
Gender Differences in End-User Debugging, Revisited:

What the Miners Found

Valentina Grigoreanu*, Laura Beckwith*, Xiaoli Fern*, Sherry Yang†,

Chaitanya Komireddy*, Vaishnavi Narayanan*, Curtis Cook*, Margaret Burnett*

*Oregon State University

Corvallis, Oregon

{grigorev,beckwith,xfern,komirech,narayava,cook,burnett}@eecs.orst.edu

†Oregon Institute of Technology

Klamath Falls, Oregon

Sherry.Yang@oit.edu

Abstract

We have been working to uncover gender differences

in the ways males and females problem solve in end-user

programming situations, and have discovered differences

in males’ versus females’ use of several debugging

features. Still, because this line of investigation is new,

knowing exactly what to look for is difficult and important

information could escape our notice. We therefore

decided to bring data mining techniques to bear on our

data, with two aims: primarily, to expand what is known

about how males versus females make use of end-user

debugging features, and secondarily, to find out whether

data mining could bring new understanding to this

research, given that we had already studied the data

manually using qualitative and quantitative methods. The

results suggested several new hypotheses in how males

versus females go about end-user debugging tasks, the

factors that play into their choices, and how their choices

are associated with success.

1. Introduction

Although there has been a fairly wide interest in

gender differences in computing professions and

education, as well as in gaming, there has not been much

research on how gender differences
1

interact with end

users’ use of software features, a research area we have

begun to pursue which we term gender HCI. Our

particular focus is on questions related to end-user

software development. Our goal is to learn how to design

end-user programming environments such that they

support end-user programmers of both genders.

Most of our work so far in this area has followed a

theory-driven approach, in which theories from

1
While individual differences, such as experience, cognitive style,

and spatial ability, are likely to vary more than differences between

gender groups, research from several domains has shown gender

differences that are relevant to computer usage [4, 10, 16].

psychology, education, and HCI have been used to

generate hypotheses which have then been investigated

via empirical studies. However, a disadvantage in

deriving empirical hypotheses from only established

theories is that these theories do not take into account the

specific needs and issues that arise in end-user

programming. Research situations such as this are often

referred to as “ill-structured” problems [22]. Such

problems contain uncertainty about which concepts, rules,

and principles are pertinent to the problem. Further, the

“best” solutions to ill-structured problems depend on the

priorities underlying the situation. In such problems, in

addition to hypothesis testing and application, there is

also the need for hypothesis generation. Such problems

are candidates for ultimately deriving new theories from

data and patterns.

Toward this aim, we have previously used manual

qualitative analysis techniques [23], inspecting data on

software feature usage in search of useful patterns leading

to hypotheses. Although the results of these efforts have

been fruitful, still, as humans we are fallible, especially

given large amounts of detailed data. We suspected that

there may be important information that we were

overlooking. Therefore, we employed a methodology

change: turning to data mining techniques to find feature

usage patterns that we may have missed.

In this paper we report the results of

revisiting data we had already analyzed,

but this time using a data mining approach.

Using this approach, we focus on gender

differences in how features are used, with the aim of

gaining new insights into our previous reports of when

and how much.

Our aim was to derive new hypotheses about

females’ and males’ strategies, adding to the growing

foundation for understanding the gender differences in

end-user programming situations—by “listening” to the

participants, through their data, from the ground up.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

2. Background and Related Work

We began our gender HCI research by generating

hypotheses [3] from relevant theoretical work from other

domains, including self-efficacy theory [2], educational

theories such as minimalist learning theory [11], and the

model of attention investment [8]. Several of these

hypotheses also came from empirical results from others’

investigations into gender differences in educational,

work, and entertainment settings. We followed up on

some of these hypotheses by conducting empirical studies

of these gender differences, including both qualitative

(e.g., [5]) and quantitative [4, 6] results. Many of our

findings have related self-efficacy to the way females

interact with software. Self-efficacy is a form of

confidence in one’s ability, specific to the task at hand

[2]. Gender differences regarding computer related

confidence have been widely studied, revealing that

females (both computer science majors and end users)

have lower self-confidence than males in their computer-

related abilities [7, 10, 14, 16]. Previous work also found

that tinkering with features can be helpful to both

females’ and males’ success, but that males sometimes

overdo it, which can interfere with their success [6].

