
Constructing Training Sets for Outlier Detection

Li-Ping Liu Xiaoli Z. Fern
EECS, Oregon State University
{liuli, xfern}@eecs.oregonstate.edu

Abstract

Outlier detection often works in an unsupervised manner due

to the difficulty of obtaining enough training data. Since out-

liers are rare, one has to label a very large dataset to include

enough outliers in the training set, with which classifiers

could sufficiently learn the concept of outliers. Labeling a

large training set is costly for most applications. However,

we could just label suspected instances identified by unsu-

pervised methods. In this way, the number of instances to

be labeled could be greatly reduced. Based on this idea, we

propose CISO, an algorithm Constructing training set by

Identifying Suspected Outliers. In this algorithm, instances

in a pool are first ranked by an unsupervised outlier detec-

tion algorithm. Then, suspected instances are selected and

hand-labeled, and all remaining instances receive label of in-

lier. As such, all instances in the pool are labeled and used in

the training set. We also propose Budgeted CISO (BCISO),

with which user could set a fixed budget for labeling. Exper-

iments show that both algorithms achieve good performance

compared to other methods when the same amount of label-

ing effort are used.

1 Introduction

Outlier detection[5][14], also referred to as anomaly de-
tection, is a technique of detecting patterns in data that
do not conform to the expected behavior [5]. Techniques
of outlier detection fall into three categories: detect-
ing with no prior knowledge of the data(unsupervised),
modeling both normality and abnormality(supervised),
and modeling only normality (semi-supervised) [14].
Most algorithms developed in recent years are unsuper-
vised or semi-supervised. Although supervised meth-
ods often have good performances in outlier detection
[4], their application is limited due to the difficulty of
obtaining sufficient training data.

The difficulty of constructing training datasets for
supervised outlier detection lies in the rareness of out-
liers. A training set of moderate size contains only few
examples of outliers, which is often not enough for learn-
ing the concept of outliers. To include sufficient outlier
examples, one needs to label a large training set, which
is often very costly.

Supervised outlier detection problems can be con-
sidered as imbalanced classification problems [11][13],
since outliers are usually much rarer than normal in-
stances. However, the difficulty of labeling training set
is not addressed by existing research on imbalanced clas-
sification. Most algorithms proposed for imbalanced
classification assume that a reasonable training set is
provided. Active learning [26] developed in recent years
aims at reducing the effort in labeling the training set.
In this paradigm, a classifier is first trained on an initial
training set, and then is improved with more labeled in-
stances that are selected according to various principles.
In our problem, we start with no training data at all.

Traditionally, instances in training set are all la-
beled by the expert. In the task of outlier detection,
the extreme rareness of outliers often makes this pro-
hibitive. One straightforward idea is to detect suspected
outliers and have their labels verified by an expert. All
other instances can then be used directly as inliers with-
out hand-labeling. As such, a large training set could
be constructed with only a small number of suspected
instances hand-labeled. Based on this idea, we propose
an algorithm for training set Construction by Identi-
fying Supsected Outliers (CISO) for supervised outlier
detection. In CISO, an unsupervised outlier detection
technique is first used to rank unlabeled instances in
a pool. Highly ranked instances are suspected outliers
while lower ranked instances are more likely to be nor-
mal. The next step is to find a cutting point dividing
suspected outliers and the remaining instances that are
considered normal. A good cutting point should gener-
ate a suspected set that contains all outliers and as few
inliers as possible, so that all outliers can be verified by
an expert with the least labeling effort. Based on this
intuition, our algorithm searches for a cutting point to
guarantee with high probability that all outliers are in-
cluded in the suspected set to be hand labeled. Since the
suspected set is typically much smaller than the whole
set of examples in the pool, it is thus expected that
we can obtain a large training set by manually labeling
only a small portion of the examples. Sometimes a user
might want to have control over the total labeling bud-
get. For this need, we also proposed Budgeted CISO

(BCISO), in which a labeling budget could be specified.
For both methods, strict measures are taken to

guarantee with high probability that all outliers are
included in the suspected set. Although in rare cases
a few outliers are labeled as inliers, having a large
training set still gives the trained classifier an edge in
its detection performance, since the larger training set
reduces the variance of the trained classifier.

In our method, data is given without label, and we
are attempting to construct a training set with the same
distribution as the original dataset. The objective is to
minimize the effort of hand labeling. This is different
from training set selection[23], in which instance labels
are known, and selection is for lower burden or higher
accuracy of learners.

The rest of this paper is organized as follows. In
next section, related work is reviewed. Section 3 gives
a detailed description of our method. Then, empirical
evaluation of the proposed methods is presented in
Section 4. And the last section summarizes the paper.

2 Related Work

Outlier detection has drawn much attention in recent
years. Most algorithms proposed for outlier detection
are unsupervised methods. Without labeling informa-
tion, these methods try to find instances deviating from
high-density populations. These instances are identi-
fied with different approaches, such as distance-based
approaches [17][18], density-based approaches [3][27],
clustering-based approaches [12], and information theo-
retic approaches [2], etc.. Surveys of existing algorithms
can be found in [5] and [14]. Particularly, we would like
to refer to [25], which uses isolation trees to identify
outliers from normal instances. This method has been
shown to be very effective and efficient. In our work,
this method is used to score the unlabeled instances.
Carrasquilla [4] benchmarks several algorithms, both
supervised and unsupervised, on large datasets. Its re-
sults show that supervised methods generally perform
better than unsupervised ones, which supports our idea
that outlier detection performance can be improved by
labeling some instances.

