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Abstract

This paper studies the ensemble selection problem for unsu-

pervised learning. Given a large library of different cluster-

ing solutions, our goal is to select a subset of solutions to

form a smaller yet better performing cluster ensemble than

using all available solutions. We design our ensemble selec-

tion methods based on quality and diversity, the two factors

that have been shown to influence cluster ensemble perfor-

mance. Our investigation revealed that using quality or di-

versity alone may not consistently achieve improved perfor-

mance. Based on our observations, we designed three differ-

ent selection approaches that jointly consider these two fac-

tors. We empirically evaluated their performance in compar-

ison with both full ensembles and a random selection strat-

egy. Our results indicate that by explicitly considering both

quality and diversity in ensemble selection, we can achieve

statistically significant performance improvement over full

ensembles.

1 Introduction

Clustering for unsupervised data exploration and anal-
ysis has been investigated for decades in the statistics,
data mining and machine learning communities. The
goal of clustering is to group similar objects together
based on some notion of similarity. Over the years,
many clustering algorithms have been developed, each
utilizing different distance/similarity measures and/or
objective functions. Applying different methods, or the
same methods with different parameter choices to the
same data, we can obtain varying clustering results. A
fundamental question is: given so many possible op-
tions, how should we choose among them? One possible
answer to this question is that we do not need to choose
at all; because we can leverage these different options by
applying all of them and then combining their cluster-
ing results. This is the basic philosophy behind cluster
ensembles [20], which have gained increasing popularity
in the clustering community [5, 6, 10, 11, 13, 21, 22, 23]
in recent years.

A cluster ensemble framework typically produces a
large set of clustering results and then combines them
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using a consensus function to create a final clustering
that is considered to encompass all of the information
contained in the ensemble. In practice, a cluster ensem-
ble can be obtained in many different ways. Multiple
clustering algorithms, different representations of the
data, and different parameter choices can all be used
to produce a diverse set of clustering solutions. It is
common to produce hundreds or even more clustering
solutions to form a single cluster ensemble. Tradition-
ally, all of the available clustering solutions are com-
bined together to produce the final consensus clustering.
However, is it always the best to include all available
solutions in the ensemble? Given a large library of clus-
tering solutions, can we select the clustering solutions
carefully so that we can actually do better than using
the whole library? This is the question we investigate
in this paper and we refer to it as the cluster ensemble

selection problem following the practice of supervised
ensemble learning [3].

Given a large library of clustering solutions, the goal

of cluster ensemble selection is to choose a subset from

the library to form a smaller cluster ensemble that per-

forms as well as or better than using all available clus-

tering solutions. Toward this goal, we investigate two
properties that have been identified by existing research
[5, 13, 11] as important factors for cluster ensembles to
perform well: the quality and the diversity of the clus-
tering solutions in the ensemble. We first consider en-
semble selection based on quality and diversity respec-
tively. The results indicate that: 1) it is often possible
to select a smaller ensemble and achieve better perfor-
mance than using the full ensemble; 2) while it is pos-
sible to do so, using quality or diversity alone can not
reliably achieve this goal.

Based on these results, we propose three ensemble
selection approaches that jointly consider quality and
diversity in selection. The first method proposes a joint
objective function that combines both factors. The
second method organizes different solutions into groups
such that similar solutions are grouped together and
then selects one quality solution from each group. The
last method creates a scatter plot of points, where
each point corresponds to a pair of clustering solutions
represented by their average quality and diversity, and
then uses the convex hull of all points to select solutions.



We empirically compare our methods with the full
ensemble. Our evaluation results suggest that by ex-
plicitly considering quality and diversity together, our
methods were able to achieve statistically significant
performance improvements over the full ensembles. We
further evaluated a random selection strategy, which
failed to achieve statistically significant improvements.
This confirms that the performance improvements we
see is not due to chance. Empirical sensitivity analy-
sis verifies the robustness of the proposed methods with
respect to the choice of libraries and the outlier (degen-
erate) solutions in the library.

The remainder of the paper is organized as follows.
In Section 2, we will review the related literature. Sec-
tion 3 presents the basic selection strategies based on
quality and diversity alone and their performance is
evaluated in Section 4. Section 5 and 6 present the
improved selection strategies and their empirical evalua-
tions in comparison with the full ensemble and a random
strategy. In Section 7, we conduct sensitivity analysis
experiments. Finally, we summarize our contributions
and conclude the paper in Section 8.

2 Related Work

The basic idea of combining different clustering so-
lutions to obtain improved clustering has been ex-
plored under different names such as consensus classi-
fication/clustering [17, 16] and evidence accumulation
[7]. The framework of cluster ensembles was recently
formalized by Strehl and Ghosh [20]. Many different
approaches for generating cluster ensembles have been
proposed in the literature [7, 20, 21, 5, 16]. Represen-
tative examples include using different subsamples of
the original data, using different subsets of the orig-
inal features, using different random parameters such
as the number of clusters and random initializations to
the clustering algorithm, and using different clustering
methods. To the best of our knowledge, however, all
of these prior approaches utilize all of the generated
ensemble members when combining them into a final
consensus clustering. The only exception is the work by
Hadjitodorov et al [11], where multiple cluster ensem-
bles were generated and the ensemble with the median
diversity was used to produce the final clustering. In
contrast, our work seeks to select a small subset from a
large given library to form the ensemble.

