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Abstract

We investigate how random projection can
best be used for clustering high dimensional
data. Random projection has been shown
to have promising theoretical properties. In
practice, however, we find that it results in
highly unstable clustering performance. Our
solution is to use random projection in a
cluster ensemble approach. Empirical results
show that the proposed approach achieves
better and more robust clustering perfor-
mance compared to not only single runs of
random projection/clustering but also clus-
tering with PCA, a traditional data reduction
method for high dimensional data. To gain
insights into the performance improvement
obtained by our ensemble method, we ana-
lyze and identify the influence of the quality
and the diversity of the individual clustering
solutions on the final ensemble performance.

1. Introduction

High dimensionality poses two challenges for unsuper-
vised learning algorithms. First the presence of irrele-
vant and noisy features can mislead the clustering algo-
rithm. Second, in high dimensions data may be sparse
(the curse of dimensionality), making it difficult for an
algorithm to find any structure in the data. To ame-
liorate these problems, two basic approaches to reduc-
ing the dimensionality have been investigated: feature
subset selection (Agrawal et al., 1998; Dy & Brodley,
2000) and feature transformations, which project high
dimensional data onto “interesting” subspaces (Fuku-
naga, 1990; Chakrabarti et al., 2002). For example,
principle component analysis (PCA), chooses the pro-
jection that best preserves the variance of the data.

In this paper we investigate how a relatively new trans-
formation method, random projection (Papadimitriou
et al., 1998; Kaski, 1998; Achlioptas, 2001; Bingham

& Mannila, 2001), can best be used to improve the
clustering result for high dimensional data. Our mo-
tivation for exploring random projection is twofold.
First, it is a general data reduction technique. In
contrast to other methods, such as PCA, it does not
use any defined “interestingness” criterion to “opti-
mize” the projection. For a given data set, it may
be hard to select the correct “interestingness” crite-
rion. Second, random projection has been shown to
have special promise for high dimensional data cluster-
ing. In 1984, Diaconis and Freedman showed that vari-
ous high-dimensional distributions look more Gaussian
when randomly projected onto a low-dimensional sub-
space. Recently, Dasgupta (2000) showed that random
projection can change the shape of highly eccentric
clusters to be more spherical. These results suggest
that random projection combined with EM clustering
(of Gaussian mixtures) may be well suited to finding
structure in high dimensional data.

However, the drawback of random projection is that
it is highly unstable – different random projections
may lead to radically different clustering results. This
instability led us to investigate a novel instantiation
of the cluster ensemble framework (Strehl & Ghosh,
2002) based on random projections. In our frame-
work, a single run of clustering consists of applying
random projection to the high dimensional data and
clustering the reduced data using EM. Multiple runs
of clusterings are performed and the results are aggre-
gated to form an n × n similarity matrix, where n is
the number of instances. An agglomerative clustering
algorithm is then applied to the matrix to produce the
final clusters. Experimental results on three data sets
are presented and they show that the proposed cluster
ensemble approach achieves better clustering perfor-
mance than not only individual runs of random pro-
jection/clustering but also EM clustering with PCA
data reduction. We also demonstrate that both the
quality and the diversity of individual clustering so-
lutions have strong impact on the resulting ensemble
performance.
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(a)Scatter plot of the mixture of Gaussians
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(b)Clustering result of a single RP+EM
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(c)Clustering result of a single RP+EM

Cluster 1 

Cluster 2 

Figure 1. (a)The original clusters; (b) and (c) Two representative clustering results generated by RP+EM

2. Random Projection and the Cluster
Ensemble Approach

In this section we first illustrate that although a single
run of random projection may lead to a less than sat-
isfactory clustering result, it is possible to uncover the
natural structure in the data by combining the results
of multiple runs. We then present a new approach to
clustering high dimensional data that first combines
the information of multiple clustering runs to form a
“similarity” matrix and then applies an agglomerative
clustering algorithm to produce a final set of clusters.

2.1. A Single Random Projection

A random projection from d dimensions to d′ dimen-
sions is a linear transformation represented by a d×d′

matrix R, which is generated by first setting each en-
try of the matrix to a value drawn from an i.i.d N(0,1)
distribution and then normalizing the columns to unit
length. Given a d-dimensional data set represented as
an n × d matrix X, where n is the number of data
points in X, the mapping X ×R results in a reduced-
dimension data set X ′.