Supervised outlier detection is overlapped with im-
balanced classification [11] [13], because in most cases
only a small fraction of the whole dataset are outliers
and the inlier class and outlier class are highly imbal-
anced. To better classify imbalanced classes, differ-
ent techniques are developed, such as stratified sam-
pling [7][24][6], cost-sensitive learning [9][28] and mod-
ifying existing learning methods [1][15]. To our best
knowledge, all of the above mentioned work assumes
that a labeled training set is given.

Active learning [26] is another field related to our

work. The basic idea of active learning is to achieve
greater accuracy with fewer labeled instances. Most
active learning algorithms also assume that there exists
an initial training set, with which a learner is trained at
first. However, in our case, there is no initial training
data at all. The problem of choosing the initial set for
labeling is studied by [16]. In their method, instances
are clustered first, and instances nearest to the cluster
centers are selected and labeled. This method is for
building initial training set of active learning. In our
case, no more instances are to be added in training set
constructed. Moreover, our data is highly imbalanced
and a lot of outliers could not form clusters of their own.

3 Labeling for Supervised Outlier Detection

3.1 Problem Analysis Having sufficient outlier ex-
amples in the training set is crucial for the success of
supervised outlier detection. However, outliers are rare,
and the training set would have to be quite large in order
to contain enough outliers. Suppose 0.5% of a dataset
are outliers, then one need a training set of 20000 in-
stances to contain 100 outliers. It would be very costly
to have all these instances hand labeled. Here we define
the “labeling set” to be the set of instances that are la-
beled by hand. Traditionally, the labeling set equals to
the training set.

Since a dataset generally contains much fewer out-
liers than normal instances, one potential solution to
this problem is to focus the labeling efforts on the (sus-
pected) outliers. Specifically, if we can ensure with high
probability that all true outliers in the data are included
in the suspected set (which naturally will also contain
some normal instances), we can rather safely label the
remaining instances as inliers without requiring a hu-
man to manually label them. This allows us to obtain a
large training set by hand labeling only a small fraction
of the data, i.e. the labeling set is just the suspected
set. Based on this idea, a key question that we try to
solve in this work is how to identify the labeling set such
that it contains the most outliers and minimal number
of inliers.

Instances in a dataset can be first ranked by an
unsupervised algorithm, and those with high outlier
scores are suspected outliers. However, deciding the
ratio of suspected outliers(size of labeling set) in the
dataset is not a trivial problem. This ratio is closely
related to two factors: the outlier rate and the ranking
quality. User usually could have a rough estimation
of outlier rate but scarcely the prior knowledge of the
ranking quality. So it is not practical to have user set
the ratio directly. In this situation, the feedback of
labeling instances with high scores becomes important
for deciding the ranking quality as well as the size of

labeling set.
It should be noted that there is a possibility that

a few outliers would be excluded from labeling set and
thus mistakenly labeled as inliers. First, strict measures
can be taken to avoid such cases. Even if it happens,
the training set obtained has much larger size, which
could compensate for the labeling noise because large
training set could reduce the variance of classifiers.

3.2 Detect Suspected Outliers For this purpose,
we first create a ranking of all instances with an
unsupervised outlier detection algorithm. In our case,
we need the algorithm to output a ranking of instances
based on their likelihood of being outliers. In this work,
we use Isolation Forest [25] to create a ranking of all
unlabeled instances. Isolation Forest constructs random
trees to isolate instances in the dataset. The outlier
score of an instance is calculated as its average depth
in random trees. This algorithm has been shown to
be effective and efficient. However, user could choose
any other algorithm for their own applications. With
a ranking of instances, the following procedure is the
same.

Suppose we have a pool of n unlabeled instances,
and they are ranked as (x1, x2, · · · , xn), in decreasing
order of their outlier scores. Let’s assume that the pool
contains m outliers, where m is unknown. The task
is to decide a cutting point ns such that the first ns
instances will be hand-labeled, and remaining instances
are labeled as inliers without manual verifications. The
goal is to minimize ns while ensuring (x1, x2, · · · , xns

)
contains all outliers in the pool. The problem is how to
decide the value of ns.

To solve this problem, we make a mild assumption
that the user could provide a rough estimate of the out-
lier rate in the dataset based on their domain knowledge.
Usually, we could not expect user to give an exact value
of the outlier rate. In our method, an interval for the
outlier rate is sufficient. Suppose the interval is given
as [bl, bu], where bl and bu specify the lower and upper
bound of the outlier rate.

We also have to make a reasonable assumption on
the data and their outlier scores. One observation is, in-
stances with high rankings often have higher probability
to be outliers. In the tail of the ranking, the probabil-
ity of being outlier is almost zero. Let pi denote the
probability that the i-th ranked instance is an outlier.
Our algorithm makes the assumption that pi decreases
at least exponentially fast as i increases, i.e.

pi+1

pi
≥ pi+2

pi+1
, i = 1, 2, · · · , n− 2(3.1)

Figure 1 shows probabilities estimated on the SMTP
dataset and the HTTP dataset with pool size of 200

0 50 100 150 200

0.
0

0.
5

1.
0

position

pr
ob

ab
ili

ty

0 50 100 150 200

0.
0

0.
5

1.
0

position

pr
ob

ab
ili

ty

Figure 1: Estimated probability of being an outlier at
each position of the ranking. Above, the Ann-thyroid
dataset; below, the HTTP dataset. 200 instances are
randomly selected and ranked for 1000 times, then
ranked labels are averaged.

(see Section 4 for detailed information of datasets). It
can be seen from the figure that our assumption roughly
holds on these datasets.

