
Rank-Loss Support Instance Machines
for MIML Instance Annotation

Forrest Briggs
Oregon State University

School of EECS
Corvallis, Oregon

briggsf@eecs.oregonstate.edu

Xiaoli Z. Fern
Oregon State University

School of EECS
Corvallis, Oregon

xfern@eecs.oregonstate.edu

Raviv Raich
Oregon State University

School of EECS
Corvallis, Oregon

raich@eecs.oregonstate.edu

ABSTRACT
Multi-instance multi-label learning (MIML) is a framework
for supervised classification where the objects to be classi-
fied are bags of instances associated with multiple labels. For
example, an image can be represented as a bag of segments
and associated with a list of objects it contains. Prior work
on MIML has focused on predicting label sets for previously
unseen bags. We instead consider the problem of predict-
ing instance labels while learning from data labeled only
at the bag level. We propose Rank-Loss Support Instance
Machines, which optimize a regularized rank-loss objective
and can be instantiated with different aggregation models
connecting instance-level predictions with bag-level predic-
tions. The aggregation models that we consider are equiv-
alent to defining a “support instance” for each bag, which
allows efficient optimization of the rank-loss objective using
primal sub-gradient descent. Experiments on artificial and
real-world datasets show that the proposed methods achieve
higher accuracy than other loss functions used in prior work,
e.g., Hamming loss, and recent work in ambiguous label clas-
sification.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.5.2 [Design Methodology]: Classifier Design and
Evaluation

General Terms
Algorithms, Performance, Experimentation

Keywords
instance annotation, image annotation, multi-instance, multi-
label, support vector machine, sub-gradient, bioacoustics

1. INTRODUCTION
Many problems in supervised classification have a certain

structure, where the objects of interest (e.g., images or text

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

documents) can naturally be decomposed into a collection
of parts or formally, a bag-of-instances representation. For
example, in image classification, an image is typically a bag,
and the pixels or segments in it are instances. This struc-
ture motivates multiple-instance learning (MIL) [7]. The
original formulation of MIL concerns problems where bags
are associated with a single binary label. Zhou and Zhang
[30] proposed multi-instance multi-label learning (MIML),
where bags are instead associated with a set of labels. For
example, an image might be associated with a list of the
objects it contains.

MIML arises in situations where the cost of labeling indi-
vidual instances becomes prohibitive and consequently mul-
tiple instances are grouped and associated with a set of la-
bels. For example, labeling individual pixels in an image
takes minutes, but assigning a few words to an image can
be accomplished in seconds. In MIML, the training dataset
consists of a collection of bags of instances, where each bag
is associated with multiple labels. The goal is to learn a
classifier that predicts the label set for a previously unseen
bag. Numerous algorithms for MIML have been proposed
and applied to image and text domains [30, 31, 27, 14, 20].

A related problem which has received little attention [29]
is learning to predict instance labels from MIML training
data. For example, one might train a classifier on a collection
of images paired with lists of object names in each image,
then make predictions about the label for each region in
an image. This problem is called the instance annotation
problem for MIML. The key issue in instance annotation is
how to learn an instance-level classifier from a MIML dataset
(which presents only bag-level labels).

A common strategy in designing MIML algorithms is to
learn an instance-level model by minimizing a loss function
defined at the bag level. For example, several MIML al-
gorithms minimize bag-level Hamming loss, which captures
the disagreement between a ground-truth label set, and a
predicted label set. For instance annotation, typically the
instance-level classifier outputs a score for each class, and
the instance label is predicted as the highest scoring class.
Therefore the predicted label depends on the ranking of class
scores. Hamming loss is not appropriate in this context, de-
spite its success at bag-level predictions, because it lacks a
mechanism to calibrate the scores between different classes.
This observation motivates us to introduce a rank-loss ob-
jective for instance annotation, which directly optimizes the
ranking of classes.

In order to learn an instance-level classifier using a bag-
level loss function, it is necessary to define an aggregation



model that connects instance-level predictions with bag-level
predictions. In this paper, we examine two different aggre-
gation models, which are equivalent to defining a “support
instance” for each bag. Therefore, we name our methods
Rank-Loss Support Instance Machines (SIM). In this paper,
we make the following contributions:

• We propose a general rank-loss objective for instance
annotation that can be instantiated with different ag-
gregation models (Sec. 4).

• We propose an optimization procedure for the rank-
loss objective which alternates between updating the
support instances and solving a convex optimization
problem. Using the Pegasos framework [18, 19], we
show that a primal sub-gradient descent algorithm finds
a solution to the convex problem within ε of opti-
mal, with runtime linear in the number of bags, and 1

ε
(Sec. 4.2.2). The alternating optimization is also linear
in the total number of instances.

• Experiments show that Rank-loss SIM achieves higher
accuracy than Hamming loss, or ambiguous loss (a
comparable state-of-the-art approach [5, 6]), and a novel
softmax aggregation model outperforms the max model
which has been used in prior work (Sec. 5).

• We introduce a real-world MIML dataset for instance
annotation derived from over 90 minutes of bird song
recordings collected in the field, containing multiple si-
multaneously vocalizing birds of different species. Rank-
Loss SIM with the softmax model achieves over 80%
accuracy in predicting the species of bird responsi-
ble for each sound in the recordings (given the list of
species present in the recording).

2. PROBLEM STATEMENT
In this section we formalize the instance annotation prob-

lem and contrast it with several related problems.
We are given a training set of n bags (X1, Y1), . . . , (Xn, Yn).

Each Xi is a bag of ni instances, i.e., Xi = {xi,1, · · · ,xi,ni},
with xi,q ∈ X , where X = Rd is a d-dimensional feature
space. Each bag Xi is associated with a label set Yi ⊆ Y
where Y = {1, · · · , c} and c is the total number of classes.
The goal of instance annotation in MIML is to learn an in-
stance level classifier fIA : X → Y that maps an element of
the input space X to its corresponding class label.

