
I

b
w
n
T
d
t
c
l
e
a
T
l
e
n
a
fl

a
a
m
S
t
s
c
s
u
i
c
o
p
r

m

p
s
E

J

Paul E. King
Program Leader

U.S. Department of Energy,
Albany Research Center,

Albany, OR 97321

Solomon C. Yim
Professor

Coastal and Ocean Engineering Program,
Department of Civil and Construction

Engineering,
Oregon State University,

Corvallis, OR 97331
e-mail: solomon.yim@oregonstate.edu

Stochastic Control of Sensitive
Nonlinear Motions of an Ocean
Mooring System
Complex sensitive motions have been observed in ocean mooring systems consisting of
nonlinear mooring geometries. These physical systems can be modeled as a system of
first-order nonlinear ordinary differential equations, taking into account geometric non-
linearities in the restoring force, quadratic viscous drag, and harmonic excitation. This
study examines the controllability of these systems utilizing an embedded approach to
noise filtering and online controllers. The system is controlled using small perturbations
about a selected unstable cycle and control is instigated for periodic cycles of varying
periodicities. The controller, when applied to the system with additive random noise in
the excitation, has marginal success. However, the addition of an iterated Kalman filter
applied to the system increases the regime under which the controller behaves under the
influence of noise. Because the Kalman filter is applied about locally linear trajectories,
the feedback of the nonlinearities through the filter has little effect on the overall filtering
system. �DOI: 10.1115/1.2428323�
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ntroduction
Sensitive nonlinear responses, including chaotic motions, have

een predicted in a mass moored in a fluid medium subject to
ave excitations and which is characterized by a large geometric
onlinearity in the restoring force and viscous drag excitation.
hese systems include sonars, remote sensors, and data collection
evices deployed in the ocean environment and which are of in-
erest to the U. S. Navy and the U. S. Department of Energy. This
lass of fluid–structure interaction problems contains highly non-
inear drag and mooring effects. The overall effects of the nonlin-
ar fluid loads on the structure can be approximated in terms of an
dded inertia and a nonlinear coupling of the Morison form �1,2�.
he nonlinear mooring resistance force can be approximated by a

ow-order polynomial and hence the resulting mathematical mod-
ls of these systems are reducible to a low degree system of ordi-
ary differential equations. This order of approximation is often
cceptable for preliminary analysis and design of the types of
uid–structure systems considered.
Preliminary analysis of experimental data from such a system

s modeled here has demonstrated the likely presence of sensitive
nd chaotic motions in noisy environments �3�. These sensitive
otions are not considered in the fluid–structure system design.
hould the unpredictability of the sensitive behavior observed in

hese systems be deemed undesirable, methods of analyzing the
ystem response to harmonic and noisy excitations and subsequent
ontrol of the systems are needed. By representing the desirable
tates of motion of the nonlinear response of the system with
nstable periodic orbits �UPOs�, a consistent means of character-
zing the strange attractors can be obtained �4�. Thus, the system
an be characterized by such topological invariants as the entropy
r the Lyapunov spectrum �5�. The analysis and control procedure
resented in this study utilizes this representation of the sensitive
esponse to its advantage.

Figure 1 is a schematic of a system moored by cables in a fluid
edium. The fluid itself is undergoing motion and an associated
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excitation force is induced which can be described by a forcing
function of the form F�ẍ , ẋ , t� where ẋ=dx /dt and ẍ=dẋ /dt. With
restraints for vertical and rotational motion, this system is mod-
eled as a single-degree-of-freedom �SDOF� system for the surge, x
�1�. The nonlinear, second order, ordinary differential equation of
motion is derived by using the fact that the system is hydrody-
namically damped with external forcing. The forcing excitation is
modeled as the sum of a constant current and an oscillatory wave
term. Because the cables are thin and the dimension of the mass is
small compared to the orbital motions of the wave particles, the
fluid–structure interaction can be modeled accurately by use of the
small-body theory which assumes that the presence of the struc-
ture does not influence the wave field. This implies that the waves
flowing past the structure are not affected by the interaction with
the structure.