In supervised ensemble learning, it has been shown
that by carefully selecting a subset of a large number
of classifiers, one can achieve performance similar or
even better than using all available classifiers [15, 3, 2].
For supervised ensemble learning, there are two main
families of selection methods: one is based on the quality
and diversity of the ensemble members, and the other is

guided by cross-validated external objective functions
(such as the prediction accuracy and the area under
ROC curves). In unsupervised learning, cross-validation
based methods are difficult to apply because we do
not have any external objective function to optimize.
Therefore, in this paper we focus on selection methods
that are based on quality and diversity measures of the
ensemble members.

3 Selection Based on Quality and Diversity

In supervised learning, quality and diversity are well
defined concepts, where quality measures the accuracy
of the ensemble members and diversity measures the
difference in the predictions made by the ensemble
members. For unsupervised learning, however, these
concepts are not so clearly defined. In this section, we
first explain how we measure the quality and diversity of
clustering solutions. We then describe a simple selection
strategy for each of the two measures.

3.1 Definitions: Quality and Diversity

Quality. For unsupervised clustering tasks, we do
not have any external objective function such as accu-
racy to measure the quality of the clustering solutions.
In clustering literature, it is common to use predefined
class labels as a surrogate for the true underlying struc-
ture and then measure the quality of a clustering so-
lution based on how well it recovers the class labels.
This, however, cannot be used in our ensemble selec-
tion because supervised information such as class labels
can not be included in the clustering process. Here we
propose to use an internal quality measure based on
an objective function introduced by Strehl and Ghosh
for designing consensus functions [20]. In particular,
given an ensemble E of r clustering solutions denoted
by E = {C1, C2, · · · , Cr}, Strehl and Ghosh sought to
find a consensus clustering that maximizes the following
criterion:

SNMI(C, E) =
r∑

i=1

NMI(C, Ci)(3.1)

where NMI(C, Ci) is the normalized mutual informa-
tion between clustering C and Ci. If two clusterings de-
fine completely independent partitions, their expected
NMI value is 0. In contrast, if two clustering defines
the same partition of the data, the NMI value is maxi-
mized to be one. Here we refer to this objective function
as the sum of NMI(SNMI). Intuitively, a clustering C
maximizing SNMI maximizes the information it shares
with all the clusterings in the ensemble, thus can be con-
sidered to best capture the general trend contained in
the ensemble.



In our case, given a large library of clustering so-
lutions L = {C1, C2, · · · , Cr} to select from, we use
SNMI(Ci, L) to measure the quality of each cluster-
ing solution Ci. Intuitively, this measures how well a
particular clustering agrees with the general trend con-
tained in L.

Diversity. There have been a number of different
diversity measures proposed for cluster ensembles. Here
we use the measure introduced by Fern and Brodley [5],
which is based on pair-wise normalized mutual infor-
mation among clustering solutions. In particular, we
measure the pair-wise similarity of two clusterings as
NMI(Ci, Cj) and compute the sum of all pairwise simi-
larities

∑
i6=j,Ci,Cj∈E NMI(Ci, Cj) within the ensemble

as a measure of the ensemble diversity. The lower the
value, the higher is the diversity.

We chose the above diversity measure because it has
been shown to impact the cluster ensemble performance.
Note that the selection methods we develop in this
paper do not limit themselves to any particular diversity
measure. Part of our future work is to experiment with
other diversity measures proposed in the literature.

3.2 Simple selection strategies

Quality. As the first step of our investigation, we
use the above defined quality measure to guide our
selection and include only these solutions that are of
high quality into the ensemble. In particular, given
a large library of clustering solutions L, this strategy
simply ranks all clustering solutions in L based on
their qualities as measured by SNMI(C, L) defined
above and selects the top K solutions to include in the
ensemble, where K is the desired ensemble size. Below
we will refer to this strategy as Quality. Note that
if a clustering has high SNMI value, conceptually it
suggests that this solution has high consistency with the
general trends shown by the overall library. Clustering
solutions with low SNMI values, on the other hand, can
be considered as ”outliers” of the library and may be
detrimental to be included in the ensemble. Generally,
we expect the ensembles selected by “Quality” to have
high redundancy in the chosen solutions.