The instance annotation problem is different from the
traditional MIML learning problem studied by Zhou and
Zhang [30] and many others, where the goal is to learn a
bag-level classifier FMIML : 2X → 2Y . However, the de-
sign principles of many traditional MIML algorithms can be
used to learn instance-level classification models, which is
the approach we take in this paper.

Instance annotation is closely related to the classic super-
vised classification problem, where the goal is to learn an in-
stance classifier, but using training data that does not have
a bag structure and has each instance labeled individually.
In contrast to MIML, this classic setting is often referred to
as single-instance single-label (SISL) learning.

Ambiguous label classification (ALC) [13, 6] is another
related framework. In ALC, there are no bags; instead in-
stances are paired with a set of possible labels, only one of
which is correct. An ALC dataset is (x1, Y1), . . . , (xm, Ym),

where xi ∈ X and Yi ⊆ Y. In ALC the goal is to learn a clas-
sifier that predicts instance labels, hence an ALC classifier
is a function fALC : X → Y. A MIML instance annotation
problem can be transformed into a ALC problem by cre-
ating one ALC instance for each instance in a MIML bag,
paired with all of the labels from the bag. Hence ALC algo-
rithms can be applied to MIML instance annotation prob-
lems. However, this reduction may discard useful bag-level
structure in the MIML data.

3. BACKGROUND
Here we discuss some design patterns in traditional MIML

algorithms (aimed at bag-level predictions) that contribute
to our proposed methods (see Sec. 6 for different approaches
to instance annotation, e.g., graphical models).

One common approach in MIML algorithms is to make
bag-level predictions based on the outputs of instance-level
models. Many algorithms leverage an assumption that the
bag label set is equal to the union of the instance labels
(i.e. there are no missing or spurious labels). This assump-
tion is used in several MIML algorithms including M3MIML
[28], and D-MimlSvm [31]. The following formulation is fre-
quently used to capture this assumption. Let fj(x) : X → R
be a function which takes an instance and returns a real-
valued score for class j. The output at the bag-level for
class j is defined to be Fj(X) = maxx∈X fj(x). A bag-level
classifier can be obtained by applying a threshold (e.g., 0) to
the bag-level scores, i.e. F (X) = {y ∈ Y : Fy(X) > 0}. Note
that if an instance x∗ within bag X is predicted to belong
to class j, i.e., fj(x

∗) > 0, the predicted label set for bag X
will necessarily contain j because Fj(X) = maxx∈X fj(x) ≥
fj(x

∗) > 0. Hence, connecting instance and bag-level scores
via the max function is equivalent to defining the bag label
set as the union of the instance labels.

In contrast with SISL or instance annotation which are
evaluated based on instance-level accuracy, MIML algorithms
are evaluated based on their label set predictions. Two com-
mon performance measures are Hamming loss, and rank loss
[31]. Hamming Loss is the number of false positives and false
negatives, averaged over all classes and bags,

1

nc

n∑
i=1

c∑
j=1

I[j ∈ F (Xi), j /∈ Yi] + I[j /∈ F (Xi), j ∈ Yi]

Rank loss captures the number of label pairs that are incor-
rectly ordered by the scores of the MIML classifier. Classes
in the true label set should receive higher scores than classes
that are not. Let Ȳ denote the complement of Y . Rank loss
is defined as

1

n

n∑
i=1

1

|Yi||Ȳi|
∑

j∈Yi,k∈Ȳi

I[Fj(Xi) ≤ Fk(Xi)] (1)

These objectives are difficult to optimize directly because
they are not continuous. Several algorithms for MIML can
be viewed as optimizing a surrogate for Hamming loss. For
example, D-MimlSvm [31] and M3MIML [28] optimize vari-
ations of the following loss function (with different regular-
ization terms)

1

nc

n∑
i=1

c∑
j=1

max{0, 1− Y ji Fj(Xi)} (2)

where Y ji = +1 if j ∈ Yi and −1 if j /∈ Yi.



The hinged Hamming-loss objective (2) can be decom-
posed into an independent MIL problem for each class, so
it does not calibrate the scores between classes, which could
make predicting an instance label based on the highest scor-
ing class unreliable. To overcome this limitation, we consider
rank loss instead. We are not aware of any MIML algorithms
that learn an instance-level model by minimizing rank loss
(i.e. rank loss has only been used as a performance measure,
not as an objective). Rank loss has been used as an objective
for (single-instance) multi-label SVMs [9].

4. PROPOSED METHODS
We consider classifiers for instance annotation that use

one instance-level model for each class fj(x) = wj · x, and
predict a specific label via f(x) = arg maxj fj(x). The goal

is to learn the weights W = [w1, . . . ,wc] (note x ∈ Rd,wj ∈
Rd, and W ∈ Rcd). The predicted instance label depends on
the ranking of scores for each class, so we propose to directly
optimize this ranking.

4.1 Rank-Loss Support Instance Machines
Because we are learning from a MIML dataset, we can

only use a loss function that evaluates predictions at the bag
level, i.e. the loss function measures the agreement between
a bag label set and the bag-level scores Fj(Xi). We propose
a regularized surrogate for the rank loss (1):

grank(W) =
λ

2
||W||2 +

1

n

n∑
i=1

1

|Yi||Ȳi|
∑

j∈Yi,k∈Ȳi

max{0, 1−
(
Fj(Xi)− Fk(Xi)

)
}

This objective is designed to encourage a correct ranking of
the bag-level scores for each class. For a bag Xi with cor-
responding label set Yi, if j ∈ Yi and k ∈ Ȳi, then the loss
is zero only if Fj(Xi) > Fk(Xi) + 1 (requiring a difference
of at least 1 promotes a large-margin solution). The objec-
tive is also designed to facilitate primal sub-gradient descent
optimization methods, which we discuss in the next section.