Under the above assumption and given the outlier
rate interval, our algorithm incrementally determines
the proper value of ns. At first, no instances are labeled
and ns equals to 0. Starting from the top ranked
instance, each step one more instance is labeled, and ns
increases by 1, and the following three rules are checked
in order to determine when to stop.

1. If the number of labeled instances ns is less than
nbu, label more instances without checking the
remaining two rules.

2. Let ms be the total number of examples that have
been labeled as outliers. If ms are less than nbl,
label more instances without checking the third
rule.

3. Divide the labeled instances into two equal parts.
And let m1 be number of outliers in the first
ns

2 instances, and m2 be number of outliers of
the second part, nu be the number of unlabeled
instances and ε is a small constant number, then if
2num

2
2

m1ns
< ε(m1 +m2), stop labeling more instances.

We first introduce the third rule, which is the most
important stopping criterion. When ns instances has

been labeled, The average outlier rates of the first half
and the second half of ns instances are estimated as

q1 =
2m1

ns
(3.2)

q2 =
2m2

ns

respectively. The ratio of the two rates is

r =
q2
q1

=
m2

m1
.(3.3)

Since we assume that the outlier probability of the
ranked instances decreases at least exponentially fast,
the average outlier rate of next ns

2 unlabeled instances
would be at most rq2. And instances further down
in the ranking would have a further smaller outlier
rate. Therefore, the average outlier rate of all remaining
unlabeled instances, qu, would be smaller than rq2.

qu ≤ rq2 =
2m2

2

m1ns
.(3.4)

Let mu denote the estimated number of outliers in the
remaining nu unlabeled instances. Then,

mu ≤ nuqu ≤ nu
2m2

2

m1ns
.(3.5)

If the right side is bounded by

nu
2m2

2

m1ns
≤ ε(m1 +m2),(3.6)

then we have

mu ≤ nu
2m2

2

m1ns
(3.7)

≤ ε(m1 +m2),

≤ εm,

where m is the number of outliers in the pool. As
indicated in this result, under condition of (3.6), the
number of outliers in unlabeled instances would not
exceed ε of number of outliers in the whole pool, or, 1−ε
of outliers in the pool are labeled. In our experiment we
set ε as 0.01. Generally, when labeling stops, the first
ns

2 instances contain a large part of all outliers, and the
second part includes smaller number of outliers in the
long tail of the ranking.

Now let us introduce the first rule, which is used to
decide how many instances need to be labeled at first.
Based on the analysis above, we clearly need to label
more instances than just the outliers in dataset. So
one should first label as many instances as outliers in
the data without checking other rules. We use nbu as

the estimation of number of outliers in the pool. With
these instances labeled, the third rule would have a good
estimation of outlier rate.

The second rule states that we need to identify at
least nbl outliers before stop labeling. This helps to
rule out unreasonable results when too few outliers are
identified. In some cases, the ranking of instances is not
very good, and only a small portion of the top ranked
instances are true outliers. The estimation of outlier
rates and especially their ratio is not reliable. In such
cases, this rule would have expert label more instances.
User should provide a conservative value for bl, since if
it is higher than the actual outlier rate in the pool, the
algorithm would label the whole pool of instances.

Two factors might undermine the performance of
CISO. Firstly, the outlier rates q1 and q2 may not accu-
rately reflect the true probability of the outliers. This
can be solved by setting a large value of bu. When more
instances are labeled, q1 and q2 are more accurate esti-
mation of probabilities of being outliers. Secondly, when
the assumption of exponentially decreasing probability
does not hold, there would be more outliers in the tail
of ranking than estimated. However, Figure 1 shows
that even though the outlier rate does not necessarily
decrease exponentially fast as we move down the rank-
ing, it surely decreases very fast to a very small value.
So most outliers would be included in the labeling set
even when this assumption does not hold.

One interesting observation in our experiment is,
outliers with low outlier scores often lie in centers of
small outlier clusters. Although some of them have low
rankings and are labeled as inliers, they usually cause
less trouble than expected.

3.3 Budget Labeling We now consider a more prac-
tical application scenario where we are given a total
budget for labeling. In this subsection, we propose Bud-
geted CISO(BCISO), where the user specifies a labeling
budget B. That is, only B instances could be hand
labeled by the expert. The problem here is how to de-
cide the pool size with given labeling set size, which is
opposite to that of last section.

CISO cannot be directly applied here for the bud-
geted learning setting, because given a large pool of un-
labeled examples, the number of instances labeled with
CISO is variable depending on how the outliers is dis-
tributed in terms of their ranking. One observation
about CISO is that ns selected by CISO is generally
proportional to the pool size. In BCISO, we start from
a small pool and run CISO on it. If the first CISO does
not consume B (generally it is the case), the pool will
be gradually expanded, and the number of instances la-
beled will also increases correspondingly. When it it

Algorithm 1: CISO(X, bl, bu)
INPUT: X - unlabeled instance pool,

[bl, bu] - estimated outlier rate interval
OUTPUT: (X, y) - labeled training set
1: (x1, x2, · · · , xn) = Rank (X, OutlierScore(X))
2: for i = 1:n
3: query label yi of xi
4: sat.r1=(i >= nbu)
5: m = sum(y[1 : i] == 1)
6: sat.r2=(m >= nbl)
7: m1=sum(y[1 : i/2] == 1) m2 = m−m1

8: nu = n− i ns = i ε = 0.01

9: sat.r3= (nu
2m2

2

m1ns
≤ ε(m1 +m2))

10: if(sat.r1 & sat.r2 & sat.r3)
11: break
12: end if
13: end for
14: y[i+1:n]=0

reaches B, we stop adding more instances to the pool.
To achieve this goal, we will first create a small

initial pool, and apply CISO to this pool. If the budget
is not consumed, we will add k additional random
instances to the pool and run CISO again. Each time
CISO is applied to the updated pool, labeled instances
would not be labeled again. The procedure is repeated
until the entire budget is consumed.