In this paper we apply data mining to uncover

additional patterns of interest. Data mining, also known as

knowledge discovery in databases (KDD), is typically

used to find hidden patterns in data to help understand

data and make predictions about future behavior. In this

study, we apply sequential pattern mining [1] to our HCI

data.

Sequential Pattern Mining was first introduced in the

context of retail data analysis for identifying customers’

buying habits [1] and finding telecommunication network

alarm patterns [15, 17]. It has since been successfully

applied to many domains including some HCI related

applications, such as web access pattern mining for

finding effective logical structure for web spaces [19] and

automatic web personalization [18], mining Windows

processes data to detect unauthorized computer users [12],

and mining user-computer interaction patterns for finding

functional usage scenarios of legacy software [13].

Most work on applying data mining techniques to

HCI data has focused on finding characteristic patterns of

individual users [12, 18] or finding patterns that are

common to the entire population [13, 19]. In contrast, in

this study we are not interested in these two types of

patterns. Instead, our research goal requires us to find

patterns that are linked to subgroups of users, i.e., female

users and male users. Another somewhat unusual aspect

of our work is that we use the found patterns to generate

gender-related hypotheses. To our knowledge, data

mining has not been used before to generate hypotheses

from HCI data. In particular, it has not previously been

used to find gender differences in females’ and males’

interactions with software.

3. The Data and Environment

For this type of purpose, it is acceptable to mine from

previous data, so we used data from one of our earlier

studies [6]. The data was collected from 39 participants

Figure 1. The user notices an incorrect value in Course_Avg—the value is obviously too low—and places an X-
mark in the cell. As a result of this X and the checkmark in Exam_Avg, eight cells are highlighted as being
possible sources of the incorrect value, with the darker shaded cells deemed more likely than others.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

who used the “High-Support Environment” in our

research prototype. The environment provided a number

of features to participants who might feel in need of extra

help. These features are detailed in [6]. The participants’

task was to find and fix errors in two spreadsheets. Prior

to the task, the participants were introduced through a

tutorial to the environment features designed to aid in

debugging.

The debugging features present were part of

WYSIWYT (“What You See Is What You Test”).

WYSIWYT is a collection of testing and debugging

features that allow users to incrementally “check off”

(Checkmark) or “X out” (X-mark) values that are correct

or incorrect, respectively [9]. Cells initially have red

borders, indicating that they are untested. The more a cell

formula’s subexpressions are covered by tests (checked-

off values), the more blue its border becomes.

The environment also includes arrows, which

participants can toggle on and off on a per-cell (or even

per-arrow) basis. Arrows serve two purposes: First, they

explicitly depict the dataflow dependencies between the

cells and, when cells’ formulas are open, even between

subexpressions in the related cells. Second, arrows’

coloring reflect WYSIWYT “testedness” status at a finer

level of detail, following the same color scheme as the

borders. A user can thus look for red arrows to find cell

dependencies that still need to be tested. Figure 1 shows

an example of these WYSIWYT features that were

available to the participants.

Also present in the environment was the “Help Me

Test” (HMT) feature. Sometimes it can be difficult to find

test values that will cover the untested logic in a

collection of related formulas, and HMT tries to find

inputs that will lead to coverage of untested logic in the

spreadsheet, upon which users can then make testing

decisions.

Each of these features is supported through the

Surprise-Explain-Reward strategy [24]. This strategy

relies on a user’s curiosity about features in the

environment. If a user becomes curious about a feature,

the user can seek out explanations of the feature via tool

tips. The aim of the strategy is that, if the user follows up

as advised in the explanation, rewards will ensue.

Participants’ actions were recorded in user action log

files. A user action is defined as a participant’s use of a

debugging feature. The log files contained detailed

information about every user action, including a time

stamp for when the action was taken, on which cell it

operated, and various related parameters. Here is an

excerpt of a log file:

15:43:47, Tooltip Showing, CELL31567926-2332 …

15:44:12, Checkmark, CELL31567926-2342 …

15:44:57, Checkmark, CELL31567926-2332 …

In addition to the log files, we also collected

information on participants’ task success, background

information, and pre-task self-efficacy. Only the log files

were used in pattern mining. The additional information

was used to help analyze the patterns we found.