Diversity In contrast, we also look at the selection
strategy that seeks to maximize the ensemble diversity.
This can be viewed as a heaviest K-vertex subgraph

problem. In particular, the clustering solutions in
the library are represented as vertices in a completely
connected graph, and their pairwise diversity values (1-
NMI) are assigned as the weights of the edges connecting
the vertices. Selecting an ensemble of size K with
maximum diversity can be achieved by finding a K-
vertex subgraph whose edge weights are maximized,

i.e., the heaviest K-vertex subgraph. However, this
problem is known to be NP-hard [12]. Here we use
a simple greedy strategy described as follows. We
begin with an ensemble E containing the single solution
of highest quality (as measured by SNMI).1 It then
incrementally selects one solution at a time from the
library to add to E such that the resulting ensemble
has the highest diversity, that is, the lowest value of∑

i6=j,Ci,Cj∈E NMI(Ci, Cj). This process repeats until
we reach the desired ensemble size K. Below we will
refer to this strategy as Diversity.

In the literature, various heuristics have been sug-
gested for generating diverse clustering solutions for
cluster ensembles and it is commonly believed that di-
versifying the cluster ensemble has beneficial effect be-
cause mistakes made by different ensemble members
may cancel each other out. The Diversity strategy
described here follows this philosophy and explicitly
searches for highly diverse subset from the library to
form ensembles. Note that a potential problem with
this method is that it may result in the inclusion of
some low quality solutions into the ensemble.2

4 Preliminary Results

In this section, we examine the performance of the
ensembles produced by the above described selection
methods and compare them with the performance of
the full ensembles. First we describe the data sets and
the basic settings of our experiments that we use in the
evaluation, including the library generation procedure,
the choice of consensus functions, and the evaluation
criterion.

4.1 Data sets and experimental setting

Data sets. Our experiments use both benchmark
and real-world data sets. See Table 1 for the basic infor-
mation about these data sets. Among them, CHART,
SEGMENTATION, WINE and ISOLET6 (This is a 6-
class subset of the original ISOLET data set, which con-
tains 26 classes) are benchmark data sets from the UCI
machine learning data repository [1]. We further in-
cluded two real-world data sets in our evaluation. They
are a content based image retrieval (CBIR) data set [4]
and a EOS remote sensing data set which has been used

1Note that alternatively we can initialize the greedy search
procedure with two solutions whose NMI value is the smallest
among all pairs. This, however, does not produce qualitatively
different results.

2Conceptually, a set of completely random clustering solutions
will have the maximum diversity. However, they will not form
good cluster ensembles. This is why we start out our greedy
procedure by including the solution with the best quality measure.



for land cover type predictions [9]. Although these data
sets are not very large, they do present significant chal-
lenges to standard clustering algorithms due to factors
such as high dimensionality. The performance of stan-
dard algorithms like K-means (with or without ensem-
ble) on these data sets leave ample room for improve-
ment. That is why these data sets were chosen for the
experiments.

Table 1: Basic information of the data sets

#inst. #features #classes
CBIR 1545 183 8
CHART 600 60 6
EOS 2398 20 8
ISOLET6 1440 617 6
SEGMENTATION 2310 18 7
WINE 178 13 3

It should be noted that all six data sets are labeled
and contain supervised class information. The class
labels, however, were only used in evaluating the final
clustering solutions and not used in any way during
clustering or ensemble selection.

Generating the library. To build our clustering
library, we used the K-means algorithm [14] as our base
learner. K-means is chosen because it is one of the
most widely used clustering algorithms and has been
used in many previous cluster ensemble studies. In
order to include a broad range of clustering solutions in
our library, we used three different settings to generate
clustering solutions.

K-means is an iterative algorithm that starts with
an initial assignments of data points into random clus-
ters and then refine the clusters to improve a squared
error criterion. Different initial assignments will lead
to different local optimal solutions. Our first setting
uses this property and apply K-means with different
random initializations to obtain different clustering so-
lutions. In this setting, K-means has access to all of the
features and the variations among clustering runs only
come from different initializations. Therefore, the clus-
tering solutions obtained in this setting are expected to
be of relatively good quality but low in diversity.

In the second setting, different clustering solutions
are obtained by applying K-means to different random
feature subsets. Note that for each run, we select d
features, where d is a number drawn randomly between
2 and half of the dimension of the original data.

Finally, we use different random linear projections
of the features to create different clustering solutions.
Similar to the second setting, we set d, i.e., the number

of linear projections we produce, by randomly drawing
a number between 2 and half of the original dimension.

Following the common practice for cluster ensem-
bles, we further employ some heuristics to diversify the
clustering solutions in the library. In particular, in all
three settings, for each clustering run we set k, the num-
ber of clusters for that run, by randomly drawing a num-
ber between 2 and 2×c, where c is the number of classes
in the data3. Each of the above three settings is used to
generate 200 clustering solutions, resulting a collection
of 600 models, which we then use as the library to se-
lect from. For each data set, we repeat this process ten
times to generate ten libraries and all reported results
are averaged across these ten runs.

It should be noted that we did not focus on generat-
ing optimal libraries — our choices, including the base
clustering algorithm and the diversifying heuristics, are
not necessarily optimized but do provide us with a set
of representative libraries. Later we will present some
further experiments to investigate different libraries.