The initial pool should be small so that ns selected
on it would be smaller than the budget, and it also
should be large enough to contain outliers. In our
algorithm, the initial size is set to 5

bl
, with which

the pool contains outliers with probability about (1 −
exp(−5)). The setting of k is flexible. Small value of k
just makes BCISO have more loops. In our algorithm,
k is set to 10.

One issue is, the last run of CISO may not terminate
when the budget is consumed. In this case, unlabeled
instances in interval [ns + 1, 1.5ns] of the ranked pool
would be discarded, where ns is selected by the last
CISO. This is because outliers that are not successfully
identified mainly reside in this interval, and these
outliers should not be used as inliers. It is also possible
that no outlier is labeled out with the budget B, which
suggests that the user should consider a larger B for
labeling.

The computational cost of CISO and BCISO is not
a problem compared with the labeling cost. CISO takes
O(n) calculations and BCISO takes O(n2) calculations
to reach a result. Since n is usually a small number
(less than 10000), both algorithm could finish running
in very short time.

Algorithm 2: BCISO(Xu, bl, bu, B)
INPUT: Xu - unlabeled instances,

[bl, bu] - estimated outlier rate interval,
B - budget

OUTPUT: (X, y) - labeled training set
1: X = sample (Xu, 5/bl), y = {−1}5/bl
2: while (TRUE)
3: (X, y) = Rank((X, y), OutlierScore(X))
4: Bc = 0
5: for (i in 1:nrow(X))
6: if(yi == −1)
7: query yi, Bc + +
8: end if
9: if(Bc >= B) goto 14 end if
10: if(all three rules satisfied) break end if
11: end for
12: X = (X, sample(Xu, k)), y = (y, {−1}k)
13: end while
14: if(any rule is NOT satisfied)
15: (X, y)=(xj , yj)j /∈{i+1:1.5i}||yj !=−1
16: end if
17: y[y==-1]=0

The pseudo code of CISO and BCISO is shown in
Algorithms 1 and 2.

3.4 Training Classifiers After the training set is
constructed, we need to train a classifier next. Out-
lier detection data usually has the problem of imbal-
anced classes, and optional measures include random
sampling, setting cost to different classes and modify-
ing existing classifiers.

One notable fact here is, there might be some
labeling noise in our training set, i.e. a few instances
labeled as inliers might actually be outliers while labels
of outliers are pure. According to our observation,
these false negatives are often near the centers of small
clusters of outliers. They are hard to be isolated and
receive low outlier scores because they are surrounded
by other outliers. Although such instances are labeled
as normal, they are more similar to outliers. It means
if they are absent in training, the trained classifiers
could make right decision at their positions. Based
on this fact, we choose random forest with under-
sampling[7] for the task of outlier classification. In this
method, major class is under-sampled to make data
more balanced. The under-sampling rate is often very
low due to the high ratio between normal instances and
outliers. So falsely labeled instances have little chance
to be sampled, and they would be absent from the
training sets of most base classifiers. These classifiers
often could make right predictions at positions of false

negatives in training data. When all base classifiers
vote, the effect of false labels can be largely canceled
out.

According to our experiments, supervised algo-
rithms significantly outperform unsupervised algo-
rithms given enough training instances.

4 Empirical Results

In this section, we empirically show that CISO and
BCISO could build large training sets with low labeling
noise, and the training set could greatly improve classi-
fier performance. We conduct two experiments for each
dataset. The first experiment shows that most outliers
are indeed labeled out. The second experiment com-
pares performances of different outlier detecting meth-
ods and the results show that our methods outperforms
other methods in general.

4.1 Experimental Setup Six datasets are used to
evaluated all methods in comparison. Information of
these datasets is shown in Table 1. The HTTP dataset
and the SMTP dataset are two subsets of the KDD CUP
99 network intrusion data. HTTP and SMTP connec-
tions are taken out to form these two datasets. Covtype,
Shuttle, Ann-thyroid are from UCI repository1. Mam-
mography is a dataset of medical tests2. Since Isola-
tion Forest can only handle numeric features, binomial
features are removed and multinomial features are con-
verted into numeric features for all datasets.

For each dataset, we run 100 random experiments
and all results are averaged. In each random run, each
dataset is randomly split into three folds. One third
is used as training data, since only a small number
of instances is further chosen from training data. The
instances in training data are labeled only with queries.
The remaining two thirds are used as testing data, which
could give a better evaluation of different algorithms.

In each run, CISO and BCISO randomly draw
unlabeled instances from the training data. Both
methods need an outlier rate interval on the given
dataset. We assume that the user could provide a
rough percentage of outliers, which is usually estimated
with domain knowledge. In our experiment, we try to
make it as reasonable as possible. For each dataset,
we first calculate the true outlier rate on the training
data. Then we set the upper bound of the interval as
below. If the actual outlier rate is smaller than 1%,
we double it and round it to percentage, otherwise,
we add 1% to the actual outlier rate and round it to
percentage. The lower bound the interval is set as 1

4 of

1http://archive.ics.uci.edu/ml/
2Thanks to Prof. Nitesh V. Chawla for providing this dataset

the upper bound. For example, the interval for HTTP
dataset is set as [0.25%, 1%], and it is set as [0.5%, 2%]
for SMTP dataset. As our analysis before, our method
is not sensitive to interval setting.