4. The Pattern Mining Process

In this study, we applied sequential pattern mining to

our log files to search for potentially interesting patterns.

To formulate the sequential pattern mining problem,

we considered each user action as an event. Since we are

most interested in how participants used features, we

abstracted away detailed contextual information that

distracted from this goal (such as the specific cell on

which the features were being used, or the exact time of

the actions). This abstraction transformed the data into

sequences of events. For example, the log excerpt in the

previous section translated into the sequence (Tooltip

Showing, Checkmark, Checkmark).

4.1 Preprocessing into Debugging Sessions

Following the procedure of [20], we used the notion

of debugging sessions to break the sequence of events

into subsequences. As with Ruthruff et al.’s definition, a

debugging session ends with a formula edit (or at the end

of the experiment), which presumably represents an

attempt to fix a bug. However, unlike Ruthruff et al.’s

definition, in which a debugging session began with the

placement of an X-mark, our debugging sessions begin as

soon as the previous one ended (or at the beginning of the

experiment), so that all actions could be considered—not

just the subset following an X-mark. In some cases

participants edited the same formula multiple times

consecutively. Since such edits were obviously a

continuation of fixing the same bug, we included them in

the preceding debugging session.

Based on this definition, we broke each log file into

debugging sessions. The total number of debugging

sessions for all 39 participants was 641. Thus the mean

per participant was 16.47 debugging sessions. The mean

number of events per debugging session was 24.45

events.

4.2 Sequential Pattern Mining

We used the SLPMiner program [21] to search for

patterns of the form (A, B, C), where A, B, and C are

events that happened in the specified order. A debugging

session was considered to contain the pattern (A, B, C) if it

had at least one occurrence of events A, B, and C in that

order, but the events did not need to be consecutive. We

refer to the percentage of all debugging sessions that

contained a pattern as the support of the pattern.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

SLPMiner searches for all sequential patterns whose

support exceeds a pre-specified threshold, and these

patterns are referred to as frequent patterns. To avoid

redundancy due to the fact that any subsequence of a

frequent pattern will also be a frequent pattern, the

software output the maximal patterns, i.e., patterns that

are not subsequences of other frequent patterns. We chose

the support threshold to be 10%, i.e., a pattern had to be

contained in more than 10% of the 641 debugging

sessions to be output by SLPMiner. This threshold was

chosen because it allowed us to find patterns that were

common to multiple users while still containing some of

the interesting but less frequently used features such as X-

marks and Arrow operations. We further focused our

attention on patterns of limited size, in particular of length

between one and four, because without limitations there

would simply be too many patterns to process, and longer

patterns often contained cyclic behavior and were difficult

to interpret.

4.3 Output and Post-processing

From the 641 debugging sessions, SLPMiner found

107 patterns of length one through four. Note that

SLPMiner (and other sequential pattern mining

algorithms) can only find “frequent” patterns, i.e., those

satisfying a minimum support criterion, which was 10%

in our case. It was up to us to determine which of the

found patterns were really interesting to our research goal.

Toward this aim, for each pattern we computed its

occurrence frequency for each user as the percentage of

that user’s debugging sessions that contained the pattern.

For example, if user A had 20 debugging sessions and 10

of them contained pattern p, the occurrence frequency of

pattern p for user A was 50%. As a result, we obtained a

pattern occurrence frequency table, which provided a

comprehensive description of the distribution of the

pattern occurrence among all users. We then analyzed

these pattern occurrence frequencies in relation to the

gender, task performance, and self-efficacy of the

participants who used them.

To help analyze the pattern occurrence frequencies in

an organized manner and gain high-level understanding of

the patterns, we categorized the found patterns such that

each category contained patterns centered on a certain set

of features. Figure 2 shows how the 107 patterns were

distributed into nine non-overlapping categories. See

Table 1 for examples of patterns and their categories. Our

analysis described in the following sections will be

presented based on these categories.

5. Results: How Each Gender Pursued

Success

How did the successful versus unsuccessful females

and males go about debugging? To investigate this

question, we divided the 39 participants (16 males and 23

females) into four groups by gender and number of bugs

fixed. We considered a participant “successful” if they

fixed at least 7 of the 10 bugs, and “unsuccessful”

otherwise. The groups and number of participants are

displayed in Table 2.