This objective can be instantiated with various aggrega-
tion models that compute bag-level scores from instance-
level scores. For example, the max model, which has been
used in prior work, with a linear instance classifier is

Fj(Xi) = max
xi,q∈Xi

fj(xi,q) = max
xi,q∈Xi

wj · xi,q

It is equivalent to write Fj(Xi) = wj · x̂i,j , where

x̂i,j = arg max
xi,q∈Xi

wj · xi,q (3)

We refer to x̂i,j as the “support instance” for bag Xi, class
j, because the bag-level output for Xi depends only on the
support instance for each class (analogous to a support vec-
tor). Therefore we name our proposed method Rank-Loss
Support Instance Machines (SIM).

The max model represents each bag with the most char-
acteristic instance of each class. This approach can ignore
other instances that are also useful for learning, and may
not be appropriate when the assumption that the bag label
set is equal to the union of instance labels does not hold.
We propose an alternative softmax model, which can also
be expressed in terms of support instances, but has the ad-
vantage of basing the support on more than one instance per
class for each bag. The softmax model represents each bag

as a weighted average of the instances, with weights specific
to each class:

Fj(Xi) =
∑

xi,q∈Xi

αji,qfj(xi,q) =
∑

xi,q∈Xi

αji,qwj · xi,q

The weights are defined according to a softmax rule,

αji,q =
ewj ·xi,q∑

x′∈Xi
ewj ·x′

We can also write the softmax model as Fj(Xi) = wj · x̂i,j ,
with the support defined as

x̂i,j =
∑

xi,q∈Xi

αji,qxi,q (4)

4.2 Optimization
We can rewrite the rank-loss objective in terms of support

instances as

ĝrank(W) =
λ

2
||W||2 +

1

n

n∑
i=1

1

|Yi||Ȳi|
∑

j∈Yi,k∈Ȳi

max{0, 1 + wk · x̂i,k −wj · x̂i,j}

If x̂i,j is constant, this objective is convex. However, using
the max and softmax models, x̂i,j is a function of wj , and the
objective is non-convex. We can still use convex optimiza-
tion techniques by alternating between updating the support
and keeping the support constant while optimizing the ob-
jective. The MI-SVM algorithm for MIL (single-label) also
uses the max function to connect instance and bag labels,
and alternates between computing the support and optimiz-
ing the resulting objective [1].

4.2.1 Sub-Gradient Descent
To optimize ĝrank, we use a sub-gradient descent method

similar to Pegasos, an algorithm for training linear two-class
SVMs [19]. The Pegasos algorithm is based on a general
framework for optimizing regularized convex objectives [18].
This framework can be applied to convex optimization prob-
lems in the form:

min
W∈S

g(W) where g(W) =
λ

2
||W||2 + loss(W)

For such problems, the following algorithm can be applied:

Projected Sub-Gradient Algorithm:

Initialize W0 ∈ S
for t = 1, 2, . . . , T :

Compute a sub-gradient V ∈ ∂g(Wt−1)

Wt ← P [Wt−1 − 1

λt
V]

The feasible space is S; P [W] = arg min
W′∈S

||W −W′||2 is

a projection back into the feasible space. Note that when
S = {W : ||W|| ≤ r}, the projection simplifies to P [W] =
min{1, r

||W||}W (this will be the case for our objective).

This algorithm can be considered an example of the pro-
jected sub-gradient method [2] with learning rate 1

λt
. Let

W∗ be the optimal solution i.e. W∗ = arg min
W∈S

g(W). Shalev-

Shwartz and Singer [18] showed the following convergence



rate for this algorithm,

min
t
g(Wt) ≤ g(W∗) +O(

log T

T

L

λ
)

where L is a constant bounding the magnitude of the sub-
gradient i.e. ∀t, 1

2
||V||2 ≤ L. For practical purposes, the

number of iterations of sub-gradient descent T is small enough
to treat log T as constant, hence to obtain a solution that is
within ε of optimal, it suffices to run T ≈ O( L

λε
) iterations

of the above algorithm [18].
Treating the support instances as constant, we can apply

the Pegasos framework for sub-gradient descent to minimize
the rank-loss objective ĝrank. We denote the component of
the sub-gradient corresponding to wq as vrankq , where q =

1, . . . , c. The full sub-gradient is Vrank = [vrank1 , . . . ,vrankc ].

vrankq = λwq +
1

n

n∑
i=1

1

|Yi||Ȳi|
∑

j∈Yi,k∈Ȳi

(5)

I[1 + wk · x̂i,k > wj · x̂i,j ]


x̂i,q if q = k

−x̂i,q if q = j

0 otherwise

In order to prove sub-gradient descent converges, we must
establish L, the bound on the sub-gradient. We begin by
showing the following Lemma:

Lemma 1: Consider any objective of the form g(W) =
λ
2
||W||2 + loss(W), such that loss(W) ≥ 0 and loss(0) = 1.

Let the optimal solution be W∗ = arg minW g(W). Then
||W∗||2 ≤ 2

λ
.

