Generative VS. Discriminative
Compare LDA and Logistic Regression

• Generative method vs Discriminative method
 – Discriminative methods model $P(y \mid x)$ directly
 – Generative methods model $P(x \mid y)$ (and $P(y)$)

• Under LDA model we can show

$$P(y = 1 \mid x; p, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + \exp(-\theta^T x)},$$

where θ is some function of $p, \Sigma, \mu_0, \text{and} \mu_1$

the same form used by logistic regression

• This indicates
 – If $P(x \mid y)$ is a multivariate Gaussian distribution, $P(y \mid x)$ follows a logistic function
 – But the converse is not true

• LDA makes stronger modeling assumptions
Comparing Perceptron, Logistic Regression, and LDA

• They all learn linear decision boundaries
• How should we choose among these three algorithms?
• There is a big debate within the machine learning community!
 – Computational efficiency
 – Statistical efficiency
 – Robustness to model assumptions
 – Robustness to missing features and noise/outliers
Issues in the Debate

• **Statistical Efficiency.**
 – If the generative model $P(x,y)$ is correct, LDA usually performs the best, particularly when the amount of training data is small.
 – In theory, if the model is correct, LDA requires 30% less data than Logistic Regression.

• **Computational Efficiency.**
 – Generative models typically are the easiest to learn.
 – LDA can be computed directly from the data without using search algorithm.
Issues in the Debate

- **Robustness to model assumptions**
 - LDA makes the strongest assumptions --- tend to perform poorly when violated, e.g., if $P(x \mid y)$ is non-gaussian
 - Logistic Regression and Perceptron are more robust

- **Robustness to missing values and noise**
 - In many applications, some of the features may be missing or corrupted in some training examples.
 - Generative models typically provide better ways of handling missing values than discriminative models.
 - Noise can mislead generative models
 - Discriminative models are less sensitive to noise as long as they are not close to decision boundary
Generative Model for Discrete Inputs: Naïve Bayes

• LDA: generative model for continuous inputs
• How about discrete inputs?
 – The Naïve Bayes Classifier
Example: Spam Filter

• The naïve Bayes classifier is widely used for text data (hence this example)

• We want to classify email messages into the spam and non-spam categories

• Our training set is a set of emails that has been classified manually into the two categories

• First question: how do we represent an email using a feature vector \mathbf{x} – what features should we use?
Bag-of-Words Representation for Text Classification

• First we decide a vocabulary
 – The dictionary? Too big, not necessary
 – All words and tokens used in the training set

• Represent an email by a vector whose dimension is the number of words in our vocabulary

• $x_i=1$ if the ith word is present
• $x_i=0$ if the ith word is not present

\[
x = \begin{bmatrix}
1 \\
0 \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{bmatrix}
\]

aardvark
aardwolf
buy
zygmurgy
A Bayes Classifier

- To learn a bayes classifier, we need to model $P(\mathbf{x}|y)$ and $P(y)$
- If our vocabulary has n words, there are 2^n possible values for \mathbf{x}
- If we model $P(\mathbf{x}|y)$ explicitly as a multinomial distribution over all possible values of \mathbf{x}, we need to learn $2^{2n} - 1$ parameters
- To avoid such problem, we can assume that x_i’s are conditionally independent given y, i.e.,

$$P(x_1, x_2, ..., x_n \mid y) = \prod_{i=1}^{n} P(x_i \mid y)$$

- This is called the Naïve Bayes assumption
- The number of parameters for $P(\mathbf{x}|y)$ is now 2^n (Why?)
Naïve Bayes Classifier

- A generative model – an email is generated as follows:
 - Determine if it is a spam or not according to $P(y)$ (Bernoulli)
 - Determine if each word x_i in the vocabulary is contained in the message *independently* according to $P(x_i \mid y)$ (Bernoulli)

- For this model, we need to learn:
 - For y: $P(y=1)$
 - For x_i: $P(x_i = 1 \mid y = 1)$ and $P(x_i = 1 \mid y = 0)$ “class conditional probability” for $i=1,...,n$
MLE for Naïve Bayes

Suppose our training set contained N emails, the maximum likelihood estimate of the parameters are:

$$P(y = 1) = \frac{N_1}{N}, \text{ where } N_1 \text{ is the number of spam emails}$$

$$P(x_i = 1 \mid y = 1) = \frac{N_{i\mid 1}}{N_1},$$

i.e., the fraction of spam emails where x_i appeared

$$P(x_i = 1 \mid y = 0) = \frac{N_{i\mid 0}}{N_0}$$

i.e., the fraction of the nonspam emails where x_i appeared
What if x_i is Multinomial?

• If x_i is discrete with more than two possible values $\{v_1, ..., v_m\}$, $P(x_i \mid y)$ can be described by a conditional probability table

<table>
<thead>
<tr>
<th></th>
<th>$y = 0$</th>
<th>$y = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i = v_1$</td>
<td>$P(x_i = v_1 \mid y = 0)$</td>
<td>$P(x_i = v_1 \mid y = 1)$</td>
</tr>
<tr>
<td>$x_i = v_2$</td>
<td>$P(x_i = v_2 \mid y = 0)$</td>
<td>$P(x_i = v_2 \mid y = 1)$</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>$x_i = v_m$</td>
<td>$P(x_i = v_m \mid y = 0)$</td>
<td>$P(x_i = v_m \mid y = 1)$</td>
</tr>
</tbody>
</table>

• Really only needs $m-1$ rows since rows sum to 1
• In multi-class cases, we just need to add more columns to the above table.

$$P(x_i = v_j \mid y = k) = \frac{N_{ij \mid k}}{N_k}$$

i.e., the fraction of class k examples where x_i took value v_j
Multinomial model for bag-of-words