5.1 Just Like Males: A Female Success Strategy?

Strikingly, in Figure 3 the unsuccessful females and

successful males showed a similar frequency profile for

Edit Value &

Checkmark

HMTX-Mark-

Edit Value

Arrow &

Checkmark
Arrow

Only

Arrow &

Formula

Arrow,

Formula &

Tooltip

Checkmark

Figure 2: We grouped the 107 patterns into these 9
categories. The categories, based on the patterns�
content, are focused on the debugging and other
features available in the environment.

Table 1: Representative patterns output by SLPMiner. Categories were based on the pattern�s content.

Category Example Pattern

Help Me Test (HMT) (HMT)

Arrow, Formula & Tooltip (Tooltip Showing, Arrow On, Arrow Off, Edit Formula)

Arrow & Formula (Arrow Off, Post Formula, Hide Formula, Post Formula)

Arrow Only (Arrow On, Arrow On)

Arrow & Checkmark (Hide Formula, Checkmark, Arrow On)

Edit Value (Edit Value, Edit Value)

Edit Value & Checkmark (Post Formula, Edit Value, Checkmark, Hide Formula)

Checkmark (Checkmark, Tooltip Showing, Tooltip Showing, Checkmark)

X-Mark (Hide Formula, X-Mark, Post Formula, Edit Formula)

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

each of the five categories on the left half of the graph

(from Edit Value to HMT)—all of which are testing-

oriented activities. We follow the software engineering

definition of “testing” here: judging the correctness of the

values produced by the program’s execution.

This suggests that the ways males successfully went

about their debugging task are the very ways that did not

work out well for the females, leading to the following

hypothesis:

Hypothesis: The debugging and testing strategies

that help with males’ success are not the right ones for

females’ success.

5.2 Unsuccessful Males Like Arrows

Turning to the right half of the graph, which

represents arrow-oriented patterns, the successful and

unsuccessful females converge with the successful males.

Interestingly, regarding this “how” aspect of arrows, there

was a striking difference between successful and

unsuccessful males. This difference is further illustrated

by Figure 4, which shows that, with all arrow patterns

combined, the unsuccessful males used arrow patterns far

more frequently than the successful males.

The higher frequency of arrow patterns for

unsuccessful males coincides with a higher raw count of

arrows used. As Table 2 shows, successful males used a

median of 12 arrows, whereas unsuccessful males used

more than twice as many, 25.5.

One of the most distinctive differences between the

successful and unsuccessful males’ arrow patterns

occurred in the category Arrow & Checkmark. Within

this category were two subcategories using the arrow and

checkmark features: “Formula Checkmark Arrow”, and

“Arrow Checkmark Only.” In the first, “Formula

Checkmark Arrow”, the patterns contain a formula-

related action then a checkmark, followed by an arrow.

For example: (Hide Formula, Checkmark, Arrow On) and (Hide

Formula, Checkmark, Arrow Off). Both unsuccessful and

successful males used these patterns frequently, in over

one third of their debugging sessions.

Successful

Males
Unsuccessful

Males

0.1

0.2

0.3

Figure 4: How: Percentage of debugging session that
contained arrows by successful versus unsuccessful
males.

Table 2: What: The median number of arrows turned
on and off during the experiment by gender and
debugging success. Note especially the difference
between the successful and unsuccessful males.

Group Number of

participants

Arrows

Successful Females 8 17.5

Unsuccessful Females 15 24

Successful Males 10 12

Unsuccessful Males 6 25.5

HMT

Arrow, Formula &

Tooltip

Arrow & Formula

Arrow Only

Arrow & CheckmarkEdit Value

Edit Value &

Checkmark

Checkmark

X-Mark

(a) Male

HMT

Arrow, Formula &

Tooltip

Arrow & Formula

Arrow Only

Arrow & CheckmarkEdit Value

Edit Value &

Checkmark

Checkmark

X-Mark

(b) Everyone
Figure 3: How by success group. Successful: solid
line, unsuccessful: dashed line, females: light, males:
dark. (Each category is represented by an axis line
radiating from the center. Where the polygon crosses
an axis represents the frequency of that pattern.) Note
the differences in use of arrow-related patterns
between successful and unsuccessful males.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

On the other hand, “Arrow Checkmark Only”, while

frequently used by the unsuccessful males (in one of

every four debugging sessions), was rarely used by

successful males (one of every ten debugging sessions).

