to overfit the validation data since it is a relatively small set of data

• To address these problems, we can use a method called Cross-Validation
K-fold Cross-validation

- Partition (randomly) S into K disjoint subsets S_1, \ldots, S_K
- To evaluate model M_j:

  ```
  for i=1:K
  1. Train $M_j$ on $S \setminus S_i$ (S removing $S_i$) $\rightarrow h_{ji}$
  2. Test $h_{ji}$ on $S_i$ $\rightarrow \epsilon_j(i)$
  End for
  
  $\epsilon_j = \frac{1}{K} \sum_i \epsilon_j(i)$
  ```
- Select model that minimizes the error:
 $$M^* = \operatorname{argmin}_{M_j} \epsilon_j$$
- Train M^* on S and output resulting hypothesis
Comments on k-fold Cross-Validation

- Computationally more expensive than simple hold-out method but better use of data
- If the data is really scarce, we can use the extreme choice of \(k = |S| \)
 - Each validation set contains only one data point
 - leave-one-out (LOO) cross-validation
Penalty (Regularization) Methods

• Basic idea: include a penalty term in the objective function to penalize complex hypothesis

• We have seen examples of this:
 – Regularized linear regression
 \[J(w) = \sum_i (y_i - w^T x_i)^2 + \lambda |w|^2 \]
 – Regularized logistic regression
 \[J(w) = L(w) + \lambda |w|^2 \]

• A common approach for deriving such regularization method is Maximum A Posteriori (MAP) estimation
Bayesian VS Frequentist

• When it comes to parameter estimation, there are two different statistical views
 – Frequentist: parameter is deterministic, it takes an unknown value
 – Bayesian: parameter is a random variable with a unknown distribution

• We can express our belief about the parameter using priors
• After observing the data, we can update our belief to obtain the posterior distribution of the parameter

\[
p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)} = \frac{p(\theta)p(D|\theta)}{\int p(D|\theta)p(\theta)d\theta}
\]
Conjugate prior

• How should we specify the prior?

If the posterior distribution $p(\theta|D)$ is in the same family as the prior distribution $p(\theta)$, then $p(\theta)$ is called a \textit{conjugate prior}

• \textit{conjugate prior} is an algebraic convenience, giving a closed-form expression for the posterior
Example: Bernoulli

- $z \sim Ber(\theta)$
- What is the conjugate prior for Bernoulli?
- Beta distribution

$$p(\theta; A, B) = \frac{\theta^{A-1}(1 - \theta)^{B-1}}{\text{beta}(A, B)}$$

- A distribution over a continuous variable $p \in [0,1]$
- Two parameters: $A>0, B>0$
- For $A=B=1$, reduce to a uniform distribution
- A and B can be viewed as the effective prior number of observations of $z=1$ and $z=0$.
MAP Estimation for Bernoulli

\[p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)} \]

\[p(\theta) = \frac{\theta^{A-1}(1 - \theta)^{B-1}}{\text{beta}(A, B)} \]

\[p(D|\theta) = \theta^{n_1}(1 - \theta)^{n_0} \]

\[p(\theta|D) = \frac{\theta^{n_1+A-1}(1 - \theta)^{n_0+B-1}}{\text{beta}(A+n_1, B+n_0)} \]

\[\theta|D \sim \text{Beta}(\theta; A + n_1, B + n_0) \]

Maximum A Posterior estimation:

\[\hat{\theta}_{map} = \arg\max_{\theta} p(\theta|D) = \frac{n_1+A}{n+A+B} \]
MAP as a penalty method

\[\hat{\theta}_{map} = \arg\max_{\theta} p(\theta|D) \]

\[= \arg\max_{\theta} p(D|\theta)p(\theta) \]

\[= \arg\max_{\theta} \log p(D|\theta) + \log p(\theta) \]

penalty