The baseline in comparison is RAND method. In
each run, a set of instances is randomly selected from
training data. All these instances are manually labeled
and form training set. This is what we traditionally do.

In CISO, the number of instances for labeling could
not be controlled exactly. So we run CISO first, and n̄s
is the average number of instances labeled in all runs.
Then the BCISO and RAND methods all use n̄s as their
labeling budget. In this way, we can include CISO in
comparison with different methods. We first compare
the training set constructed by these three methods.
Then, classification performances on training sets are
compared, and the performance of the unsupervised
method is also included. The R implementation of
Random Forest 3 is used as classifier. We set all
parameters to their default values except the sampling
size. Sample sizes for outlier class and inlier class are
both set to be the number of outliers in the training set.

We evaluated the detection performances of all al-
gorithms with Area Under Precision-Recall Curve(AU-
PRC). In many previous studies, outlier detection per-
formance has been evaluated by AUC(Area Under ROC
Curve) [22] [20][25]. However, when data is highly
skewed, AU-PRC is more informative than ROC in eval-
uating performances[8]. With Isolation Forest, AUC
value on Covtype dataset is 0.88, which seems to be
a good value. However, the outliers detected by Isola-
tion Forest have many normal instances mixed in, and
significant improvement can be expected. The AU-PRC
value for such a performance is 0.055, and it could be
improved to 0.91 by supervised method. In this ex-
ample, AU-PRC value gives people better sense of per-
formances. Calculation of AU-PRC involves the false
negative value, which is often the key focus of user’s
concern. We often care more about purity of outliers de-
tected. Take medical test for example, if some instances
are predicted as outliers, more medical tests need to be
done on them to find out which are true outliers. More
false negatives mean more further tests. In ROC evalua-
tion, the true negative value instead of the false negative
value plays an important role. However, true negative
value is often less important since we often put much
more attention on suspected cases rather than normal
cases. In this sense, AU-PRC is a more reasonable eval-
uation measure than AUC.

3http://cran.r-project.org/web/packages/randomForest/index.html

Table 1: Information of six datasets

datasets instances dimension outlier class outliers
HTTP 623091 25 attack 4045 (0.65%)
SMTP 96554 27 attack 1183 (1.2%)

Covtype 286048 11 class 4 vs. class 2 2747 (0.96%)
Mammography 11180 7 class 1 260 (2.3%)

Shuttle 58000 10 class 2, 3, 5, 6, 7 3511 (6.1%)
Ann-thyroid 7200 7 class 1 166 (2.3%)