Consensus function. Once a cluster ensemble is
formed via selection, we need a consensus function to
combine the selected solutions to produce a final con-
sensus clustering. Many consensus functions have been
proposed in the literature. We experimented with a
number of popular approaches including the CSPA ap-
proach [20], the HBGF method [6], and the hierarchical
agglomerative approach based on co-association matrix
[8]. Different consensus functions obtained qualitatively
similar results in terms of how different methods relate
to each other. Therefore we will focus on the CSPA
method and present only results obtained using CSPA
as the consensus function. Below we briefly describe the
CSPA method.

CSPA stands for Cluster-based Similarity Partition-
ing Algorithm. As suggested by its name, CSPA builds
a similarity matrix based on the clustering solutions
in the ensemble, which measures for each pair of data
points the frequency of them being clustered together
in the ensemble. This sometimes is also referred to as
the co-association matrix. A graph partitioning algo-
rithm is then applied to the similarity matrix to ob-
tain a final clustering solution. Here we apply spectral
graph partitioning [18] to produce a final partition of
the data points into c clusters, where c is the number
of known classes in the data. For more details of the
CSPA method and spectral clustering, please refer to
[20] and [18].

Evaluation criterion. To evaluate the final per-
formance of the selected ensembles, we use the known

3When this information is not available, a good rule of thumb
is to set the upper bound to be

√
n [7].



class labels as a surrogate for the true underlying struc-
ture of the data and measure the normalized mutual in-
formation (NMI) [20] between the final consensus clus-
ter labels and the class labels. Note that if the two
labels are independent from each other, the expected
NMI value is zero. The best NMI value is 1, which is
attained when the class and cluster labels define exactly
the same partition of the data. In general, the higher
the NMI value, the better is the quality.

4.2 Results

We apply the Quality and Diversity selection strategies
to form ensembles of size ten, twenty, and so on, up to
200. Once an ensemble is selected, the CSPA method
is applied to obtain a consensus clustering solution,
whose NMI value is then computed using the class label
information. In Figure 1, we plot the NMI values of both
selection methods as a function of the ensemble size.
Also plotted is the full ensemble performance, obtained
by applying CSPA to the full library. Note that each
point in the graph is obtained by averaging the results
of ten independent runs (libraries).

We first note from Figure 1 that for all data sets,
it is possible to improve the performance over the full
ensemble by selecting a smaller subset of solutions. In
some cases, significant improvements can be obtained
as demonstrated by the WINE data.

We notice that when quality is used to guide the
selection, the resulting ensembles achieve competitive
performance early on when the ensemble size is small.
As we increase the ensemble size, the performance ei-
ther level off quickly (see CHART, EOS, ISOLET6) or
become unstable and/or worse (see CBIR, SEGMEN-
TATION and WINE). This suggests that selecting only
solutions that have good quality can be beneficial when
the ensemble size is small. As we increase the ensemble
size, because the selected good solutions may be highly
similar to one another, it becomes unlikely to see per-
formance improvement.

In contrast, we see a rather different trend for the
Diversity strategy. Notably, with all but the WINE
data set, we see relatively steady performance gain as
we include more and more diverse solutions into the
ensemble. However, the rate of improvement can be too
slow sometimes for this strategy to outperform the full
ensemble with a small subset of solutions. For example,
for the CBIR, ISOLET6 and SEGMENTATION data
sets, we see the diversity method failed to create small
ensembles that outperform the full ensemble even when
the ensemble size is increased to 200.

The contrasting behavior of these two methods
suggest that in order to reliably select a good subset
of solutions, quality and diversity should be considered

jointly. In next section, we develop three different
selection strategies to achieve this goal.

5 Joint Consideration of Quality and Diversity

Intuitively, an ensemble should work the best when its
clustering solutions are of good quality and at the same
time differ from one another significantly. The trade off
between quality and diversity is the key design choice
that we need to make for effective ensemble selection.
In this study, we investigate a number of different ways
to address this trade off. Below we describe the three
methods that we develop to jointly consider quality and
diversity for ensemble selection.

Joint criterion The trade-off between quality and
diversity can be viewed in a multi-objective optimiza-
tion framework [19], which seeks to optimize two or
more conflicting objective functions. An intuitive and
popular approach for solving multi-objective problems
is to use a single aggregated objective function (AOF),
which we adopt in our study. In particular, to build
an ensemble of size K, we select K clustering solutions
from the library that optimize the following AOF:

α
∑

i=1,···,K

SNMI(Ci, L)+(1−α)
∑

i6=j

(1−NMI(Ci, Cj))

(5.2)
where the first component summarizes the quality of the
selected clustering solutions and the second component
measures their pair-wise diversity. The parameter α
controls how much emphasis we put on each objective.
Note that optimizing the above AOF is also an NP-hard
problem. This can be easily shown by noticing that the
diversity maximization problem (the heaviest k-vertex
subgraph problem) is a special case of this problem.