We applied random projection to a synthetic data set
that consists of two thousand data points forming four
Gaussian clusters in a fifty-dimensional space. For this
data, we chose a random projection that reduces the
data to five dimensions1 producing data set X ′. The
EM algorithm was then applied to cluster X ′. Al-
though the real number of clusters is known, we used
the Bayesian Information Criterion (BIC) (Fraley &
Raftery, 1998) to determine the number of clusters k
because in most real applications k is unknown. In
addition, the natural number of clusters may vary in
different subspaces (Dy & Brodley, 2000).

1Our choice of five was based on the observation that
with the first five principle components EM can recover the
four clusters with over 95% accuracy.

Using the first two principle components, Figure 1
plots the original clusters and two representative ex-
amples of the clusters formed by random projection
with EM clustering (RP+EM). The number of clus-
ters chosen by RP+EM varied from run to run (in the
figure both RP+EM results have two clusters) and oc-
casionally RP+EM found all four clusters. The scat-
ter plot of the RP+EM results suggest that random
projection may distort the underlying structure of the
data and result in unstable clustering performance. To
some degree this contradicts Dasgupta’s results (2000),
which show that random projection preserves the sepa-
ration among Gaussian clusters. However, Dasgupta’s
results were averaged across many runs and when the
projected dimension was small, the results tended to
have large variance. An alternative explanation is that
for this data set, random projection needs more than
five dimensions to preserve the structure. There have
been results (Achlioptas, 2001) about the required di-
mensionality for a random projection to effectively pre-
serve distance. However, to our knowledge it is still an
open question how to choose the dimensionality for
a random projection in order to preserve separation
among clusters in general clustering applications.

On viewing these results, the first conclusion one
makes is that for this data set an individual run of
RP+EM (with dimensionality of five) produces subop-
timal results. Further inspection reveals that different
runs may uncover different parts of the structure in the
data that complement one another. From Figure 1(b)
and (c) we observe that each run uncovered some par-
tial, but different, structure in the data. This suggests
that the combination of multiple runs of RP+EM may
lead to better results – we may be able to reveal the
true structure of the data even without the knowledge
of how to choose a proper dimensionality to preserve
the original cluster structure.
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Figure 2. The histogram of two groups of similarity values.
The left group consists of the Pij values for pairs of points
from different clusters. The right group consists of the Pij
values for pairs of points from the same cluster.

2.2. Multiple Random Projections

We combine the results of multiple runs of RP+EM
with a two-step process. First, we aggregate the clus-
tering results into a matrix that measures the “simi-
larity” between each pair of data points. Then an ag-
glomerative clustering algorithm is applied to produce
the final clusters. We discuss these steps below.

Aggregating multiple clustering results: For
each run of random projection, EM generates a prob-
abilistic model θ of a mixture of k Gaussians2 in the
projected d′-dimensional space. For data point i, the
soft clustering results P (l|i, θ), l = 1, . . . , k are given,
representing the probability that the point belongs to
each cluster under the model θ. We define P θij as the
probability of data point i and j belonging to the same
cluster under model θ and it can be calculated as:

P θij =
k∑
l=1

P (l|i, θ)× P (l|j, θ)

To aggregate multiple clustering results, the values of
P θij are averaged across n runs to obtain Pij , an “esti-
mate” of the probability that data point i and j belong
to the same cluster. This forms a “similarity” matrix.
We expect the Pij values to be large when data point i
and j are from the same natural cluster and small oth-
erwise. To test our conjecture, we performed thirty3

runs of RP+EM on the synthetic data set and sepa-
rated the aggregated Pij values into two groups based
on if data point i and j are from the same cluster.
Figure 2 shows the histograms of both groups of Pij
values. It can be seen that the distributions of the two

2Note that k may vary from run to run.
3This is an arbitrary choice.

Table 1. The basic agglomerative clustering algorithm

Inputs: P is a n× n similarity matrix,
k is a desired number of clusters.

Output: a partition of n points into k clusters.

Procedure: An Agglomerative Clustering Algorithm
l = n.
For i = 1 to n

Let ci = {xi} for i = 1, . . . , n
Repeat

Find the most similar pair of clusters based
on P , say ci and cj .

Merge ci and cj and decrement l by one
Until l ≤ k
Return all nonempty clusters

groups have different means and little overlap, which
supports our conjecture. Note that if the two distri-
butions are completely separated the true clustering
structure can be easily recovered by thresholding Pij ’s.