Table 2: Training set for HTTP dataset

B 264 485 801 973

CISO

n 4000 6000 8000 10000

ns
264.2 484.9 801.4 973.3
±180.3 ±267.7 ±326.7 ±352.9

m
25.7 38.8 51.9 64.5
±4.6 ±5.6 ±6.3 ±7.2

ms

m

87.2 90.8 96.6 98.3
±17.7 ±17.3 ±11.6 ±7.7

BCISO

n
3959.1 5242.4 7802.6 9386
±1981 ±2228 ±3226 ±3598

m
25.9 34.8 51.4 63.1
±12.6 ±15 ±22.3 ±24.9

ms

m

96.3 98.2 99.3 99.9
±8.5 ±5.8 ±2.9 ±0.3

RAND
mr

1.5 3 5 6.7
±1.3 ±1.8 ±2.1 ±2.5

v 25 5 1 0

Table 3: Training set for SMTP dataset

B 56 89 128 155

CISO

n 2000 3000 4000 5000

ns
56.4 89.4 127.8 155
±14.8 ±24.4 ±37.7 ±33.6

m
24.8 37 49.6 61.9
±4.7 ±5.5 ±6.6 ±7.1

ms

m

99.3 99.4 99.4 99.3
±1.7 ±1.3 ±1.1 ±1.1

BCISO

n
1900.4 2896.1 4027.2 4547.7
±376.1 ±680.9 ±848.7 ±1168

m
23.7 35.6 50.1 56.8
±3.7 ±8.3 ±9.3 ±14

ms

m

99.5 98.8 99.3 99.5
±1.4 ±2.8 ±1 ±1

RAND
mr

0.7 1 1.8 2
±0.9 ±0.9 ±1.5 ±1.3

v 51 35 21 13

Table 4: Training set for Covtype dataset

B 580 808 1154 1468

CISO

n 1000 1500 2000 2500

ns
580.2 808 1153.7 1467.9
±237.2 ±227 ±308.4 ±344.3

m
9.4 14.3 19.2 24
±3.8 ±4.3 ±5 ±5.4

ms

m

98.4 98.7 99.2 99.6
±6.2 ±6.9 ±2.7 ±1.4

BCISO

n
1058.5 1289.8 1791 2378.5
±248.1 ±318.1 ±428.8 ±509.1

m
10.2 13.4 17.3 23.9
±4.2 ±5.4 ±6.9 ±7.8

ms

m

99.3 99.8 99.5 99.5
±3.4 ±1 ±1.7 ±1.7

RAND
mr

5.5 7.8 10.7 14.2
±2.1 ±2.8 ±3.4 ±3.5

v 0 0 0 0

Table 5: Training set for Mammography dataset

B 420 591 712 844

CISO

n 800 1000 1200 1400

ns
419.6 590.8 712.1 844.2
±179.3 ±194.9 ±213.5 ±214.7

m
18.3 22.7 27.4 32.1
±3.9 ±4.4 ±4.7 ±5.2

ms

m

88.9 93.3 93.9 94.4
±16 ±11.1 ±9.1 ±7.8

BCISO

n
709.8 874.4 1022 1199.8
±178.8 ±180.4 ±159.9 ±219.6

m
17.9 21 25.1 28.8
±5.4 ±6 ±5.9 ±7.3

ms

m

95.7 96.7 96.7 97.7
±6.1 ±3.7 ±3.9 ±3.1

RAND
mr

9.9 13.3 16.8 19.1
±3.1 ±3.4 ±4.3 ±4.1

v 0 0 0 0

Table 6: Training set for Shuttle dataset

B 47 62 79 92

CISO

n 300 400 500 600

ns
47.1 62.2 78.7 91.5
±14.5 ±14.5 ±14.2 ±15.4

m
18.4 24.3 30.8 36.9
±3.8 ±4.6 ±5.2 ±5.4

ms

m

99 98.9 99.3 99
±2.2 ±1.9 ±1.4 ±1.5

BCISO

n
325.3 381.8 476 525.3
±62.7 ±80.5 ±84.9 ±127.2

m
19.9 24.4 30.2 33.9
±2.8 ±3.6 ±4.6 ±6

ms

m

98.2 98.9 98.8 98.8
±3 ±2.1 ±2.1 ±1.8

RAND
mr

3.1 3.6 4.8 5.6
±1.6 ±1.8 ±2.2 ±2.1

v 3 2 1 0

4.2 Constructing Training Sets In this subsec-
tion, training sets constructed by different methods are
shown. In this experiment, we investigate labeling effi-
ciency and outlier recall in the labeling set for our meth-
ods. The size of the training set constructed and the
number of outliers included are compared between the
three methods. All results are averaged over 100 runs.

Table 2–6 show information about the training sets
constructed by the three methods for different datasets.
In each table, the first row, B, is the number of
instances labeled in BCISO and RAND. It is also the
average number of instances manually labeled in CISO
with different pool sizes. The size of the training set
constructed by RAND is also B. For CISO method, the
pool size n, the number of instances labeled ns and the
actual number of outliers in training set m are shown.
We also include in table the percentage of outliers which
are labeled out ms

m , which indicates how much labeling
noise is in training set. For BCISO method, we have
shown the same values as CISO except ns. For RAND
method, the first row shows mr, the number of positive
instances included in training set. Sometimes, there are
no outliers in RAND training sets and these training
sets are invalid for training. Percentage of invalid
training sets in 100 runs, denoted as v, is reported in the
second row of RAND results. Mean values and standard
deviations are given for values averaged.

From the results we could see that CISO and BCISO
could build a much larger training set than labeling
set. On the two datasets, HTTP, SMTP, the training
sets built are more than ten times larger than labeling
sets. On Shuttle dataset and Ann-thyroid dataset,

Table 7: Training set for Ann-thyroid dataset

B 154 205 243 278

CISO

n 800 1000 1200 1400

ns
153.8 204.8 243.3 277.6
±60.3 ±60.1 ±61.7 ±72.3

m
19.3 23.9 28.9 33.2
±3.8 ±4.1 ±4.7 ±4.6

ms

m

96.8 99.1 99.3 99.2
±8.7 ±3.6 ±1.9 ±1.8

BCISO

n
806.4 923.6 1019.9 1215
±207.5 ±279.2 ±253.7 ±316.1

m
19.6 23 25.2 29.6
±5 ±5.9 ±7.1 ±7.9

ms

m

98.9 99.1 99.6 99.5
±2.6 ±2 ±1.1 ±1.2

RAND
mr

3.6 4.3 5.5 6.1
±1.7 ±2 ±2.2 ±2.3

v 4 2 0 0

the training sets are about five times of the labeling
sets. On the other two datasets, they perform not as
good, but they still save much effort of labeling those
instances that are quite likely to be normal. The ratio
between sizes of the labeling set and the training set
depends on the outlier rate of dataset and the ranking
of instances. If the dataset has a very low outlier
rate, which is often the case, a small labeling set could
contain all outliers. The ranking of instances is also very
important. If most outliers have high rankings, CISO
and BCISO would stop early and have less instances
labeled. HTTP dataset and SMTP dataset have low
outlier rates, and Isolation Forest has good performance
on them4, thus the labeling set is much smaller than
training set. Although Covtype dataset also has low
outlier rate, the instance ranking by Isolation Forest has
a quite low AU-PRC score, and outliers are distributed
in a long tail in the ranking. More instances need to be
labeled to include most outliers. From the results of the
rest three datasets, we can also see similar effect of the
outlier rate and the quality of initial ranking.

For all datasets except HTTP, we can see most
outliers are included in the CISO training set. In the
ranking of instances from HTTP dataset, outliers have
long tail in ranking and some of them are not included
the labeling set. In BCISO training sets, only a few
outliers are used as normal instances, which supports
our idea of discarding some instances in the interval
after the labeling set. From these tables, we could see
in five datasets approximately 99% outliers are labeled
out. For different pools sampled, rankings of outliers

4The performance of Isolation Forest is shown in Section 4.3

have large variances, which makes CISO have large
variance on sizes of labeling sets. And similarly, BCISO
has large variance on sizes of training sets constructed.
Nevertheless, such variances do not have much influence
on classification performance.

For the RAND method, the training set constructed
has the same size as the labeling set, therefore, the
training set constructed by RAND is much smaller than
those of CISO and BCISO. When it labels the same
number of instances as CISO and BCISO, no outliers are
selected in some runs and the training set is invalid for
later training. This happens on the HTTP dataset and
the SMTP dataset, both of which have low outlier rates.
Even though in other runs small number of outliers are
labeled out, they are still not sufficient for training.