To perform selection using this AOF criterion, we
use a greedy procedure similar to what was used in
Diversity as described in Section 3.2. In particular, we
start with the ensemble containing the single highest-
quality solution and incrementally add one solution
at a time to the ensemble to maximize the proposed
objective function. For the remainder of this paper, we
will refer to this method as Joint Criterion (JC). In our
experiments, we set α to 0.5 because there is no clear
reason to favor either one without knowing the specifics
of the data. Later we will examine different choices for
α to investigate its sensitivity.

Cluster and select. In our second method, we
consider each clustering solution in the library as an
entity and examine how they relate to each other.
Despite the fact that we used numerous diversifying
heuristics in generating our library, it is still quite likely
to have clustering solutions that are highly similar to
one another. If two clustering solutions C1 and C2 are



similar and C1 has been included in the ensemble, it is
intuitive to not include C2 to avoid redundancy even
though C2 might have good quality as well. However,
the Joint Criterion method does not necessarily achieve
this. Consider the situation where the existing ensemble
contains a large number of clustering solutions that are
highly different from C2, being similar to C1 will not
prevent C2 from being selected.

One way to address the above issue is to explicitly
remove possible redundancies by grouping the clustering
solutions into similar groups and selecting only one
clustering solution from each group. Specifically, to
form a cluster ensemble of size K, the library of
solutions will be partitioned into K groups. Each group
contains a set of solutions that are considered to be
similar to one another. We then simply select one
solution from each group to form the ensemble. To take
quality (as measured by SNMI) into consideration, we
select the solution with the highest quality from each
group. Note that when K is set to be the size of the
library, this method degrades to using full library. When
K is set to 1, it is equivalent to choosing the solution
with the highest quality.

There are many possible ways to partition the
clustering solutions. Here we apply spectral clustering
[18] to the pair-wise NMI matrix, which in essence
can be considered as a similarity matrix describing the
relationship among clustering solutions. We refer to this
method as Cluster and Select (CAS).

Convex Hull The last method was inspired
by the Kappa-Error Convex-hull pruning method of
Margineantu and Dietterich for pruning classifiers gen-
erated by AdaBoost [15]. This method works as follows.
First, we produce a quality-diversity diagram for the
given library. The quality-diversity diagram is a scatter-
plot where each point corresponds to a pair of clustering
solutions in the library. Given a library of size n, we will
produce a scatter plot of n× (n−1)/2 points. Consider
a point corresponding to solution pair Ci and Cj , its
x coordinate is simply the value of NMI(Ci, Cj) (e.g.,
1−diversity). Its y coordinate is the average of Ci’s
and Cj ’s SNMI values (e.g., average quality). This dia-
gram visually depicts the diversity and quality level of a
given library and it has been successfully used in previ-
ous literature for analyzing the impact of diversity and
quality on the final cluster ensemble performance [5].
We leverage the information contained in this diagram
and create a succinct summary of the entire diagram
using the convex hull of all the points in the diagram.
These points will include both the solutions with the
highest quality and the most diverse pair of solutions.
We form an ensemble by including all the clustering so-
lutions that appeared in a solution-pair corresponding

to a point on the convex hull. Note that some clustering
solutions may appear multiple times on the convex hull.
In such cases, we only select them once in the ensemble
to avoid redundancy. Different from the previous two
methods, the ensemble size here is automatically deter-
mined and can not be adjusted freely. Below we will
refer to it as the Convex Hull (CH) method.

6 Experimental Evaluation

In this section, we evaluate the proposed ensemble
selection methods by comparing their performance with
the full ensembles. We use the same data sets and
the same basic settings for experiments as described
in Section 4.1. For each data set, we generate ten
libraries; each library contains six hundred clustering
solutions. To evaluate an ensemble selection method
or base line method, we apply it to each of the ten
libraries. Each resulting ensemble is then combined
using the CSPA consensus function to produce the final
consensus clustering. The consensus clustering is then
evaluated against known class labels using the NMI
measure. The reported final results are obtained by
averaging across ten independent runs. In Figure 2
we plot the performance of our methods as a function
of the ensemble size. Note that for the Convex Hull

method and the full ensemble, the ensemble sizes are
fixed, therefore the performance are shown as flat lines.

To provide more information about each method
and the variance of their performance, Tables 2 - 7
report the NMI values of each method for ensemble
sizes 30, 60, 90, 120 and 150 together with the NMI
values of the full ensembles. In addition, we also report
the performance of a random selection strategy, which
forms ensembles by selecting randomly from the library
4. As described earlier, each number reported here is
the average of ten runs. For the proposed selection
methods and the random method, we compare each
of their results with the full ensemble and highlight
those results that are better than full ensemble at a
statistically significant level (p < 0.05, paired t-test) in
bold face. Below we discuss the performance of each
individual method based on the results shown in Figure
2 and Tables 2- 7.

