RF-Cloak: Securing RFID Cards Without Modifying them

Haitham Hassanieh

Jue Wang, Dina Katabi, Tadayoshi Kohno
RFIDs Are Used in Sensitive Applications

- Access Control
- Credit Cards
- Passports
- Pharmaceutical Drugs
- Anti-Theft Car Immobilizers
- Public Transportation
RFIDs Are Used in Sensitive Applications

- **Access Control**
 [SECRYPT’09, S&P’09, ESORICS’08, Usenix’08]

- **Credit Cards**
 [DefCon’13, ShmooCon’12, DefCon’11, Usenix’05]

- **Passports**
 [DefCon’12, HackaDay’12, BlackHat’06]

- **Pharmaceutical Drugs**
 [CCS’09, RFID’06]

- **Anti-Theft Car Immobilizers**
 [Usenix’12, Usenix’05]

- **Public Transportation**
 [Defcon’08, MIT’08, S&P’09]
Hacking RFIDs Simply By Eavesdropping

RFIDs adopt weak encryption protocols
Hacking RFIDs Simply By Eavesdropping

RFIDs adopt weak encryption protocols

Goal of RFID Industry: Dramatically reduce the power, size, and cost of RFIDs
Protect your RFID cards against active attacks

[Amazon product page for a RFID blocking wallet]
Protect your RFID cards against active attacks

Most attacks demonstrated by eavesdropping

Need solution for eavesdropping that works with existing RFIDs
RF-Cloak
System that protects RFIDs against eavesdropping attacks

- Does not require any modification to the RFID cards
- Protects against a wide range of attackers including multi-antenna MIMO eavesdroppers
- Theoretically proven the security guarantees
- Implemented the system and empirically demonstrated its benefits
RFID Communication

Reader transmits constant waveform: C

RFID reflects the reader’s signal using ON-OFF switch

Reader receives (full-duplex): $h \times C \times bits$

Eavesdropper receives: $h_r \times C + h_c \times C \times bits$

Replace constant waveform C with a random waveform $R(t)$
RFID reflects the reader’s signal using ON-OFF switch.

Reader transmits random waveform: \(R(t) \)

RFID reflects the reader’s signal using ON-OFF switch.

Reader receives (full-duplex): \(h \times R(t) \times bits \)

Eavesdropper receives: \(h_r \times R(t) + h_c \times R(t) \times bits \)

Replace constant waveform \(C \) with a random waveform \(R(t) \)
RF-Cloak Solution

RFID reflects the reader’s signal using ON-OFF switch.

Reader transmits random waveform: $R(t)$

Reader receives (full-duplex): $h \times R(t) \times \text{bits}$

Eavesdropper receives: $h_r \times R(t) + h_c \times R(t) \times \text{bits}$

Reader knows $R(t) \rightarrow$ Can decode

Eavesdropper doesn’t know $R(t) \rightarrow$ Cannot decode
RF-Cloak: Randomizing the Reader’s Signal

- Random waveform acts like a one-time pad on the air
 → Naïve solution: Multiply each bit with random number

RFID Signal:
RF-Cloak: Randomizing the Reader’s Signal

- Random waveform acts like a one-time pad on the air
 → Naïve solution: Multiply each bit with random number

RFID Signal:

Random waveform must destroy internal signal patterns of the bits
RF-Cloak: Randomizing the Reader’s Signal

Random waveform:
• Must change as fast as any transition in the RFID signal → has same bandwidth as RFID signal
• Must be indistinguishable from white noise i.e. flat frequency profile → samples taken from complex Gaussians
RF-Cloak: Randomizing the Reader’s Signal

Threat model:
Single antenna eavesdropper using the optimal decoder

Guarantee: (informally restated)

Theorem 1: Using RF-Cloak’s random signal $R(t)$, an eavesdropper will not be able to distinguish a 0 bit from a 1 bit which is no better than a random guess
What if the attacker has multi-antenna MIMO capability?
MIMO Eavesdropper

Reader transmits random waveform: $R(t)$

Eavesdropper receives:

1st receiver: $Y_1(t) = h_{r1} \times R(t) + h_{c1} \times R(t) \times \text{bits}$

2nd receiver: $Y_2(t) = h_{r2} \times R(t) + h_{c2} \times R(t) \times \text{bits}$

\[
\frac{Y_1(t)}{Y_2(t)} = \frac{h_{r1} + h_{c1} \times \text{bits}}{h_{r2} + h_{c2} \times \text{bits}}
\]
MIMO Eavesdropper can eliminate the random waveform and decode the RFID bits.

Reader transmits random waveform: $R(t)$

Eavesdropper receives:

1st receiver: $Y_1(t) = h_{r1} \times R(t) + h_{c1} \times R(t) \times \text{bits}$

2nd receiver: $Y_2(t) = h_{r2} \times R(t) + h_{c2} \times R(t) \times \text{bits}$

$$\frac{Y_1(t)}{Y_2(t)} = \frac{h_{r1} + h_{c1} \times \text{bits}}{h_{r2} + h_{c2} \times \text{bits}}$$
RF-Cloak vs MIMO Eavesdropper

Antenna War!
RF-Cloak vs MIMO Eavesdropper

Antenna War!
RF-Cloak vs MIMO Eavesdropper

RF-Cloak combines antenna motion and rapid antenna switching

→ Emulate a very large number of fast changing antennas
RF-Cloak vs MIMO Eavesdropper

- Channels to eavesdropper change very fast → Cannot separate RFID signal from Reader signal
 → Cannot decode

- Reader (full duplex) → Only receives reflection from RFID
 → Can decode
RF-Cloak: Randomizing the Wireless Channel

Threat model:
Multi-antenna MIMO eavesdropper using the optimal decoder.

Guarantee: (informally restated)

Theorem 2: Using RF-Cloak’s channel randomization, a MIMO eavesdropper will not be able to distinguish a 0 bit from a 1 bit which is no better than a random guess.
Evaluation

• Implemented RF-Cloak on USRP N210 software radios and combined it with a 1725 rpm motor and ADG904R RF switches.

• Evaluated it against different types of commercial RFID cards

• Evaluation metric: Bit error rate (BER)
RF-Cloak Random Waveform vs Single Antenna Eavesdropper

Eavesdropper has mean BER of 0.498 with std. dev. 0.008

→ Very close to a random guess
RF-Cloak Random Waveform vs Two Antenna MIMO Eavesdropper

A two-antenna MIMO eavesdropper can correctly decode the RFID bits.
RF-Cloak Channel Randomization vs MIMO Eavesdropper

RF-Cloak can prevent a MIMO eavesdropper from decoding the RFID’s data
Related Work

• **Physical layer security:**
 [JCM’07, TCOM’13, SIGCOMM’11, Oakland’13, ICC’12, INFOCOM’11, MobiSys’13, SIGCOMM’13, MobiSys’14]

• **Securing RFIDs against eavesdropping:**
 [CHES’07, RFIDSec’11, CARDIS’06, JRSC’12, PerCom’07]

• **Moving antennas:**
 [SIGCOMM’14, MOBICOM’14, HOTNETS’14, MOBICOM’13, SIGCOM’13, HotMobile’12, ISJ’14]
Conclusion

• RF-Cloak is the first system that can protect deployed RFIDs against eavesdropping without any modification to the RFID

• RF-Cloak is the first system that can hide the signal from MIMO attacker with many antennas even when the reader has no MIMO capability.

• RF-Cloak provides a defense in depth solution.