4.3 Detection Performance In this section, train-
ing sets constructed with different methods are evalu-
ated with classification performance. The results shown
in Table 8–13 are AU-PRC values with different num-
ber of labeled instances. Note that, AU-PRC values of
the RAND method are averaged on only valid training
sets. The row denoted as UNSUP shows performances
of Isolation Forest.

We can see CISO and BCISO outperforms other
methods in general. Compared with RAND, AU-PRC
values of CISO and BCISO are significantly higher. Al-
though some training sets built by the two methods have
labeling noise, they have much larger sizes and classifier
trained on them achieve better performance in classifica-
tion. Compared with Isolation Forest, CISO and BCISO
make improvement on all six datasets. On HTTP,
Covtype, Mammography and Ann-thyroid datasets, the
improvements are significant. On SMTP and Shuttle
datasets, improvements are minor, since performance of
unsupervised method is already very high. However,
such improvements are still of significance if there are
large quantity of testing instances.

The difference between CISO and BCISO is insignif-
icant, since they generally build similar training sets.
When the pool size is small, there are more noises in
CISO training set, and its performance is a little lower
than BCISO. When the pool size is large, instances dis-
carded by BCISO have some effect, and the performance
on the CISO training set becomes higher than that of
BCISO. This can be seen from results on HTTP and
Ann-thyroid datasets.

The RAND method is better than unsupervised
learning method on HTTP, Covtype, Mammography
and Ann-thyroid datasets, when performance of Isola-
tion Forest is not good. On the other two datasets,
its performances finally catch up with increasing size of
training sets. Though the RAND method could over-

take unsupervised method given enough training data,
it would need much more labeling efforts.

5 Summary and Future Work

In most outlier detection applications, outliers are very
rare in the data. Due to the labeling cost, training
sets constructed in traditional ways tend to contain
insufficient outliers for training. In this work, we
present the CISO algorithm, which constructs training
sets for outlier detection problems with greatly reduced
labeling efforts. With a unsupervised outlier detection
algorithm, instances are first ranked according to their
outlier scores. Based on the ranking, only suspected
outliers are labeled. The instances with high rankings
are hand-labeled and those with low rankings receives
the label of inlier. As a key novelty of the algorithm, we
design strict measures to guarantee that most outliers
are selected to be hand-labeled. With our method,
one can construct large training sets by only hand
labeling a small portion of instances. Experiments
show that the training set constructed by CISO has
large size and low labeling noise. Experiments also
show that the CISO training sets typically lead to
classifiers that significantly outperform classifiers built
with traditionally labeled training set.

We also proposed Budgeted CISO (BCISO), with
which user could set a labeling budget. In this method,
new instances are incrementally added to the instance
pool of CISO. New added instances are labeled if they
fall in the suspected interval of ranking. After the la-
beling budget is reached, unlabeled suspected instances
are discarded. BCISO achieves similar performance as
CISO in the experiments.

In the future, we would like to improve the ranking
of the instances by combining different outlier detection
algorithms. Another direction might be incorporating
outlier labeling into outlier detection algorithm and
making it actively pose queries.

Acknowledgment

This work is supported by NSF Award 1055113. Thanks
to members of CAMEL group for their suggestions.

Table 8: Performance Comparison on HTTP dataset

ns 264 485 801 973
UNSUP 0.62±0.05 0.62±0.047 0.62±0.048 0.62±0.051
CISO 0.953±0.127 0.952±0.133 0.99±0.055 0.994±0.032

BCISO 0.991±0.042 0.998±0.001 0.998±0.004 0.99±0.057
RAND 0.617±0.202 0.76±0.24 0.876±0.183 0.93±0.14

Table 9: Performance Comparison on SMTP dataset

ns 56 89 128 155
UNSUP 0.985±0.004 0.985±0.005 0.985±0.004 0.985±0.004
CISO 0.991±0.008 0.992±0.002 0.993±0.003 0.993±0.002

BCISO 0.991±0.004 0.992±0.004 0.993±0.002 0.993±0.002
RAND 0.96±0.025 0.936±0.113 0.966±0.021 0.964±0.031

Table 10: Performance Comparison on Covtype dataset

ns 580 808 1154 1468
UNSUP 0.055±0.015 0.055±0.014 0.055±0.014 0.055±0.017
CISO 0.809±0.121 0.869±0.082 0.897±0.043 0.909±0.03

BCISO 0.822±0.134 0.862±0.075 0.881±0.069 0.907±0.046
RAND 0.726±0.164 0.797±0.101 0.842±0.075 0.879±0.051

Table 11: Performance Comparison on Mammography dataset

ns 420 591 712 844
UNSUP 0.205±0.038 0.205±0.036 0.205±0.038 0.205±0.043
CISO 0.573±0.042 0.582±0.04 0.589±0.034 0.596±0.036

BCISO 0.575±0.041 0.572±0.038 0.585±0.034 0.596±0.034
RAND 0.541±0.074 0.553±0.044 0.572±0.046 0.574±0.035

Table 12: Performance Comparison on Shuttle dataset

ns 47 62 79 92
UNSUP 0.94±0.015 0.94±0.014 0.94±0.015 0.94±0.018
CISO 0.972±0.005 0.975±0.007 0.977±0.007 0.979±0.008

CISOB 0.972±0.006 0.975±0.007 0.975±0.008 0.978±0.008
RAND 0.914±0.071 0.921±0.067 0.937±0.083 0.944±0.049

Table 13: Performance Comparison on Ann-thyroid dataset

ns 154 205 243 278
UNSUP 0.519±0.073 0.519±0.075 0.519±0.07 0.519±0.076
CISO 0.942±0.024 0.95±0.018 0.953±0.017 0.957±0.015

CISOB 0.947±0.018 0.951±0.018 0.952±0.017 0.956±0.017
RAND 0.9±0.048 0.913±0.035 0.922±0.031 0.922±0.03

References

[1] R. Barandela, J. S. Sánchezb, V. Garćıa, E. Rangel.
Strategies for learning in class imbalance problems.
Pattern Recognition, 36(2003), pp. 849-851.