Proof: The optimal solution must be at least as good as
W = 0, therefore g(W∗) ≤ 1. Furthermore, loss(W∗) ≤ 1
(assuming the contrary implies g(W∗) > 1, which is a con-
tradiction). Because the loss is non-negative, 0 ≤ loss(W∗) ≤
1. We will use this property to finish the proof:

g(W∗) =
λ

2
||W∗||2 + loss(W∗) ≤ 1

λ

2
||W∗||2 ≤ 1− loss(W∗) ≤ 1

||W∗||2 ≤ 2

λ

The ĝrank objective satisfies the criteria of Lemma 1, so
we can replace unconstrained minimization of ĝrank with
minimization restricted to the set S = {W : ||W||2 ≤ 2

λ
}

without changing the solution. It is also necessary to bound
the magnitude of an instance feature vector, ||x|| ≤ R. Note

that W ∈ S implies ||λwq|| ≤ λ
√

2
λ

=
√

2λ (using Lemma

1). Also, 1
|Yi||Ȳi|

≤ 1
c−1

provided Yi 6= Y and Yi 6= {} (if this

is not true, the objective is undefined). Using the above, we
can derive the bound L:

||vrankq || ≤
√

2λ+R

||vrankq ||2 ≤
(√

2λ+R
)2

||Vrank||2 =

c∑
j=1

||vrankj ||2

||Vrank||2 ≤ c
(√

2λ+R
)2

Therefore L = c
2

(√
2λ+R

)2

suffices.

4.2.2 Runtime of Sub-Gradient Descent
To compute Vrank, one could compute vrank1 , . . . ,vrankc

from (5), but this will take O(nc3) time; where n is the
number of bags and c is the number of classes. We give an
O(nc2) algorithm below:

Rank-Loss Sub-Gradient Algorithm:
for j = 1, . . . , c :

vrankj ← λwj

for i = 1, . . . , n; j ∈ Yi, k ∈ Ȳi :
if 1 + wk · x̂i,k > wj · x̂i,j :

vrankj ← vrankj − x̂i,j

n|Yi||Ȳi|

vrankk ← vrankk +
x̂i,k

n|Yi||Ȳi|

Running T = O( L
λε

) iterations with a runtime of O(nc2)
per iteration of sub-gradient descent gives an upper bound of

O( nc
3

ε
√
λ

) time to find a solution within ε of optimal, i.e. linear

in the number of bags and 1
ε
. In practice, T = 100 iterations

is sufficient for many datasets (Fig. 1).

4.2.3 Updating the Support Instances
For the max and softmax models, we run K phases, where

each phase consists of updating the support, then running
T iterations of projected sub-gradient descent. For the first
phase, we start with W = 0 and compute the support as the
average of the instances in each bag (to compute the sup-
port for the max and softmax models, we require some prior
non-zero W). Going from one phase to the next, we use the
final weights from the earlier run of sub-gradient descent as
the initial weights for the next run. Note that convergence
analysis only applies to the sub-gradient descent part of each
phase (it does not describe changes in the support over mul-
tiple phases). We summarize the proposed algorithm below.

Rank-Loss Support Instance Machine Algorithm:
for phase = 1, . . . ,K:

if phase = 1 :
W← 0
initialize x̂i,j ← 1

ni

∑
xi,q∈Xi

xi,q

else:
compute x̂i,j using max (3) or softmax (4)

for t = 1, . . . , T :
compute a sub-gradient Vrank ∈ ∂ĝrank(W)
W←W − 1

λt
Vrank

W← min{1,
√

2
λ
/||W||}W

Computing the support takes O(m) time where m is the
total number of instances, and this must be done K times.

5. EXPERIMENTS
We conduct experiments on artificial and real-world MIML

datasets. The goals of our experiments are to (1) compare
the proposed rank-loss objective with alternative Hamming
loss and ambiguous loss; and (2) compare the max and soft-

max aggregation models.



0 20 40 60 80 100
0.1

0.2

0.5

1

2

5

10

20

# of iterations

Ra
nk

lo
ss

 O
bj

ec
tiv

e
  Letter-Carroll
  Letter-Frost
  HJA Birdsong (filtered)
  MSRC v2

  
  
  
  

Figure 1: Convergence of sub-gradient descent for
rank loss, average model (transductive).

Table 1: MIML datasets used in our experiments.
Dataset Classes Dimension Bags Instances
HJA Birdsong 13 38 548 10,232
MSRC v2 23 48 591 1,758
Letter-Carroll 26 16 166 717
Letter-Frost 26 16 144 565

5.1 Experimental Setup
We describe the setup of our experiments below.

5.1.1 Transductive vs. Inductive
We consider instance annotation in two different settings:

transductive and inductive. In the transductive setting, the
goal is to predict the instance labels for bags with known
label sets. In this setting, the instance-level classifiers can
only predict labels that appear in the bag label set. For-
mally, the instance classifier in the transductive setting is
f(xi,q) = arg maxj∈Yi

fj(xi,q). In the inductive setting, the
goal is to predict instance labels in previously unseen bags
(with unknown label sets). There is no restriction on which
label an instance may be given in this case.

For both modes, we compute classifier accuracy as the
fraction of instances correctly classified. For the inductive
mode, we run 10-fold cross-validation and report average
accuracy ± standard deviation in accuracy between folds.

5.1.2 Datasets
Table 1 summarizes the properties of each dataset used in

our experiments. All of these datasets are available online.1

HJA Bird Song. Our collaborators have collected audio
recordings of bird song at the H. J. Andrews (HJA) Exper-
imental Forest, using unattended microphones. Our goal is
to automatically identify the species of bird responsible for
each utterance in these recordings, thereby generating an au-
tomatic acoustic survey of bird populations. This problem is
a natural fit for the MIML instance annotation framework.
We treat a 10-second audio recording as a bag with labels

1http://web.engr.oregonstate.edu/~briggsf/
kdd2012datasets

0 10
0

8

Time (seconds)

Fr
eq

ue
nc

y 
(k

H
z)

Varied Thrush Hermit Warbler Swainson's ThrushUnlabeled

Figure 2: An example spectrogram from the HJA
Birdsong dataset. This spectrogram corresponds to
one bag. Each outlined region is an instance.

corresponding to the set of species present in the recording.
The instances are segments in a spectrogram. A spectro-
gram is a graph of the spectrum of a signal as a function
of time (computed by applying the Fast Fourier Transform
to successive overlapping frames of the audio signal). Fig-
ure 2 shows an example spectrogram for a 10-second audio
recording containing several species of birds.