Producing the final clusters: To produce the final
clusters from the aggregated “similarity” matrix P ,
we apply an agglomerative clustering procedure whose
basic steps are described in Table 1.

In implementing the agglomerative algorithm, we need
to define the similarity between two clusters and de-
termine the proper number of clusters for a given data
set. In our implementation, we define similarity as:

sim(ci, cj) = min
xi∈ci,xj∈cj

Pij

This is equivalent to the complete-link distance-based
agglomerative clustering algorithm (Duda & Hart,
1973). We chose this definition to ensure that when
two points have very small “similarity” value (i.e.,
small possibility of belonging together according to P )
the algorithm will not group them together.

In the experiments we observe that some data points
are not similar to any other data points. Intuitively
the decision of merging should not be based on these
points because they can be the “outliers” of the data
set. To avoid the impact of such points, we remove
them during the merging process and assign them to
the formed clusters afterward. Specifically, we calcu-
late the maximum similarity between data point i to
the other data points as Pmax(i) = maxnj=1 Pij , where
j 6= i. In the merging process, we discard 10% of the
data points with the smallest Pmax values. After merg-
ing we then assign these points to their most similar
clusters, where the similarity between a data point i
and a cluster ck is defined4 as : 1

‖ck‖

∑
xj∈ck

Pij .

4We chose to use the average instead of the minimum
to define the similarity here because the minimum measure
will be biased toward small clusters.
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Figure 3. The similarity between the closest clusters in the
merging process

To decide the cluster number k, we cannot apply
commonly used techniques such as BIC because our
method does not generate any description or model
for the clusters. To solve this problem, we propose to
continue merging until only a single cluster remains
and at each step plot the similarity between the two
clusters selected for merging. Figure 3 shows the plot
of these similarity values for the synthetic data set de-
scribed in Section 2.1. We observe a sudden drop of
the similarity when the algorithm tries to merge two
real clusters. In the experiments on other data sets,
we also observed similar trends from the plots. This
suggests that we can use the occurrence of a sudden
similarity drop as a heuristic to determine k.

Using the steps described above, we combined the re-
sults of thirty runs of RP+EM and successfully recov-
ered all four clusters from the synthetic data set with
100% accuracy.

In summary, our method consists of three steps: 1)
generate multiple clustering results using RP+EM, 2)
aggregate the results to form a “similarity” matrix,
and 3) produce final clusters based on the matrix.
Note that there are many different choices we can make
for each of the three steps. Section 4 discusses the
desirable properties for the first step and a possible
strategy for improving our approach.

3. Experimental Results

Our experiments are designed to demonstrate: 1) the
performance gain of multiple random projections over
a single random projection, and 2) that our proposed
ensemble method outperforms PCA, a traditional ap-
proach to dimensionality reduction for clustering.

Table 2. Summary of the data sets

Data set HRCT CHART EOS

#Inst. 1545 600 2398

#Class 8 6 8

Org. Dim. 183 60 20

RP Dim. 10 5 5

PCA Dim. 30 5 5

3.1. Data Sets and Parameter Settings

We chose two data sets with a relatively high dimen-
sionality compared to the number of instances (HRCT
and CHART) and one data set with a more traditional
ratio (EOS). Table 2 summarizes the data set charac-
teristics and our choice for the number of dimensions
that we used for random projection and PCA. HRCT
is a high resolution computed tomography lung image
data set with eight classes (Dy et al., 1999). CHART is
a data set of synthetically generated control chart time
series with six different types of control charts (Het-
tich & Bay, 1999). EOS is an eight-class land cover
classification data set. Although the class labels are
available for all three data sets, they are discarded in
the clustering process and only used during evaluation.

We selected the dimensionality of PCA for each data
set by requiring that 85% of the data variance be pre-
served. For the CHART and EOS data sets, we set
the dimensionality for RP to be the same as PCA in
order to have a more direct comparison. However, for
the HRCT data set, we chose a much smaller num-
ber than that chosen for PCA for computation time
reasons.