6.1 Joint Criterion

Comparing with full ensembles, the Joint Criterion

method achieved comparable or improved performance
in most of the data sets. In particular, it achieved
statistically significant improvement for the CHART,

4The random selection method was not shown in the figures
because its performance tend to bounce around and make it
difficult to read the figures.



Table 2: Results for CBIR

size 30 60 90 120 150 ConvexHull Full
Joint 0.310 0.319 0.303 0.297 0.294
Criterion (0.017) (0.017) (0.027) (0.024) (0.021)
Cluster and 0.325 0.308 0.310 0.323 0.311 0.341 0.308
Select (0.023) (0.029) (0.030) (0.026) (0.029) (.007) (.026)
Random 0.294 0.304 0.301 0.306 0.299

(0.027) (0.031) (0.030) (0.029) (0.030)

Table 3: Results for CHART

size 30 60 90 120 150 ConvexHull Full
Joint 0.737 0.739 0.777 0.778 0.779

Criterion (0.033) (0.033) (0.006) (0.008) (0.003)
Cluster and 0.747 0.742 0.738 0.742 0.750 0.734 0.735
Select (0.039) (0.039) (0.041) (0.037) (0.035) (.028) (.036)
Random 0.731 0.731 0.730 0.743 0.742

(0.039) (0.038) (0.039) (0.038) (0.040)

Table 4: Results for EOS

size 30 60 90 120 150 ConvexHull Full
Joint 0.295 0.304 0.306 0.300 0.300

Criterion (0.014) (0.017) (0.019) (0.015) (0.006)
Cluster and 0.290 0.294 0.297 0.295 0.296 0.277 0.287
Select (0.012) (0.006) (0.005) (0.003) (0.004) (.009) (.003)
Random 0.284 0.290 0.289 0.289 0.287

(0.009) (0.005) (0.007) (0.004) (0.003)

Table 5: Results for ISOLET6

size 30 60 90 120 150 ConvexHull Full
Joint 0.819 0.811 0.813 0.816 0.816
Criterion (0.029) (0.005) (0.003) (0.003) (0.003)
Cluster and 0.850 0.849 0.850 0.851 0.851 0.806 0.838
Select (0.001) (0.002) (0.002) (0.002) (0.002) (.048) (.016)
Random 0.797 0.797 0.822 0.822 0.832

(0.052) (0.052) (0.041) (0.041) (0.033)

Table 6: Results for SEGMENTATION

size 30 60 90 120 150 ConvexHull Full
Joint 0.576 0.583 0.582 0.578 0.577
Criterion (0.049) (0.026) (0.008) (0.013) (0.009)
Cluster and 0.597 0.603 0.596 0.597 0.595 0.584 0.576
Select (0.015) (0.012) (0.027) (0.013) (0.018) (.040) (.030)
Random 0.567 0.566 0.561 0.563 0.574

(0.035) (0.035) (0.045) (0.027) (0.027)

Table 7: Results for WINE

size 30 60 90 120 150 ConvexHull Full
Joint 0.458 0.458 0.458 0.457 0.459

Criterion (0.005) (0.004) (0.007) (0.006) (0.006)
Cluster and 0.620 0.701 0.730 0.696 0.627 0.429 0.447
Select (0.124) (0.079) (0.119) (0.079) (0.082) (.021) (.013)
Random 0.432 0.429 0.438 0.433 0.429

(0.019) (0.013) (0.013) (0.015) (0.015)



EOS and WINE data sets. Note that the performance
trend of this method is very similar to that of selecting
using diversity alone for most of the data sets, especially
for large ensemble sizes, with the only exception of the
WINE data set. (See Figure 1) This similarity indicates
that our joint objective function places a rather heavy
weight on diversity, especially for large ensemble sizes.
The influence of quality is more prominent with small
ensemble sizes, producing a better and more stable
performance for small sizes than using diversity alone.

We also observe that the performance of this
method typically levels off before the ensemble size
reaches one hundred (most times much earlier), suggest-
ing that this method is more appropriate for selecting
small ensembles.

Sensitivity analysis of α. Note that so far we
have set α = 0.5 in our experiments. Here we would like
to examine how sensitive this method is to the choice of
α. We experimented with a variety of α values including
0.1, 0.2, ..., 0.9 and compare their results with Quality

(α = 1) and Diversity (α = 0). As one might expect, we
observed that smaller values of α result in performance
that are similar to Diversity, whereas larger α values led
to performance similar to Quality. We further observe
that setting α to particularly high or low values can be
beneficial for some cases, but in general the performance
is more robust when α is around 0.5. Here we will
focus on the results of a small set of α values in the
middle range α = 0.4, 0.5, 0.6 and show in Figure 3 their
performance together with Diversity(α = 0) and Quality

(α = 1).5 From this figure we can see that the Joint

Criterion method is relatively stable with respect to the
α values tested, especially for large ensemble sizes.