Starting with a 10-second audio recording, we first convert
it to a spectrogram. A series of preprocessing steps are then
applied to the spectrogram to reduce noise, and to identify
bird song segments in the audio [15]. Each segment is consid-
ered an instance and described by a 38-dimensional feature
vector characterizing the shape of the segment, its time and
frequency profile statistics, and a histogram of gradients.

This dataset contains 548 10-second recordings (bags),
and a total of 10,232 segments (instances), of which 4,998 are
labeled, and the rest are unlabeled. The available instance
labels were provided by a human expert. Some instances
were left unlabeled because they correspond to segmenta-
tion errors (i.e. noise rather than bird song), because they
are too difficult to identify in the presence of other sounds,
or because it is extremely time-consuming to produce these
labels. The bag-level label sets are formed by taking the
union of the instance labels (not including any unlabeled
instances).

The presence of the unlabeled instances which are not ac-
counted for by the bag label set presents an additional chal-
lenge for instance annotation. To evaluate how well various
algorithms handle this problem, we consider two variants of
this dataset: “filtered” and “unfiltered”. For the filtered vari-
ant, all of the unlabeled instances are removed, and in the
unfiltered variant they are left in during the training pro-
cess. In both variants, the accuracy is measured only on the
labeled instances.

Image Dataset: MSRC v2. A subset of the Microsoft
Research Cambridge (MSRC) image dataset2 [23] named
“v2” contains 591 images and 23 classes. The MSRC v2
dataset is useful for the instance annotation problem, be-
cause pixel-level labels are included (Fig. 3). Several authors
used MSRC v2 in MIML experiments [27, 24, 22].

We construct a MIML dataset from MSRC v2 as follows:
We treat each image as a bag. The bag label set is the list of
all classes present in the ground-truth segmentation (i.e. the

2http://research.microsoft.com/en-us/projects/
objectclassrecognition/default.htm



Figure 3: An image from MSRC v2 and the cor-
responding pixel-level labeling. The classes in this
image are ‘sky’, ‘trees, ‘grass’, ‘body’, and ‘car’. The
black regions are ‘void’; we discard void regions.

union of the instance labels). The instances correspond to
each contiguous region in the ground-truth segmentation (to
simplify the experiment, we use the ground-truth segmenta-
tion rather than automatic segmentation). Each instance is
described by a 16-dimensional histogram of gradients, and
a 32-dimensional histogram of colors.

Synthetic MIML Datasets. Limited availability of MIML
datasets with instance labels has been a barrier to studying
instance annotation (because instance labels are needed to
evaluate accuracy). Using the Letter Recognition dataset
[11] from the UCI Machine Learning repository, we con-
struct two synthetic MIML datasets. The Letter Recogni-
tion dataset consists of 20,000 instances with 16-dimensional
features, and 26 classes. Note that randomly forming the
bags will not be realistic because real-world MIML problems
often have correlations between labels. Instead, we gener-
ate datasets derived from the words in two poems, “Jabber-
wocky” [3], and “The Road Not Taken” [12]. We call these
datasets Letter-Carroll and Letter-Frost. For each word in
these poems, we create a bag, with instances corresponding
to the letters in the word. For each instance, we sample
(without replacement), an example from the Letter Recog-
nition dataset with the corresponding letter. The bag-level
labels are the union of the instance labels. For example, the
word “diverged” is transformed into a bag with 8 instances,
and the label set {d, i, v, e, r, g}.

Preprocessing. For all datasets, we apply the following
preprocessing to the instance features. First, we transform
each feature to the range [0, 1]. Next, we apply the same
feature rescaling process used in the Convex Learning from
Partial Labels Toolbox (for ALC [6]), which centers the data
and scales each feature by 1√∑m

i=1 ||xi||2
.

5.1.3 Base Line Methods
We compare our proposed Rank-Loss SIM methods with

a Hamming-Loss SIM, and the Ambiguous Label Classifica-
tion algorithm proposed by Cour et al. [6]. As a reference,
we also consider a SISL classifier, which will have the unfair
advantage of learning directly from instance labels.

Hamming-Loss SIM. To compare Hamming loss to rank
loss, we use the following Hamming-loss objective, with both
max and softmax aggregation models:

gham(W) =
λ

2
||W||2 +

1

nc

n∑
i=1

c∑
j=1

max{0, 1 − Y ji Fj(Xi)}

or in terms of support instances,

ĝham(W) =
λ

2
||W||2 +

1

nc

n∑
i=1

c∑
j=1

max{0, 1−Y ji wj · x̂i,j}

We use a similar projected sub-gradient descent algorithm to
optimize this objective (and update the support in the same
way as for the rank-loss objective over multiple phases). The
conditions for Lemma 1 are also met by this objective. We
compute the following sub-gradient

vhamq = λwq −
1

nc

n∑
i=1

I[Y qi wq · x̂i,q < 1]Y qi x̂i,q

In this case, the bound on the magnitude of the sub-gradient

is L = c
2

(√
2λ+ R

c

)2

.