3.2. Evaluation Criteria

Evaluating clustering results is a nontrivial task. Be-
cause our method does not generate any model or de-
scription for the final clusters, internal criteria such
as log-likelihood and scatter separability (Fukunaga,
1990) can not be applied.5 Because our data sets are
labeled, we can assess the cluster quality by using mea-
sures such as conditional entropy and normalized mu-
tual information (Strehl & Ghosh, 2002). We chose
to report results for both criteria because as we ex-
plain below entropy is biased toward a large number
of clusters and normalized mutual information under
some conditions is biased toward solutions that have
the same number of clusters as there are classes.

Conditional Entropy (CE): Conditional entropy
measures the uncertainty of the class labels given a

5Such internal criteria would require calculation either
in the original or a transformed feature space. Because we
have multiple transformations there is no single “feature
space.”



clustering solution. Given m classes and k clusters, for
a particular class i ∈ [1..m] and cluster j ∈ [1..k], we
first compute pij , which is the probability that a mem-
ber of cluster j belongs to class i. The entropy of the
class labels conditioned on a particular cluster j is cal-
culated as: Ej = −

∑m
i=1 pijlog(pij). The conditional

entropy (CE) is then defined as: CE =
∑k
j=1

nj∗Ej
n

,
where nj is the size of cluster j and n is the total
number of instances.

We would like to minimize CE. Its value is 0 when
each cluster found contains instances from only a single
class. Note that we can also obtain a value of 0 if
each cluster contains a single instance. Therefore it is
clear that this criterion is biased toward larger values
of k because the probability of each cluster containing
instances from a single class increases as k increases.
Because of this bias, we use CE only when comparing
two clustering results with the same value of k.

Normalized Mutual Information(NMI): For a
detailed description of NMI see (Strehl & Ghosh,
2002). Let X be a r.v. representing the distribution of
class labels [1..m] and Y be a r.v. representing the dis-
tribution of cluster labels [1..k]. To calculate NMI be-
tween r.v.’s X and Y , we first compute the mutual in-
formation between X and Y as MI =

∑
i,j pij log(

pij
pipj

)

where pij is defined as above, pi is the probability of
class i, and pj is the probability of cluster j. Mutual
information measures the shared information between
X and Y . Note that its value is not bounded by the
same constant for all data sets. NMI normalizes it onto
the range [0,1] by: NMI = MI√

H(X)H(Y )
where H(X)

and H(Y ) denote the entropy of X and Y .

NMI attains the optimal value of 1.0 when there
is a one to one mapping between the clusters and
the classes (i.e., each cluster contains one class and
k = m). Unlike CE and other criteria such as the
RAND index (Rand, 1971), NMI is not biased by large
k (Strehl & Ghosh, 2002). However, note that if a class
is multi-modal and our clustering solution correctly re-
flects this, the value of NMI will not be 1.0.

3.3. Comparison with RP+EM

Our method is built on the conjecture that combining
multiple runs of RP+EM is better than a single run
of RP+EM or PCA+EM. In this section we present
the results of a comparison between our ensemble ap-
proach and individual runs of RP+EM.

We performed thirty runs of RP+EM to form a cluster
ensemble for each data set. Note that we force each run
of RP+EM to find a fixed number of clusters, which
is set to be the number of classes. Although this is

Table 3. Cluster ensemble versus single RP+EM

Data set HRCT CHART EOS

NMI Ens. 0.236 0.790 0.253

Sin. 0.174±0.03 0.481±0.09 0.240±0.02

CE Ens. 1.743 0.706 1.923

Sin. 1.907±0.07 1.410±0.22 1.960±0.04

not necessary (or even desirable), it lets us remove the
effect of k in evaluating the cluster results.

Table 3 reports the CE and NMI values of both the
ensemble and individual runs of RP+EM. The values
reported for RP+EM are averaged across the thirty
runs. From the table we see that the ensemble im-
proves the clustering results over its components for
all three data sets (recall CE is to be minimized and
NMI is to be maximized). The difference in perfor-
mance is the least for EOS, which we conjecture is due
to less diversity in the individual clustering results for
EOS. We explore this conjecture in Section 4.

3.4. Comparison with PCA+EM

We compare our approach to PCA with EM clustering
(of Gaussian Mixtures) in two scenarios: 1) where we
force both methods to produce the same number of
clusters, and 2) where we allow each approach to adapt
the cluster number to its clustering solution.