Examples of patterns in this subcategory included: (Arrow

On, Checkmark) and (Arrow Off, Checkmark).

Although subtle, these two different strategies could

have a large influence on task success. By basing testing

decisions solely on the information provided by arrows,

as may be the case in the “Arrow Checkmark Only”

subcategory, participants may have neglected to take into

account the current state of the program execution. In

contrast, the “Formula Checkmark Arrow” subcategory is

about making a testing decision and then using the

arrows, perhaps to direct their next actions.

Hypothesis: Unsuccessful males overdo use of

arrows—unlike successful males, successful females, or

unsuccessful females.

5.3 Unsuccessful Males: Tinkering Addicts?

We suspected that gender differences in tinkering

behavior may be a factor in observed pattern differences.

In particular, the unsuccessful males’ more frequent use

of arrows and their greater variety of arrow-related

patterns is suggestive of a larger picture of unsuccessful

males tinkering with arrows, to their detriment.

In fact, in previous work, we reported results in

which males were found to do more unproductive

tinkering, using a different environment [6]. However, the

definition of tinkering used in that paper was necessarily

simple—and its simplicity prevented it from capturing the

excessive exploring/playing the unsuccessful males did in

the High-Support Environment. Based on patterns found

via mining that data, we are now able to identify more

complex tinkering behavior of unsuccessful males in this

environment, which we failed to notice in our previous

study.

For example, referring to Figure 3, notice the large

differences in pattern frequencies for unsuccessful versus

successful males in the Arrows Only category, which

contains patterns that involve only arrow operations. Two

representative patterns in this category were (Arrow Off,

Arrow On) and (Arrow Off, Arrow Off). Unsuccessful males

had more frequent occurrences of these patterns—one out

of every four debugging sessions for the unsuccessful

males versus only one out of 20 for the successful males.

Hypothesis: Unsuccessful males have a tendency to

tinker excessively with the features themselves rather than

using the features to accomplish their task.

6. Results: Self-Efficacy

How do high and low self-efficacy females and males

go about debugging? Since self-efficacy did not give the

same groupings of the participants as given by task

success, it is useful to consider how self-efficacy related

to pattern choices. Recall that self-efficacy measures a

person’s belief in his or her ability to perform a particular

task [2].

To investigate the question of whether self-efficacy

played a role in pattern usage, we divided the participants

into four groups based on their self-efficacy score. In

particular, we considered a participant to have high (low)

self-efficacy if her or his score was higher (lower) than

the median of all participants. See Table 3 for the

grouping of the participants.

In previous studies [4], self-efficacy has been shown

to be predictive of task success for females. That

conclusion also holds for the data examined in this study.

Half of the 12 high self-efficacy females were successful

but only two out of 11 low self-efficacy females were

successful. However, it was not true for males: seven out

of 10 high self-efficacy males were successful and half of

the low self-efficacy males were successful.

Figure 5 shows that high and low self-efficacy

females had pattern frequency profiles that are very

distinct from one another, suggesting that self-efficacy

made a difference with females. However, the males’ self-

efficacy did not appear to matter much in their pattern

choices.

Patterns alone tell only part of the story. We turned to

median raw counts of the number of features used to

better understand the reasons behind the patterns that we

were seeing. Low self-efficacy female feature counts

(Table 3) revealed that low self-efficacy females were the

highest usage group for all of the features—except the

checkmark.

High feature usage by low self-efficacy females may

at first seem to contradict our previous results, which

Table 3: What by self-efficacy group. We divided the
participants into four groups based upon their gender
and pre-task self-efficacy. The rest of the table shows
median raw counts of the number of features used
during the experiment.

Group Number of

participants

Arrow X-

mark

Check

mark

HMT

High

Females

12 10.5 3 65.5 5

Low

Females

11 24 8 45 8

High

Males

10 20 2 52 1.5

Low

Males

6 20 5.5 39 3

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

showed that for females, high self-efficacy predicted more

(effective) use of features, which in turn led to greater

debugging success [4]. We proposed that offering greater

support in the environment would encourage low self-

efficacy females to use the features more. The current

study used the High-Support Environment, which

included features designed to fix that very problem. Our

results show that they worked—the low self-efficacy

females did indeed use the features in this version! But

our current study suggests that quantity of feature

adoption is misleading in isolation: feature adoption must

be considered in conjunction with how the features are

used.