Ambiguous Label Classification (ALC). Cour et al. [5,
6] proposed an SVM formulation for the ALC problem. We
compare our proposed method to Cour’s ALC algorithm be-
cause they both learn one linear model per class fj(x) =
wj · x and predict the instance label as arg maxj fj(x), and
both use an L2 regularized loss function. The primary dif-
ference in Cour’s ALC method is that the loss function is
designed for use with ALC data (instead of the bag-level loss
functions we use for MIML data). The ALC loss function
is a convex upper bound to the 0/1 loss with respect to the
true (unknown) instance labels, L(f,x, Y ) =

max{0, 1− 1

|Y |
∑
j∈Y

fj(x)}2 +
∑
j /∈Y

max{0, 1 + fj(x)}2

Minimizing regularized ambiguous loss can be converted
into an equivalent SISL SVM problem with squared hinge-
loss, and solved using an off-the-shelf linear SVM [10].

Comparison to SISL. We also run a SISL SVM for the
inductive setting, whose performance can be interpreted as
an empirical upper bound for inductive instance annotation
because it is trained using unambiguously labeled instances.
For this experiment, we use LIBSVM [4] with a linear kernel.
Note that LIBSVM uses one linear model for each pair of
classes rather than one for each class. For the HJA Birdsong
dataset, we only run the SISL SVM on the filtered variant,
because we cannot use the unlabeled instances.

5.1.4 Parameter Selection
The Hamming and rank-loss objectives have a regulariza-

tion parameter λ. Similarly, Cour’s ALC method has a reg-
ularization parameter C, which achieves roughly the same
effect when C = 1

λ
. To obtain a fair comparison of different

methods regardless of the parameter settings, we repeat all
experiments for each value of λ ∈ {10−1, 10−2, . . . , 10−9},
and corresponding C values, and report the maximum ac-
curacy achieved by each method.

In practice one could use cross-validation (on the bag-
level labels) to select the regularization parameter. However,
our results suggest that it maybe sufficient to use a default
parameter for many datasets. For example, setting λ to
10−7 or 10−8 tends to work well for all datasets that we
considered (Fig. 4). This approach is consistent with prior
work using Cour’s ALC method where a fixed value of C is
used in all experiments.3

For the SISL SVM, the regularization parameter C is op-
timized by nested 10-fold cross-validation (within each fold

3Cour et al. used C = 103 for all experiments in prior work.
Our results support this choice.



-9 -8 -7 -6 -5 -4 -3 -2 -1
0.3

0.4

0.5

0.6

0.7

0.8

log10(λ)

Ac
cu
ra
cy

  Rank loss, softmax
  Cour's ALC

  
  
  
  
  
  

(a) Letter-Carroll

-9 -8 -7 -6 -5 -4 -3 -2 -1
0.3

0.4

0.5

0.6

0.7

0.8

log10(λ)

Ac
cu
ra
cy

(b) Letter-Frost

-9 -8 -7 -6 -5 -4 -3 -2 -1
0.3

0.4

0.5

0.6

0.7

0.8

log10(λ)

Ac
cu
ra
cy

(c) HJA Birdsong (filtered)

-9 -8 -7 -6 -5 -4 -3 -2 -1
0.3

0.4

0.5

0.6

0.7

0.8

log10(λ)

Ac
cu
ra
cy

(d) MSRC v2

Figure 4: Accuracy vs. regularization parameter (transductive).

of 10-fold cross validation, we run 10-fold cross validation
in the training set to select the parameter). We search over
the range C ∈ {101, 102, . . . , 107}.

For the SIM algorithms, we use K = 10 phases, with
T = 100 iterations of sub-gradient descent in each iteration.
Figure 1 shows the rank-loss objective vs. number of iter-
ations of sub-gradient descent with a fixed set of support
instances on each dataset. These results show that most of
the improvement in the objective occurs within 100 itera-
tions. Note the convergence analysis does not guarantee the
objective will decrease monotonically (only that an upper
bound decreases monotonically).

5.2 Results and Discussions
Table 2 lists results in the transductive setting, and Table

3 lists results in the inductive setting.

Comparing Different Loss Functions. First, we fo-
cus on the transductive setting. Rank-loss methods gen-
erally outperform Hamming loss and ambiguous-loss meth-
ods. In particular, when used with the same aggregation
model, rank loss consistently outperforms Hamming loss on
all datasets. The performance differences of these two meth-
ods for the softmax aggregation model range from 4% for
HJA filtered to 15% for Letter-Carroll, and are even more
pronounced for the max model. These results support our
claim that rank loss is more appropriate than Hamming loss
for instance annotation. Rank loss with either aggregation
model also consistently outperforms ambiguous loss (ALC)
in the transductive setting.

In the inductive setting, the performance generally is lower
than the transductive setting, which is expected because
in the transductive setting predictions are made with ex-
tra bag-level label information. However, rank-loss meth-
ods still achieve the best overall performance (excluding
SISL SVM, which learns from instance labels). The per-
formance of the Hamming-loss based methods is degraded
most severely (possibly because Hamming loss does not cal-
ibrate scores between classes, so its predictions become less
reliable without the restriction on which classes may be se-
lected imposed by the bag label sets).

Comparing Different Aggregation Models. The soft-
max model generally outperforms max for both rank loss and
Hamming-loss objectives. In fact, rank loss with soft-

max achieves the best performance for all five datasets in
both settings (except for the inductive HJA Birdsong filtered
dataset, where the difference in accuracy between rank loss

with softmax and ALC is within the margin of uncertainty).
The difference between the two aggregation models is more
pronounced for the Hamming-loss objective.

The Effect of Unlabeled Instances. Comparing the fil-
tered and unfiltered variants of the HJA dataset, all methods
suffer some accuracy degradation when we include the un-
labeled instances. This is not surprising as these unlabeled
instances introduce noise both at the instance level (because
they may not correspond to any of the defined classes) and
at the bag level (because the label set may be incomplete).
The rank loss / softmax method suffers less than other al-
gorithms in the presence of the unlabeled instances. For ex-
ample, in the transductive setting the difference in accuracy
is 0.4% for rank loss / softmax and 6.4% for Cour’s ALC.
Note that ALC assumes that every instance is associated
with one of the labels of the bag. This assumption is vio-
lated by the unlabeled instances that are not accounted for
by the bag label set, making ALC more sensitive to the pres-
ence of such instances. The softmax model suffers less than
the max model, possibly due to the fact that max can mis-
takenly select the unlabeled instances as support instances.

