Support Vector Machine (cont.)
Summarization So Far

- We demonstrated that we prefer to have linear classifiers with large margin.
- We formulated the problem of finding the maximum margin linear classifier as a quadratic optimization problem.
- This problem can be solved by solving its dual problem, and efficient QP algorithms are available.
- Problem solved?
Non-separable Data and Noise

• What if the data is not linearly separable?

• Even when linearly separable, we may have noise in data, and maximum margin classifier is not robust to noise!
Soft Margin

- Allow functional margins to be less than 1
 - But will charge a penalty
Soft-Margin Maximalization

Hard margin

\[
\begin{align*}
\min_{w, b} & \frac{1}{2} \|w\|^2 \\
\text{subject to:} & \quad y^i (w \cdot x^i + b) \geq 1, \quad i = 1, \ldots, N
\end{align*}
\]

Soft margin

\[
\begin{align*}
\min_{w, b, \xi} & \frac{1}{2} \|w\|^2 + c \sum_i \xi_i \\
\text{Subject to:} & \quad y^i (w \cdot x^i + b) \geq 1 - \xi_i, \quad i = 1, \ldots, N \\
& \quad \xi_i \geq 0, \quad i = 1, \ldots, N
\end{align*}
\]

- Introduce \textbf{slack variables} \(\xi_i \) to allow functional margins to be smaller than 1
- Parameter \(c \) controls the tradeoff between maximizing the margin and fitting the training example
Dual Formulation of Soft Margin

\[
\begin{align*}
\max & \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j < x_i \cdot x_j > \\
\text{Subject to:} & \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \\
& \quad 0 \leq \alpha_i \leq c \quad i=1, \ldots, N
\end{align*}
\]

• The dual problem is almost identical to the separable case, except for that \(\alpha_i \)'s are now bounded by \(c \)

• \(c \) controls the tradeoff between maximizing margin and fitting training data

• It’s effect is to put a box constraint on \(\alpha \), the weights of the support vectors

• It limits the influence of outliers
Dual Formulation of Soft Margin

\[\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j < x^i \cdot x^j > \]

Subject to: \[\sum_{i=1}^{N} \alpha_i y^i = 0 \]

\[0 \leq \alpha_i \leq c \quad i=1, \ldots, N \]

- We now have also have support vectors for data that have functional margin less than one (in addition to those that equal 1), but there are \(\alpha_i \)'s will only equal c

support vectors (\(\alpha_i > 0 \))

- \(c > \alpha_i > 0 \): \(y^i (w \cdot x^i + b) = 1 \), i.e., \(\xi_i = 0 \)
- \(\alpha_i = c \): \(y^i (w \cdot x^i + b) \leq 1 \), i.e., \(\xi_i \geq 0 \)

The optimal \(w \) can then be computed:

\[w = \sum \alpha_i y^i x^i \]
Linear SVMs: Overview

• So far our classifier is a *separating hyperplane*.

• Most “important” training points are support vectors; they define the hyperplane.

• Quadratic optimization algorithms can identify which training points \(x^i \) are support vectors with non-zero Lagrange multipliers \(\alpha_i \).

• For both training and classification, we see training data appear only inside inner products:

\[
\text{Find } \alpha_1 \ldots \alpha_N \text{ such that } \\
Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y^i y^j <x^i \cdot x^j> \text{ is maximized and } \\
(1) \sum \alpha_i y^i = 0 \\
(2) 0 \leq \alpha_i \leq c \text{ for all } \alpha_i
\]

\[
f(x) = \sum \alpha_i y^i <x^i \cdot x> + b
\]
Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:
Non-linear SVMs: Feature Spaces

- General idea: For any data set, the original input space can always be mapped to some higher-dimensional feature space such that the data is linearly separable:

\[\Phi: x \rightarrow \phi(x) \]
Example: Quadratic Space

• Assume m input dimensions
 \[\mathbf{x} = (x_1, x_2, \ldots, x_m) \]

• Number of quadratic terms:
 \[\frac{(m+2)(m+1)}{2} \]

• The number of dimensions increase rapidly - expensive to compute!

You may be wondering about the $\sqrt{2}$'s
You will find out why they are there soon!
Kernel Function

• The linear classifier relies on inner product between vectors $K(x^i, x^j) = <x^i \cdot x^j> $

• If every data point is mapped into high-dimensional space via some transformation $\Phi: x \rightarrow \phi(x)$, the inner product becomes:

$$K(x_i, x_j) = <\phi(x^i) \cdot \phi(x^j)>$$

• A **kernel function** is a function that is equivalent to an inner product in some feature space.