High and low self-efficacy females diverged in both

counts and patterns. Notice in Figure 5 how many patterns

the low self-efficacy females used compared to high self-

efficacy females, except for the checkmark. As suggested

by self-efficacy theory, people with high self-efficacy are

more likely to abandon faulty strategies faster than those

with low self-efficacy [2]. Our results were consistent

with this. For patterns other than the checkmark patterns,

as suggested by Figure 6, the high self-efficacy females

were willing to try out and quickly abandon many

patterns in order to settle upon the ones they liked,

whereas the low self-efficacy females were more likely to

try a pattern again and again before ultimately moving on.

For example, 54 patterns were used 5-10% of the time by

high self-efficacy females, but only 16 were abandoned so

quickly by the low self-efficacy females. This leads to the

following hypothesis:

Hypothesis: Females with lower self-efficacy are

likely to struggle longer to use a strategy that is not

working well, before moving on to another strategy.

7. Some Lessons Learned

This research is the first exploration into using data

mining in the investigation of possible gender differences

in the way females and males went about problem-solving

their programs. We briefly share the lessons we learned

with the community so that others can gain from these

lessons.

In short, these lessons were: (1) Data mining is no

panacea. Many of us authors did not anticipate the amount

of work required to identify useful patterns of human

behavior and to interpret the results. (2) Data mining does

not eliminate all bias. Human judgment can impact the

results in many ways, such as in determining pattern

definitions, thresholds and most importantly how to

interpret patterns. Still, despite these somewhat rude

awakenings, (3) it was worth it! Despite the fact that we

had previously gone over the same data ourselves

extensively, data mining turned up patterns for which we

might never have thought to look.

8. Conclusions and Future Work

In this paper, we have reported new data-derived

hypotheses about gendered patterns in the way females

and males used our available spreadsheet debugging

features. Because these data had already been analyzed,

we have employed a conservative approach: we have used

0

10

20

30

40

50

60

0-
5%

5-
10

%

1
0
-1

5
%

1
5
-2

0
%

2
0
-2

5
%

2
5
-3

0
%

3
0
-3

5
%

4
0
-1

0
0
%

Pattern Frequency

N
u

m
b

e
r
 o

f
O

c
c
u

r
r
e
n

c
e
s

Figure 6: How: The high self-efficacy females (solid
line) had more patterns fall in the frequency range of
5-10%, where as the low self-efficacy females had
more of their patterns fall a bit higher, around 10-15%
of debugging sessions.

HMT

Arrow, Formula &

Tooltip

Arrow & Formula

Arrow Only

Arrow &

Checkmark
Edit Value

Edit Value &

Checkmark

Checkmark

X-Mark

(a) Female

HMT

Arrow, Formula &

Tooltip

Arrow & Formula

Arrow Only

Arrow & CheckmarkEdit Value

Edit Value &

Checkmark

Checkmark

X-Mark

(b) Male

Figure 5: How by self-efficacy group. High self-
efficacy: solid line, low self-efficacy: dashed line.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

data mining solely to generate hypotheses that must be

tested in later studies. These hypotheses are based on

evidence in the data, as revealed by the data mining

approach.

The new hypotheses related to the following results:

• Patterns used by the successful males were not a

recipe for success for the females.

• Unsuccessful males used many more arrow patterns

beyond those that appeared useful to the successful

males.

• Self-efficacy, again, impacted females’ choice of

patterns, but not males’. This is the fourth study

showing ties between females’ self-efficacy and

feature usage.

We caution that these are hypotheses and, although

they are data-derived, they require future empirical study

to accept or refute them.

Acknowledgments

We thank Susan Wiedenbeck for ongoing words of

wisdom and help related to this work. This work was sup-

ported in part by Microsoft Research, by NSF grant CNS-

0420533, by an IBM Faculty Award, and by the EUSES

Consortium via NSF grant ITR-0325273.

References

[1] Agrawal, R. and Srikant, R. Mining sequential patterns.

Eleventh Int. Conf. Data Engineering, 1995, 3-14.

[2] Bandura, A. Social Foundations of Thought and Action.