In our first experiment we require both methods to
form the same number of clusters. This allows us to re-
move the influence of k on the evaluation criteria. We
want to clarify that the individual runs of RP+EM still
use BIC to search for k, because this will not bias the
evaluation criteria and further because different runs
naturally require different numbers of clusters (Dy &
Brodley, 2000). Note that the “natural” number of
clusters in the data may or may not equal to the num-
ber of classes in our labeled data sets, therefore we
compare the two methods for five different values of
k. The cluster ensembles are formed by thirty runs of
RP+EM and the reported results are averaged across
five runs of each method.

Table 4 shows CE and NMI for five different values of
k. Recall that we want to maximize NMI and minimize
CE and further that NMI ranges from 0 to 1 and CE
ranges from 0 to log2(m), where m is the number of
classes. For all three data sets, our method results in
better performance as measured by both CE and NMI
except for k = 14 for the CHART data set. We observe
that the ensemble tends to have smaller variance than
PCA+EM, particularly when k is large. From these
results, we conclude that for these data sets 1) the
ensemble method produces better clusters, and 2) it is
more robust than PCA+EM.



Table 4. Results for the cluster ensemble versus PCA+EM
HRCT data set

k 8 10 12 14 16

NMI Ensem. 0.233±0.015 0.244±0.008 0.256±0.006 0.267±0.007 0.279±0.007

PCA 0.219±0.048 0.220±0.028 0.222±0.015 0.237±0.015 0.225±0.039

CE Ensem. 1.765±0.063 1.714±0.047 1.659±0.046 1.604±0.039 1.556±0.040

PCA. 1.813±0.137 1.779±0.085 1.751±0.047 1.687±0.059 1.699±0.129

CHART data set

k 6 8 10 12 14

NMI Ensem. 0.700±0.061 0.783±0.006 0.769±0.006 0.758±0.008 0.747±0.012

PCA 0.654±0.081 0.665±0.066 0.691±0.065 0.697±0.075 0.738±0.032

CE Ensem. 0.947±0.251 0.675±0.009 0.552±0.063 0.540±0.063 0.526±0.047

PCA. 1.028±0.249 0.852±0.229 0.711±0.176 0.563±0.220 0.375±0.074

EOS data set

k 8 10 12 14 16

NMI Ensem. 0.282±0.015 0.276±0.008 0.279±0.006 0.280±0.007 0.280±0.007

PCA 0.239±0.009 0.251±0.012 0.263±0.011 0.267±0.006 0.269±0.006

CE Ensem. 1.866±0.022 1.832±0.011 1.785±0.023 1.760±0.015 1.738±0.021

PCA. 1.958±0.023 1.895±0.041 1.829±0.039 1.790±0.023 1.764±0.023

Table 5. Cluster ensemble versus PCA+EM with different
k values

PCA+EM Ensemble

Dataset NMI k NMI k

HRCT 0.191 ±0.05 6.2 0.248 ±0.01 10

CHART 0.721 ±0.05 7.8 0.786 ±0.01 7.6

EOS 0.265 ±0.03 14.3 0.281 ±0.01 14.2

In our second comparison, we allow each method to
determine its own cluster number, k. To decide k, the
cluster ensemble method uses the heuristic described
in Section 2.2, and PCA+EM uses BIC. Table 5 re-
ports the average NMI and k values for each method
averaged over five runs. Because CE is biased toward a
larger number of clusters, we only use NMI in this com-
parison. From Table 5 we see that the cluster ensemble
method outperforms PCA+EM for all three data sets.
In addition, NMI for the ensemble has lower variance
than for PCA+EM. The difference is more significant
for HRCT and CHART than EOS, while HRCT and
CHART had higher original dimensionality than EOS.
From these limited experiments we conjecture that our
method is most beneficial when the original dimension-
ality is large. We want to mention that computation-
ally our method is less efficient than PCA+EM but
can be easily parallelized when time is a concern.

4. Analysis of Diversity for Cluster
Ensembles

For supervised ensemble approaches, diversity of the
base-level classifiers has proven to be a key element
in increasing classification performance (Dietterich,
2000). In the relatively new area of unsupervised en-

sembles, the impact of diversity and quality of the in-
dividual clustering solutions on the final ensemble per-
formance has not been fully understood.