6.2 Cluster and Select

Examining the results, we observe that Cluster and

Select was able to achieve statistically significant im-
provements over full ensembles for five out of six data
sets and it never degraded the performance. Particu-
larly striking is the Wine data set, where we see drastic
performance improvements across a wide range of en-
semble sizes.

Interestingly, for the Wine data set, we observe
that increasing the ensemble size first improves the
performance, then started to hurt the performance once
it went beyond 100. This is possibly because the library
does not contain many distinct groups in the clustering
solutions and forcing such grouping may have caused the
performance to degrade. This suggests that a possible
way to improve this method is to automatically decide

5Note that these figures were generated using the extended
libraries as described in Section 7.

how many groups to partition the solutions into based
on the evidence from the data using techniques such as
the EigenGap [18].

6.3 Convex Hull

The method that we adopted from the supervised
learning community did not live up to its expectation.
It failed to achieve significant improvement for all but
the CBIR data set. Further it incurred a significant
loss for the ISOLET6 data set. We conjecture that
this is because the convex hull of the scatter plot often
contains points that are on the extreme end and may
actually be outliers. These points may well correspond
to clustering solutions that are of both low quality
and diversity, resulting in suboptimal ensembles. This
suggests that an alternative approach to use the quality-
diversity diagram is to explicitly search for those points
that are located in the high-diversity and high-quality
quadrant of the diagram and avoid outlier points.

6.4 Random strategy

The Random selection strategy is included in this eval-
uation to ensure that the performance improvement we
observe with our proposed methods can not be achieved
by chance. Our results confirm this because the random
selection method did not significantly improve over full
ensemble in any of the data sets across different ensem-
ble sizes. It is interesting to note that for the CHART
and EOS data sets, the random selection method per-
formed respectably well for ensemble size as small as
30. This suggests that there exists large amount of re-
dundancy in the libraries. Due to such redundancy, we
can expect strategies favoring diversity to work well for
these data sets. This is consistent with our experimen-
tal results, where the Joint Criterion method achieved
the best performance for these two data sets.

6.5 Comparison across methods

Comparing the three proposed methods and the base
line systems, we see that both Joint Criterion and Clus-

ter and Select achieved promising performance toward
our goal, that is to select smaller and better perform-
ing ensembles. The random selection method provided
a good reference point to confirm that the performance
improvements are not created by chance. In particular,
the Cluster and Select method achieved the best over-
all performance and statistically significantly improved
over full ensembles for all but one data set. Further ex-
amination of this method reveals that this method at-
tains a good compromise between the Quality method
and the Diversity method. We believe this is because
this strategy explicitly seeks to remove redundant solu-
tions and retain quality solutions at the same time.



7 Sensitivity Analysis

In our previous section, we have identified Cluster and

Select as the best performing method. In this section,
we will focus on this method and conduct a set of
additional experiments to investigate the sensitivity of
this method to the choice of library by varying the
library and considering outlier (degenerate) solutions in
the library.

7.1 Extending the libraries

To gain insights about how the size and design of
the library impact the proposed selection strategies, we
extended our library by adding 400 solutions that are
generated using the following two different settings.

First, we adopt a recently proposed method by
Caruana et al. [2] for generating diverse clustering so-
lutions using K-means with random feature weighing.
In particular, we assign each feature a random weight,
which is used to scale the feature values. For example, if
a feature is assigned a weigh of 10, for each data point it
value for this feature is multiplied by 10. In effect, fea-
tures with larger weights are considered more important
in computing the distance function for K-means. The
Zipf power law distribution is used to generate the ran-
dom weights. Given an integer number Z, the Zipf dis-
tribution generates random integer numbers from 1 to Z
such that the probability of the number i is proportional
to 1

iα , where α is the shape parameter. When alpha is
zero, this is simply a uniform distribution from 1 to Z.
As α increases, the probability of generating large num-
bers decreases. We use this setting to create 200 clus-
tering solutions, each with a random α value choosen
from the set {0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50}, and
a random k value chosen from 2 to 2× c, where c is the
number of classes.

Finally, we also consider an additional clustering
algorithm as our base learner, the spectral clustering
algorithm [18],which takes a graph partitioning per-
spective for data clustering and has been shown to be
highly effective in many applications where K-means
fails. Spectral clustering requires as input a similar-
ity matrix S describing the pairwise relationship among
all data points. We use a Gaussian Kernel to compute

S such that S(i, j) = exp(
−||Xi−Xj ||

2

σ2 ), where σ is the
kernel width parameter. Different σ values result in dif-
ferent similarity matrices, hence different clustering re-
sults. For a thorough exploration, we consider a set of

different kernel widths computed as σ =
max ||Xi−Xj ||

2

β
8

,

for β = 0, . . . , 64. This setting is again used to create
200 solutions, each with a random k value chosen be-
tween 2 and 2 × c, and a random kernel width chosen
by selecting a random β value between 0 and 64.

