Applied Cryptography

Special Topics CS 519/ECE 599 (Winter 2017)

Syllabus

1. Course Information:

 Instructor: Dr. Attila Altay Yavuz,
 Office: HOV 100
 Phone: 541-737-3341
 Email: Attila.Yavuz@oregonstate.edu
 URL: http://web.engr.oregonstate.edu/~yavuza/
 Class Hours: Monday Wednesday 2:00 – 3:20 PM
 Office Hours: Tuesday 4:00 – 6:00 PM

2. Course Objectives:

 This course covers prominent concepts of applied cryptography, privacy enhancing technologies, advanced cryptographic primitives, and authentication/integrity techniques. This course also focuses on the latest security and privacy issues in networking and computer systems. Finally, this course explores the state-of-art applied cryptography research problems and solutions via literature survey and research projects.

 By the end of this course, students will be able to:
 1. List the key cryptographic tools and their properties to protect computer systems
 2. Describe important Privacy Enhancing Technologies (PETs), including
 a. Incident Matrix-based Dynamic Symmetric Searchable Encryption (DSSE)
 b. Path Oblivious Random Access Memory (ORAM)
 c. Partition ORAM
 d. Multi-Server Oblivious DSSE Approaches
 e. ORAM Constructions with Improved Constants
 f. Multi-Server Private Information Retrieval
 g. Applications of PIR
 3. Explain the security requirements of broadcast authentication. Explain specialized broadcast authentication methods including:
 a. Describe TESLA protocol,
 b. Describe EMSS protocol,
 4. Delay-Aware Authentication for Vehicular and Smart-grid systems
 a. Rapid Authentication
 b. Structure-Free Rapid Authentication
 c. Hardware-Acceleration for RA and offline-online schemes on vehicles
5. Light-weight Cryptographic Primitives for IoT
 a. Self-Certified Cryptography for key exchange
 b. BPV Algorithm
 c. Signcryption, ECIES, MQV and improved variants
6. Key Management and Establishment Techniques, including
 a. Group DH 1-2-3 with linear overhead
 b. Tree-based Group DH with sub-linear overhead
 c. Iolus
 d. Logical Key Hierarchy (LKH)
 e. One-way Function Tree (OFT)
7. Selected Topics (some examples include, optionally)
 a. Privacy-preserving data mining
 b. Fully Homomorphic Encryption
 c. OS Security
 d. Hardware-security
 e. Physical Layer Security

3. Text:
 No textbook is required. Handouts (i.e., lecture slides) and reading papers will be provided during the term (check the course website regularly for updates).

4. Coursework and evaluations:
 • In-class paper presentation (40%) (extra credit possible)
 • Survey/Scouting Report (Optional)
 • Research project (55%) (extra credit is possible, may supersede survey/scouting report)
 • Class attendance, participation/discussions (%5),
 • Take-home assignments (optional)

 Possible topics for survey/scouting report and research projects will be either announced at course website or will be decided with the student via one-on-one meetings. Depending on the topic, students may forage a team with two/three person, or work individually (the scope will be adjusted accordingly). It is possible that student(s) may just assume a research project without having separate survey assignment (i.e., research project will include a “related work section”). This possibility will be decided based on objective/scope of the research project and one-on-one discussions with the student(s).

 Remark: (i) Take-home assignments, survey/scouting reports and research projects must be typed using a text editor (very preferably with Latex, but Word is ok). Handwritten deliveries will not be accepted. (ii) Remark that the above grading rule may be changed during the quarter.

 All deliveries must be submitted online via TEACH system no later than given deadline. A hard-copy version must also be delivered either in-class or at office hours.
5. Schedule of Assignments:
The scheduling of assignments and requirements are announced at the course website (and updated if required).

6. Policies on incomplete grades and late assignments:
Late homework assignments are not accepted (see below for the expectation).

7. Policies on absences (excused/ unexcused) and scheduling makeup:
There will be no makeup paper presentations, survey and/or research papers. Only exceptions is possible for homework assignments, if a student presents a police report or a doctor's note that show some emergency situation.

8. Course prerequisites:
An Introduction-Level Cryptography (or a network security course with the permission of the Instructor) course is recommended (but not enforced). Please contact with the instructor if you need clarification.

9. Academic integrity:
The university policies against academic dishonesty will be strictly enforced. Evidence of academic dishonesty in this course may result in a grade of "F" on the examination/assignment that involved cheating and/or an "F" in the course (for more details see http://ecampus.oregonstate.edu/services/proctoring/academichonesty.htm).

The instructor expects a student to complete his/her homework, projects and assignments without violating academic Integrity. A student's submission on any homework, projects and assignments indicates that the student neither gave nor received unauthorized aid.

10. Accommodation of Disabilities
Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at (541) 737-4098.

REMARK: Every part of this syllabus and course website (including the course scheduling and assignments) are subject to adjustment as the term progresses. If you have concerns, please contact with the instructor.