Prentice Hall, Englewood Cliffs, NJ, 1986.

[3] Beckwith, L. and Burnett M. Gender: An important factor

in end-user programming environments? IEEE Symp.

Visual Languages and Human-Centric Computing, 2004,

107-114.

[4] Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C.,

Sorte, S., Hastings, M. Effectiveness of end-user debugging

software features: Are there gender issues? ACM Conf.

Human-Computer Interaction, 2005, 869-878.

[5] Beckwith, L., Sorte, S., Burnett, M., Wiedenbeck, S.,

Chintakovid, T., and Cook, C. Designing features for both

genders in end-user software engineering environments.

IEEE Symp. Visual Languages and Human-Centric

Computing, 2005, 153-160.

[6] Beckwith, L., Kissenger, C., Burnett, M., Wiedenbeck, S.,

Lawrance, J., Blackwell, A., and Cook, C., Tinkering and

gender in end-user programmers’ debugging. ACM Conf.

Human-Computer Interaction, April 2006, 231-240.

[7] Beyer, S., DeKeuster, M., Rynes, K., Kosman, A., and

DeGregorio, N. Barriers to women’s success in

Management Information Systems courses. American

Psychological Society, 2004.

[8] Blackwell, A. First steps in programming: A rationale for

attention investment models. IEEE Symp. Human-Centric

Computing Languages and Environments, 2002, 2-10.

[9] Burnett, M., Cook, C. and Rothermel, G. End-user software

engineering. Communications of the ACM 47(9), 2004, 53-

58.

[10] Busch, T. Gender differences in self-efficacy and attitudes

toward computers. J. Educational Computing Research 12,

1995, 147-158.

[11] Carroll, J. The Nurnberg Funnel: Designing Minimalist

Instruction for Practical Computer Skill, MIT Press,

Cambridge, MA, 1990.

[12] Cervone, G. and Michalski, R. Modeling user behavior by

integrating AQ learning with a database: Initial results.

Intelligent Information Systems, 2002, 43-56.

[13] El-Ramly, M., Stroulia E., and Sorenson, P. From run-time

behavior to usage scenarios: An interaction-pattern mining

approach. ACM SIGKDD Int. Conf. Knowledge Discovery

and Data Mining, 2002, 315-323.

[14] Fisher, A., Margolis, J. and Miller, F. Undergraduate

women in computer science: Experience, motivation, and

culture. ACM SIGCSE Technical Symp. Computer Science

Education, 1997, 106-110.

[15] Hatonen, K., Klemettinen, M., Ronkainen, P., and

Toivonen, H. Knowledge discovery from

telecommunication network alarm data bases. 12th Int.

Conf. Data Engineering, 1996, 115-122.

[16] Huff, C. Gender software design and occupational equity.

ACM SIGCSE Bulletin 34(2), 2002, 112-115.

[17] Mannila, H., Toivonen, H., and Verkamo, A. Discovery of

frequent episodes in event sequences. Data Mining and

Knowledge Discovery, 1997, 259-289.

[18] Mobasher, B., Cooley, R., and Srivastava, J. Automatic

personalization based on web usage mining.

Communications of the ACM, 8. 2000, 142-151.

[19] Perkowitz, M. and Etzioni, O. Adaptive web sites:

Automatically synthesizing web pages. 15th Nat. Conf.

Artificial Intelligence, 1998.

[20] Ruthruff, J., Burnett, M., and Rothermel, G. An empirical

study of fault localization for end-user programmers. Int.

Conf. Software Engineering, 2005, 352-361.

[21] Seno, M. and Karypis, G. SLPMiner: An algorithm for

finding frequent sequential patterns using length decreasing

support constraint. ICDM’02, 2002, 418-425.

[22] Simon, H. The structure of ill-structured problems.

Artificial Intelligence, 4, 1973, 181-202.

[23] Strauss, A. and Corbin, J. Basics of Qualitative Research:

Techniques and Procedures for Developing Grounded

Theory, Second Edition, SAGE Publications, Thousand

Oaks, CA, 1998.

[24] Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,

Casburn, L., Cook, C., Durham, M., Rothermel, G.

Harnessing curiosity to increase correctness in end-user

programming, ACM Conf. Human Factors in Computing

Systems, 2003, 305-312.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