• An alternative to the binary formulation of the bag-of-words

• Generate each word in the document as an independent categorical variable

• # category = size of the dictionary

\[
\text{e.g., } P_{\text{mle}}(w=\text{“apple”} \mid y=1) = \frac{\text{# of times “apple” appears in positive documents}}{\text{# of total words in positive documents}}
\]

• Considers the word counts rather than just present/absent

• Typically performs better than binomial model

The numbered plate indicates that the random variable \(w \) is sample \(n \) times, independently according to \(p(w \mid y) \)
Problem with MLE

• Many words are rare, particularly when considering a particular class
 – The probability estimates for such words can be poor for such words, even with a reasonably large dataset

• Consider the spam example:
 – Suppose in our training set “Mahalanobis” appears in a non-spam mail and never appears in a spam mail
 – Suppose also that “XXX” appears in a spam message but no non-spam messages
 – Now suppose we get a new message x that contains both words

• We will have that $P(x|y) = \prod_i P(x_i | y) = 0$ for both $y=0$ and $y=1$
 – Because $P(“Mahalanobis” | y=1) = 0$ and $P(“XXX” | y=0) = 0$

• Given limited training data, MLE can result in probabilities of 0 or 1. Such extreme probabilities are “too strong” and cause problems.
 – Use Laplace smoothing to help correct this
Laplace Smoothing

- Suppose we estimate a probability $P(z)$ and we have n_0 examples where z is false and n_1 examples where z is true. Our MLE estimate is
 \[P(z = 1) = \frac{n_1}{n_0 + n_1} \]

- Laplace Estimate. Add 1 to the numerator and 2 to the denominator
 \[P(z = 1) = \frac{n_1 + 1}{n_0 + n_1 + 2} \]

 If we don’t observe any examples, we expect $P(z=1) = 0.5$, but our belief is weak (equivalent to seeing one example of each outcome).

 As n_0 and n_1 get large converges to MLE

- If z has K different outcomes, then we estimate it as
 \[P(z = k) = \frac{n_k + 1}{n + K} \]
Learning and Predicting with Naïve Bayes Classifiers

• Learning
 – Need to estimate the following probability distributions (via counting)
 \[p(y) \] Prior distribution of \(y \)
 \[p(x_i \mid y) \] Class conditional distribution of \(x_i \)

• Predicting
 – Given \(\mathbf{x} = (x_1, x_2, ..., x_d) \), compute \(p(y \mid \mathbf{x}) \)
 \[p(y \mid \mathbf{x}) = \frac{p(y)p(\mathbf{x} \mid y)}{p(\mathbf{x})} \propto p(y)\prod_i p(x_i \mid y) \]
 – Apply decision theory to make final prediction of \(y \)
Discrete Naïve Bayes learns a Linear Decision Boundary

• For binary feature spaces Naïve Bayes gives a linear decision boundary

\[P(x|Y = y) = P(x_1 = v_1|Y = y) \cdot P(x_2 = v_2|Y = y) \cdots P(x_n = v_n|Y = y) \]

• Define a discriminant function for class 1 versus class 0

\[h(x) = \frac{P(Y = 1|X)}{P(Y = 0|X)} = \frac{P(x_1 = v_1|Y = 1)}{P(x_1 = v_1|Y = 0)} \cdots \frac{P(x_n = v_n|Y = 1)}{P(x_n = v_n|Y = 0)} \cdot \frac{P(Y = 1)}{P(Y = 0)} \]
Log of Odds Ratio

\[
\frac{P(y = 1|x)}{P(y = 0|x)} = \frac{P(x_1 = v_1|y = 1)}{P(x_1 = v_1|y = 0)} \cdots \frac{P(x_n = v_n|y = 1)}{P(x_n = v_n|y = 0)} \cdot \frac{P(y = 1)}{P(y = 0)}
\]

\[
\log \frac{P(y = 1|x)}{P(y = 0|x)} = \log \frac{P(x_1 = v_1|y = 1)}{P(x_1 = v_1|y = 0)} + \cdots + \log \frac{P(x_n = v_n|y = 1)}{P(x_n = v_n|y = 0)} + \log \frac{P(y = 1)}{P(y = 0)}
\]

Suppose each \(x_j\) is binary and define

\[
\alpha_{j,0} = \log \frac{P(x_j = 0|y = 1)}{P(x_j = 0|y = 0)}
\]

\[
\alpha_{j,1} = \log \frac{P(x_j = 1|y = 1)}{P(x_j = 1|y = 0)}
\]
Log Odds (2)

• Now rewrite as

\[
\log \frac{P(y = 1|x)}{P(y = 0|x)} = \sum_j \alpha_{j,1} x_j + \alpha_{j,0} (1 - x_j) + \log \frac{P(y = 1)}{P(y = 0)}
\]

\[
\log \frac{P(y = 1|x)}{P(y = 0|x)} = \sum_j (\alpha_{j,1} - \alpha_{j,0}) x_j + \left(\sum_j \alpha_{j,0} + \log \frac{P(y = 1)}{P(y = 0)} \right)
\]

• We classify into class 1 if this is \(\geq 0 \) and into class 0 otherwise

• For arbitrary multinomial features the boundary is linear in a binary one-vs-all encoding of the features

• For numeric features the Gaussian naïve Bayes classifier does not give a linear boundary
Naïve Bayes Summary

• Generative classifier
 – learn $P(\mathbf{x}|y)$ and $P(y)$
 – Use Bayes rule to compute $P(y|x)$ for classification

• Assumes conditional independence between features given class labels
 – Greatly reduces the numbers of parameters to learn
 – Referred to as the Naïve assumption

• Batch learning but can be easily turned into online learning
 – Just incrementally update the various probability estimates

• Often works surprisingly well and a good “first thing” to try