[2] C. Böhm, K. Haegler, N. S. Müller and C. Plant.
CoCo: coding cost for parameter-free outlier detection.
Proceedings of ACM Knowledge Discovery and Data
Mining, (2009), pp. 85–126.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J.
Sander. LOF: identifying density-based local outliers.
ACM SIGMOD Record, 29(2)(2000), pp. 93–104.

[4] U. Carrasquilla. Benchmarking algorithms for detecting
anomalies in large datasets. MeasureIT, Nov.(2010),
pp. 1–16.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection : a survey. ACM Computing Surveys,
41(3)(2009), Article 15.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer. SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16(2002), pp. 321-357.

[7] C. Chen, A. Liaw, and L. Breiman. Using random
forest to learn imbalanced data. Tech. Report 666,
Department of Statistics, UC Berkeley, (2004).

[8] J. Davis and M. Goadrich. The relationship between
precision-recall and ROC curves. Proceedings of Inter-
national Conference on Machine Learning, (2006), pp.
233–240.

[9] C. Elkan. The foundations of cost-sensitive learning.
Proceedings of International Joint Conferences on Ar-
tificial Intelligence, (2001), pp. 973–978.

[10] J. Gao, P.-N. Tan. Converting output scores from
outlier detection algorithms into probability estimates.
Proceedings of IEEE International Conference on Data
Mining, (2006) pp. 212–221.

[11] V. Garćıa, J. S. Sánchez, R. A. Mollineda, R. Alejo, and
J. M. Sotoca. The class imbalance problem in pattern
classification and learning. Data Engineering, (2007),
pp. 283–291.

[12] Z. He, X. Xu, and S. Deng. Discovering cluster-
based local outliers. Pattern Recognition Letters, 24(9-
10)(2003), pp. 1641-1650.

[13] H. He and E. A. Garcia. Learning from imbalanced
data. IEEE Transactions on Knowledge and Data En-
gineering, 21(9)(2009), pp. 574–584.

[14] V. Hodge and J. Austin. A survey of outlier de-
tection methodologies. Artificial Intelligence Review,
22(2)(2004), pp. 85–126.

[15] X. Hong, S. Chen, and C.J. Harris. A kernel-based
two-class classifier for imbalanced data sets. IEEE
Transactions on Neural Networks, 18(1)(2007), pp. 28–
41.

[16] J. Kang, K. R. Ryu and H.-C. Kwon. Using cluster-
based sampling to select initial training set for active
learning in text classification. Advances in Knowledge
Discovery and Data Mining, 3056(2004), pp. 384–388.

[17] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. Proceedings
of International Conference on Very Large Data Bases,
(1998), pp. 392-403.

[18] E. M. Knorr and R. T. Ng. Finding intensional knowl-
edge of distance-based outliers. Proceedings of Interna-
tional Conference on Very Large Data Bases, (1999),
pp. 211–222.

[19] H.-P. Kriegel, M. Schubert and A. Zimek. Angle-based
outlier detection in high-dimensional data. Proceed-
ings of ACM Knowledge Discovery and Data Mining,
(2008), pp. 444–452.

[20] H.-P. Kriegel, P. Kröger, E. Schubert and A. Zimek.
LoOP: local outlier probabilities. In Proceedings of
ACM Conference on Information and Knowledge Man-
agement, (2009), pp. 1649–1652.

[21] H.-P. Kriegel, P. Kröger, E. Schubert and A. Zimek.
Interpreting and unifying outlier scores. In Proceedings
of SIAM International Conference on Data Mining,
(2011), pp. 1324.

[22] A. Lazarevic, V. Kumar. Feature bagging for outlier
detection. Proceedings of ACM Knowledge Discovery
and Data Mining, (2005), pp. 157–166.

[23] H. Liu, H. Motoda. On issues of instance selection.
Data Mining and Knowledge Discovery, 6(2002), pp.
115-130.

[24] X.-Y. Liu and J. Wu and Z.-H. Zhou. Exploratory
under-sampling for class-imbalance learning. Proceed-
ings of IEEE International Conference on Data Mining,
(2006), pp. 965–969.

[25] F. T. Liu, K. M. Ting and Z.-H. Zhou. Isolation forest.
Proceedings of IEEE International Conference on Data
Mining, (2008), pp. 413–422.

[26] B. Settles. Active learning literature survey. Tech. Re-
port 1648, University of WisconsinMadison, (2009).

[27] J. Tang, Z. Chen, and A. Fu, and D. Cheung. Enhanc-
ing effectiveness of outlier detections for low density
patterns. Proceedings of Pacific-Asia Knowledge Dis-
covery and Data Mining, (2002), pp. 535–548.

[28] K. M. Ting. An instance-weighting method to induce
cost-sensitive trees. IEEE Transactions on Knowledge
and Data Engineering, 14(3)(2002), pp. 659–665.

[29] X. Yang, L. J. Latecki and D. Pokrajac. Outlier detec-
tion with globally optimal exemplar-based GMM. Pro-
ceedings of SIAM International Conference on Data
Mining, (2009), pp. 145–154.