To perform this analysis we follow the approach taken
by Dietterich (2000) and graph the diversity versus
quality for each pair of clustering solutions in the en-
semble. To measure diversity, we calculate the NMI
between each pair of clustering solutions. To obtain a
single quality measure for each pair, we average their
NMI values as computed between each of the two so-
lutions and the class labels from the labeled data set.
Figure 4 shows the diversity-quality diagram for each
of the three data sets. Note that when the NMI be-
tween two solutions (shown on the y axis) is zero the
diversity is maximized. In contrast, maximizing the
average NMI of each pair (shown on the x axis), maxi-
mizes their quality. Therefore we want our points to be
close to the right-hand bottom corner of each graph.
Thirty runs of RP+EM are used to form each ensem-
ble, and five ensembles are formed for each data set.
In each graph we also show the average NMI for the
five final ensemble solutions as reported in Table 5.

Each of the three data sets shows somewhat different
behavior. The left graph shows that the individual
clustering solutions for the HRCT data set are highly
diverse but have fairly low quality. For the CHART
data set (middle), we see that RP+EM formed a set of
clustering solutions with a wide range of quality and
diversity. In contrast, EOS (right) has slightly higher
quality than HRCT but much lower diversity.

In comparing the diversity/quality results to the per-
formance of the entire ensemble (indicated by the dot-
ted line in each graph), we see evidence that for an
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Figure 4. The diversity-quality diagram for three data sets.
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Figure 5. The performance of the ensemble method with different ensemble sizes.

ensemble of size thirty, high diversity leads to greater
improvements in the ensemble quality. Specifically, we
see the least improvement of the ensemble over a sin-
gle run of RP+EM for the EOS data set, which has
significantly lower diversity than the other two. On
the other hand, less improvement is obtained for the
HRCT data set in comparison with the CHART data
set, which suggests that the quality of individual clus-
tering solutions also limits the performance of a fixed-
size ensemble. To gain further insight into these issues,
we examined the impact of the ensemble size on per-
formance.

Figure 5 plots the NMI value of the ensemble’s final
clustering solution for ensemble sizes ranging from five
to fifty. The points in the graph are generated as fol-
lows. To remove the effect of k on NMI, for each en-
semble size r we force our algorithm to produce a fixed
number, k, clusters for different values of k as shown in
Table 4. The NMI values for different values of k are
then averaged to obtain a single performance measure
for each ensemble size. We repeat the above process
five times and average the results to obtain a stable
estimate for the performance measure for each r.

From Figure 5, we can see that increasing the ensem-
ble size helps only for data sets with high diversity.

For the CHART data set, We can see a clear and sta-
ble trend of performance improvement as the ensemble
size increases. For the HRCT data set, we observe a
similar but less stable trend. For the EOS data set,
the performance gain is negligible as ensemble size in-
creases.

These results suggest that the ensemble performance
is strongly influenced by both the quality and the di-
versity of the individual clustering solutions. If the in-
dividual clustering solutions have little diversity, then
not much leverage can be obtained by combining them.
The quality of the individual solutions limits the per-
formance of a fixed-size ensemble and low quality solu-
tions may cause the ensemble performance to oscillate
as the ensemble size changes.

As shown from the experimental results, random pro-
jection successfully introduced high diversity into the
clustering solutions for both HRCT and CHART data
set. This suggests that random projection can produce
diverse clustering solutions when the original dimen-
sion is high and the features are not highly redundant.6

An open question is how to improve the quality of the
individual clustering solutions. Our future work will

6If the features are highly redundant then many random
projections will lead to the same clustering.



investigate a tentative solution – evaluate each clus-
tering solution using criteria such as the log-likelihood
of the Gaussian model and select only the “good” ones
to form the ensemble.

5. Conclusional Remarks

Techniques have been investigated to produce and
combine multiple clusterings in order to achieve an im-
proved final clustering. Such methods are formally de-
fined as cluster ensemble methods by Strehl and Ghosh
(2002). Due to space limits, please refer to (Strehl &
Ghosh, 2002) for a comprehensive survey of the re-
lated work. While our work can be considered as an
extended instantiation of the general cluster ensem-
ble framework, there are significant distinctions be-
tween our work and previous studies in how we form
the original clusters, how the clusters are combined
and the core problem we are trying to solve – clus-
tering high dimensional data. We conclude here with
the major contributions of this work: 1) we examined
random projection for high dimensional data cluster-
ing and identified its instability problem, 2) we formed
a novel cluster ensemble framework based on random
projection and demonstrated its effectiveness for high
dimensional data clustering, and 3) we identified the
importance of the quality and diversity of individual
clustering solutions and illustrated their influence on
the ensemble performance with empirical results.
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