To summarize, we observe that the rank loss / softmax

method achieves the best overall performance. This result
is verified in both transductive and inductive settings. The
rank loss / softmax method is also the most robust in the
presence of instance and label noise introduced by the unla-
beled instances in the HJA Birdsong dataset.

6. RELATED WORK
MIML algorithms are developed under multiple frame-

works, some of which naturally lend themselves to instance
annotation. One such framework is graphical models, which
have been previously used to perform bag and instance-level
classification. Such models often treat instance labels as
latent variables. Inference over such models allows the clas-
sification of instances. While a variety of algorithms ex-
ists, we highlight some representative examples of recent
work. Dirichlet-Bernoulli Alignment [26] and the Exponen-
tial Multinomial Mixture model [25] are topic models for
MIML datasets and use variational inference to perform in-
stance labeling. Zha et al. [27] proposed the MLMIL al-
gorithm, a conditional random field model for MIML image
annotation that uses Gibbs sampling to infer instance labels.
Du et al. [8] propose another application of graphical models
to simultaneous image annotation and segmentation.



Table 2: Transductive setting accuracy.
Algorithm Letter-Carroll Letter-Frost HJA Birdsong (filtered) (unfiltered) MSRC v2
Rank loss, softmax 0.745 0.775 0.817 0.813 0.697
Rank loss, max 0.728 0.773 0.809 0.779 0.697
Hamming loss, softmax 0.591 0.588 0.776 0.755 0.614
Hamming loss, max 0.459 0.48 0.709 0.59 0.55
Cour’s ALC 0.672 0.688 0.742 0.678 0.678

Table 3: Inductive mode, accuracy ± standard deviation over 10-fold cross-validation.
Algorithm Letter-Carroll Letter-Frost HJA Birdsong (filtered) (unfiltered) MSRC v2
Rank loss, softmax 0.540 ± 0.066 0.575 ± 0.050 0.619 ± 0.042 0.555 ± 0.053 0.467 ± 0.044
Rank loss, max 0.528 ± 0.049 0.561 ± 0.051 0.590 ± 0.044 0.525 ± 0.071 0.439 ± 0.043
Hamming loss, softmax 0.347 ± 0.065 0.338 ± 0.041 0.479 ± 0.052 0.438 ± 0.052 0.337 ± 0.034
Hamming loss, max 0.142 ± 0.041 0.150 ± 0.044 0.243 ± 0.052 0.119 ± 0.027 0.179 ± 0.064
Cour’s ALC 0.474 ± 0.063 0.506 ± 0.063 0.621 ± 0.038 0.542 ± 0.039 0.431 ± 0.036
SISL SVM 0.772 ± 0.049 0.753 ± 0.038 0.772 ± 0.032 – 0.638 ± 0.045

While graphical models offer intuitive probabilistic inter-
pretation, the computational complexity of inference in such
models is one of the standing challenges. In this paper, we
focus on another class of MIML approaches based on regular-
ized loss minimization. Hamming-Loss SIM can be viewed
as alternative approach for optimizing a similar objective to
the M3MIML algorithm [28] (which learns an instance-level
model, but was not designed for instance annotation). Also
note that Cour’s ALC method follows the same framework
of regularized loss minimization (but using a loss function
designed for ALC).

There are a small number of other works that address
MIML instance annotation [21, 22]. Vijayanarasimhan and
Grauman [22] developed a MIML SVM that learns a bag-
level model with a set kernel (it does not learn a model of the
instance feature space). Their algorithm makes predictions
at either the bag or instance level by treating an instance as
a bag of one instance. Vezhnevets and Buhmann [21] pro-
posed an algorithm for instance annotation in MIML data
where images are represented as a bag of pixels. Their al-
gorithm alternates between sampling instance labels from
an estimated distribution, and training an ensemble of de-
cision trees on the sampled labels. Similarly, Nguyen [16]
proposed a MIML SVM algorithm which alternates between
assigning instance labels and maximizing margin given the
assigned labels (although they did not conduct experiments
on instance annotation).

7. CONCLUSION AND FUTURE WORK
We introduce Rank-Loss Support Instance Machines for

instance annotation of MIML datasets. The key to our
approach is a loss function that is measured at the bag-
level and encourages the correct ranking of classes such that
classes present in the label set of a bag score higher than
classes that are not present. This general objective can
be instantiated with different aggregation models includ-
ing the previously used max model or a newly proposed
softmax model. Both models can be viewed as represent-
ing each bag with a support instance for each class. We
alternate between computing this support, and optimizing
a convex rank-loss objective using an efficient primal sub-

gradient descent method. Experiments demonstrate that
Rank-Loss SIM achieves higher accuracy than similar Ham-
ming or ambiguous-loss based methods, and the softmax

aggregation model achieves higher accuracy than the max

model.
Our empirical evaluation focuses on methods based on

regularized loss minimization. Comparisons to other types
of methods including graphical models will be a topic of fu-
ture work. We only consider linear models in this work, but
our proposed methods could be extended to use kernels for
non-linear classification. One possibility is to use the stan-
dard kernel trick with a dual optimization method. Shalev-
Shwartz et al. [19] proposed a way of kernelizing Pegasos
that could be applied to our algorithms. A third possibility
proposed by Rahimi and Recht [17] is to map the original
features into a feature space such that inner products in the
new space are approximately equal to a kernel (e.g., a radial
basis function kernel). Further work is needed to determine
which of these methods works well for instance annotation,
and in what circumstances.