• Example: we can define a kernel as

$$K(x^i, x^j) = (x^i \cdot x^j + 1)^2$$

This is equivalent to mapping to the quadratic space!
Example: Quadratic Kernel

Consider a 2-d input space: (generalizes to n-d)

\[
K(x_i, x_j) = (x_i \cdot x_j + 1)^2 \\
= (x_1^i x_1^j + x_2^i x_2^j + 1)^2 \\
= x_1^{i2} x_1^{j2} + 2x_1^i x_2^i x_1^j x_2^j + x_2^{i2} x_2^{j2} + 2x_1^i x_1^j + 2x_2^i x_2^j + 1 \\
= (x_1^{i2}, \sqrt{2} x_1^i x_1^j, x_2^{i2}, \sqrt{2} x_1^i, \sqrt{2} x_2^i, 1) \cdot \\
(x_1^{j2}, \sqrt{2} x_1^j x_2^j, x_2^{j2}, \sqrt{2} x_1^j, \sqrt{2} x_2^j, 1) \\
= \Phi(x_i) \cdot \Phi(x_j)
\]

A kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each \(\phi(x)\) explicitly).

Computing inner product of quadratic features is \(O(m^2)\) time vs. \(O(m)\) time for kernel
Non-linear SVMs

- Dual problem formulation:
 - Find $\alpha_1 \ldots \alpha_N$ such that
 - $\sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \langle x_i \cdot x_j \rangle$ is maximized and
 - $\sum \alpha_i y_i = 0$
 - $0 \leq \alpha_i \leq c$ for all α_i

- To classify a given new data point x, we compute
 - $f(x) = \sum \alpha_i y_i \langle x_i \cdot x \rangle + b$

- Optimization techniques for finding α_i's remain the same!

- This shows the utility of the dual formulation.
Kernel Functions

- In practical, the user specifies the kernel function K, without explicitly stating the transformation $\phi(\cdot)$
- Given a kernel function, finding its corresponding transformation can be very cumbersome
 - This is why people only specify the kernel function without worrying about the exact transformation
- Another view: a kernel function computes some kind of measure of similarity between objects
- If you have a reasonable measure of similarity for your application, can we use it as the kernel in an SVM?
What Functions are Kernels?

- Consider some finite set of \(m \) points, let matrix \(K \) be defined as follows:

\[
K = \begin{bmatrix}
K(x^1, x^1) & K(x^1, x^2) & K(x^1, x^3) & \cdots & K(x^1, x^m) \\
K(x^2, x^1) & K(x^2, x^2) & K(x^2, x^3) & & K(x^2, x^m) \\
& \ddots & & \ddots & \ddots \\
K(x^m, x^1) & K(x^m, x^2) & K(x^m, x^3) & \cdots & K(x^m, x^m)
\end{bmatrix}
\]

- This is called the **Kernel Matrix**

- Mercer’s theorem:
 A function \(K \) is a kernel function iff for any finite sample \(\{x^1, x^2, \ldots, x^m\} \), its corresponding kernel matrix is symmetric and semi-definite.
Examples of Kernel Functions

- **Linear**: \(K(x^i, x^j) = \langle x^i \cdot x^j \rangle \)
 - Mapping \(\Phi \): \(x \rightarrow \phi(x) \), where \(\phi(x) \) is \(x \) itself

- **Polynomial of power \(p \)**: \(K(x^i, x^j) = (1 + x^i \cdot x^j)^p \)
 - Mapping \(\Phi \): \(x \rightarrow \phi(x) \), where \(\phi(x) \) has \(\binom{d+p}{p} \) dimensions

- **Gaussian (radial-basis function)**: \(K(x^i, x^j) = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}} \)
 - Mapping \(\Phi \): \(x \rightarrow \phi(x) \), where \(\phi(x) \) is *infinite-dimensional*: every point is mapped to a *function* (a Gaussian); combination of functions for support vectors is the separator.

- Higher-dimensional space still has *intrinsic* dimensionality \(d \), but linear separators in it correspond to *non-linear* separators in original space.
Critical Steps for Using SVM

• Select the kernel function to use (important but often trickiest part of SVM)
 – In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try and usually supported by off-the-shelf software

• Select the parameter of the kernel function and the value of c
 – You can use the values suggested by the SVM software
 see www.kernel-machines.org/software.html for a list of available software
 – You can set apart a validation set to determine the values of the parameter
SVM Summary

• Advantages of SVMs
 – polynomial-time exact optimization rather than approximate methods
 • unlike decision trees and neural networks
 – Kernels allow very flexible hypotheses
 – Can be applied to very complex data types, e.g., graphs, sequences

• Disadvantages of SVMs
 – Must choose a good kernel and kernel parameters
 – Very large problems are computationally intractable
 • quadratic in number of examples
 • problems with more than 20k examples are very difficult to solve exactly