Adding this additional 400 solutions to our original
library, we obtain libraries of 1000 solutions. Note that
the new libraries generated as such not only contain
a larger number of solutions (for testing the impact of
library size) but also contain a set of qualitatively differ-
ent solutions due to the inclusion of spectral clustering
(for testing the impact of library quality).

7.2 Considering outlier solutions

Interestingly for three of our data sets (namely CBIR,
CHART, and ISOLET6) some of the clustering results
we obtained using the above described procedure are
degenerate solutions where the vast majority of the data
points are assigned to one cluster. This presents a
perfect opportunity to test whether our methods are
sensitive to the presence of such outlier solutions in the
library. To achieve this goal, for each of these three data
sets, we created two set of different experiments, one
with the full library (with degenerate outliers included)
and another set with the outlier-free libraries that are
created by the following procedure.

In particular, we remove 10% of the solutions
whose cluster distributions have the lowest normalized
entropy (small entropy indicates uneven distribution
among clusters). More specifically, we consider each
clustering solution as a multi-nomial random variable
with possible values ranging from 1 to k, where k is the
number of clusters. We compute its empirical entropy
and normalize it to the zero-one range by the maximum
entropy achievable log2(k). For each library (for CBIR,
CHART, and ISOLET6), we rank all of 1000 clustering
solutions based on this normalized entropy in increasing
order and remove the first 100 solutions. Note that the
libraries of the other three data sets were not processed
because there were no degenerate solutions.

7.3 Results

In Figure 4, we show the performance of the Cluster

and Select (CAS) method under different settings for
each data set, including the original small library (CAS-
S), the extended outlier-free library (CAS-L), and the
extended library with outliers included (CAS-LO) (for
the CBIR, CHART and ISOLET6 data sets). Also
shown are the full ensemble performance for both the
small libraries (Full-S) and the extended outlier free
libraries (Full-L).6

We first noticed that the extended library led to
improved full ensemble performance for three data sets
(CBIR, CHART, and ISOLET6), and no difference or
slightly reduced performance for the other data sets.

6We omitted Full-LO, i.e., full ensemble with large library and
outliers because it is highly similar to Full-L.



For all data sets, however, the relationship between the
CAS and Full remained the same, i.e., CAS can often
improve the performance and never causes detrimental
effect except for very small ensemble sizes. This suggests
that CAS is relatively robust with regard to the library
size and composition. On the other hand, we observe
that applying CAS to the extended library sometimes
resulted in worse performance in comparison to the
smaller library, even though we were selecting from a
larger pool of solutions. The most striking example is
the WINE data set. However, this is not that surprising
considering the difference between Full-L and Full-S. In
particular, the inclusion of the additional 400 solutions
was not beneficial, suggesting that these solutions are
not useful toward improving the ensemble performance.
By adding these 400 solutions, it actually becomes more
difficult to select the good subset of solutions since the
selection pool is now larger and more ”diluted”.

What is also interesting is that we observed almost
no negative effect on CAS when the degenerate outlier
solutions are included in the library, except for when
the ensemble size is very small. This indicates that the
proposed method is highly robust to the (small amount
of) degenerate solutions in the library.

8 Conclusions

In this paper, we make the following contributions.
First, we defined the cluster ensemble selection

problem. Given a large library of clustering solutions,
the goal is to select a subset of solutions to form a small
ensemble that achieves better performance than using
all available solutions. While the ensemble selection
problem has been studied in the supervised setting,
our work is the first investigation in the unsupervised
domain.

Second, we proposed and examined three different
selection strategies that jointly consider the quality and
diversity of the clustering solutions. Among them, we
identified the Cluster and Select method as the best
performing method and consider it highly promising
toward our goal. In particular, in our experiments it
achieved statistically significant improvements over full
ensembles for five out of six data sets. Our experimental
evaluation of the random selection strategy further
confirmed that such performance improvements can
not be obtained by chance. We further examined the
sensitivity of this method to the choice of different
libraries and to outlier solutions in the library. The
results suggested that it is robust with respect to both
factors.

In this study, we chose to use SNMI to measure
the quality of a clustering solution and use NMI to
measure pair-wise diversity. It should be noted that

the methods we developed are not restricted to these
particular choices. They can be easily replaced by other
quality and diversity measures, which will be part of our
future work. Another future direction is to revise the
Cluster and Select method to automatically determine
the number of groups into which we should partition
the library, which will enable us to choose the most
appropriate ensemble size.
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Figure 1: Comparing the Quality and Diversity selection methods with the full ensembles
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Figure 2: Performance comparison of the “Joint Criterion” (JC), “Cluster and Select” (CAS), “Convex Hull”
(CH) methods and Full ensembles
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Figure 3: Sensitivity analysis of the “Joint Criterion” (JC) method by varying the values for α.
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Figure 4: Sensitivity analysis of the “Cluster and Select” (CAS) method considering different libraries