8. ACKNOWLEDGMENTS
This work is partially funded by the Ecosystems Informat-

ics IGERT program via NSF grant DGE 0333257, NSF grant
1055113 to X. Z. F., and the College of Engineering, Ore-
gon State University. We would also like to thank Matthew
Betts, Sarah Frey, Adam Hadley, and Jay Sexsmith for their
help in collecting HJA data, Iris Koski for labeling the data,
Katie Wolf for her work on noise reduction, and Lawrence
Neal for his work on segmentation.

9. REFERENCES
[1] S. Andrews, I. Tsochantaridis, and T. Hofmann.

Support vector machines for multiple-instance
learning. Advances in Neural Information Processing
Systems, 15:561–568, 2002.

[2] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge Univ Pr, 2004.

[3] L. Carroll. Through the looking-glass : and what Alice
found there. 1896.



[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001.

[5] T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning
from ambiguously labeled images. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 919–926. IEEE, 2009.

[6] T. Cour, B. Sapp, and B. Taskar. Learning from
partial labels. Journal of Machine Learning Research,
12:1225–1261, 2011.

[7] T. Dietterich, R. Lathrop, and T. Lozano-Pérez.
Solving the multiple instance problem with
axis-parallel rectangles. Artificial Intelligence,
89(1-2):31–71, 1997.

[8] L. Du, L. Ren, D. Dunson, and L. Carin. A bayesian
model for simultaneous image clustering, annotation
and object segmentation. Advances in Neural
Information Processing Systems, 22:486–494, 2009.

[9] A. Elisseeff and J. Weston. A kernel method for
multi-labelled classification. Advances in Neural
Information Processing Systems, 14:681–687, 2001.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[11] P. W. Frey and D. J. Slate. Letter recognition using
holland-style adaptive classifiers. Machine Learning,
6:161, 1991.

[12] R. Frost. Mountain Interval. 1916.

[13] E. Hüllermeier and J. Beringer. Learning from
ambiguously labeled examples. Intelligent Data
Analysis, 10(5):419–439, 2006.

[14] Y. Li, S. Ji, S. Kumar, J. Ye, and Z. Zhou. Drosophila
gene expression pattern annotation through
multi-instance multi-label learning. In Proceedings of
the 21st International Joint Conference on Artificial
Intelligence, Pasadena, CA, 2009.

[15] L. Neal, F. Briggs, R. Raich, and X. Fern.
Time-frequency segmentation of bird song in noisy
acoustic environments. In Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Processing, 2011.

[16] N. Nguyen. A new svm approach to multi-instance
multi-label learning. In Tenth IEEE International
Conference on Data Mining. ICDM’10, pages 384–392,
2010.

[17] A. Rahimi and B. Recht. Random features for
large-scale kernel machines. jAdvances in Neural
Information Processing Systems, 20:1177–1184, 2007.

[18] S. Shalev-Shwartz and Y. Singer. Logarithmic regret
algorithms for strongly convex repeated games. The
Hebrew University, Technical Report, 2007.

[19] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
Primal estimated sub-gradient solver for svm. In
Proceedings of the 24th international conference on
Machine learning, pages 807–814. ACM, 2007.

[20] C. Shen, J. Jiao, B. Wang, and Y. Yang.
Multi-Instance Multi-Label Learning For Automatic
Tag Recommendation. In Proceedings of the 2009
IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2009), 2009.

[21] A. Vezhnevets, J. Buhmann, and E. Zurich. Towards
Weakly Supervised Semantic Segmentation by Means
of Multiple Instance and Multitask Learning. In
Conference on Computer Vision and Pattern
Recognition, 2010.

[22] S. Vijayanarasimhan and K. Grauman. What’s it
going to cost you?: Predicting effort vs.
informativeness for multi-label image annotations.
2009.

[23] J. Winn, A. Criminisi, and T. Minka. Object
categorization by learned universal visual dictionary.
In Tenth IEEE International Conference on Computer
Vision, 2005. ICCV 2005, pages 1800–1807, 2005.

[24] O. Yakhnenko. Learning from Text and Images:
Generative and Discriminative Models for Partially
Labeled Data. PhD thesis, Iowa State University, 2009.

[25] S. Yang, J. Bian, and H. Zha. Hybrid
Generative/Discriminative Learning for Automatic
Image Annotation. In Conference on Uncertainty in
Artificial Intelligence, 2010.

[26] S. Yang, H. Zha, and B. Hu. Dirichlet-Bernoulli
Alignment: A Generative Model for Multi-Class
Multi-Label Multi-Instance Corpora. 2010.

[27] Z. Zha, X. Hua, T. Mei, J. Wang, G. Qi, and Z. Wang.
Joint multi-label multi-instance learning for image
classification. In IEEE Conference on Computer
Vision and Pattern Recognition, 2008. CVPR 2008,
pages 1–8, 2008.

[28] M. Zhang and Z. Zhou. M3MIML: A maximum
margin method for multi-instance multi-label learning.
In Eighth IEEE International Conference on Data
Mining. ICDM’08, pages 688–697, 2008.

[29] Z. Zhou. Multi-instance learning: A survey. Technical
report, National Laboratory for Novel Software
Technology, Nanjing University, 2010.

[30] Z. Zhou and M. Zhang. Multi-instance multi-label
learning with application to scene classification.
Advances in Neural Information Processing Systems,
19:1609, 2007.

[31] Z. Zhou, M. Zhang, S. Huang, and Y. Li.
Multi-instance multi-label learning. Artificial
Intelligence, 176(1):2291–2320, 2012.