The mooring angle produces a geometric nonlinearity in the
restoring force that can become highly nonlinear for b=0, a two-
point system, or nearly linear for b�d for the four-point system.
The equations of motion are taken from the prototypical form for
second order nonlinear differentials

mẌ + cẊ + R�X� = F�Ẍ,Ẋ,t� �1�

where the nonlinearities are contained in the restoring force R�X�
and the excitation force F�Ẍ , Ẋ , t�. The restoring force describes
the geometric configuration of the mooring lines and assumes lin-
ear elastic behavior so that the nonlinearity is strictly due to the
geometric configuration of the system. The restoring force has the
form

R�X� = k�X + b sgn�X��*�1 −� d2 + b2

d2 + �X + b sgn�X��2� �2�

and where sgn�X� is the signum function defined by

sgn�X� = �+ 1 for X � 0

0 for X = 0 	 �3�

− 1 for X � 0
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The excitation force is a combination of viscous drag and iner-
ial components based upon the interactions between the moored
tructure and the fluid medium. This type of excitation force is
ound to be modeled by

F�Ẍ,Ẋ,t� = ��u − Ẋ�
u − Ẋ
 + ��u̇ − Ẍ� + �Vu̇ �4�

hich couples the fluid motion and the structure motion through
he inertial interaction between the two constituents in motion, the

oored structure and the fluid medium. The system parameters
re identified as the system mass m, damping c, and line stiffness
=2EA /�d2+b2 and where EA is the elastic cable force. The line

engths b and d are observed in Fig. 1 while � and � are the
ydrodynamic viscous drag and added mass; � is the fluid density;
nd V is the displaced volume of fluid. u=u�t� is the fluid particle
elocity under current and wave excitation and is given by u�t�
u0+u1 sin��t� and u1=u1�a ,��, where a and � are the wave
mplitude and frequency, respectively.

Assuming that the structure does not alter the fluid flow, that is,
hat the wave field does not change due to the motions of the

oored structure, employing the small body theory, and then em-
loying an equivalent linearization process on the quadratic drag
orce and finally normalizing, then, an autonomous set of first
rder nonlinear differential equations are obtained which are
iven by

ẋ = y

ẏ = − R�x� − 	y + F�x,y,
�


̇ = � �5�

here x=X /d.
Under the equivalent linearization, the nonlinearity is seen to be

trictly due to the geometric configuration of the system which is
anifested in the restoring force. Hence, the restoring force de-

cribes the geometric configuration of the mooring lines, assum-
ng linear elastic behavior of the mooring lines. The restoring
orce has the form

R�x� = ��x + � sgn�x��� 1
�1 + �2

−
1

�1 + �x + � sgn�x��2� �6�

Although the excitation force is a combination of viscous drag
nd inertial components based upon the interactions between the
oored structure and the fluid medium, through the normalization

rocess, the excitation force is found to have the form

F�x,y,
� = f0 − f1 sin�
� �7�
here the viscous drag and inertial components are combined into

he current and amplitude parameters. The appropriate dimension-

ig. 1 Schematic of a moored structure subject to current and
ave excitation
ess constants are defined by
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� =
k

m + �
; � =

b

d
; 	 =

c + �

m + �
�8�

The constants f0 and f1 depend upon the hydrodynamic character-
istics of the system and are given by

f0 =
�u0

m + �
; f1 =

�Vu1

m + �
��2�1 + Ca�21

4
Cdl

2 �V

S
�2

�9�

where Ca and Cdl are the inertial drag coefficient and the linear-
ized drag coefficients; S is the projected drag area; and � is the
water mass density. The associated wave frequency is obtained
through the relation 
=�t where t is time.

Although at first glance this system appears to be significantly
more complex than the simple nonlinear systems presented in
standard texts it turns out that the fluid–structure system possesses
nonlinear response properties very similar to those found in clas-
sic nonlinear systems such as the Duffing system �6�.

Mooring System Response
As has been mentioned, a complete analysis of this system

appears in the literature �1,2,7,8� and hence only some of the
important results for the purposes of this paper are repeated. This
system includes at least three types of dynamic response based
upon wave and current excitation, these being periodic, quasi-
periodic, and chaotic responses. A fourth state exists, when no
motion is observed. This implies that the wave and current exci-
tations are not of a significant magnitude to transfer enough en-
ergy to the mooring system in order to instigate motion. The no-
motion state is uninteresting and will not be studied further. In
fact, for this discussion, only the chaotic response of the system is
of importance and therefore the other states will not be included.

Highly nonlinear �chaotic� oscillations are those deterministic
oscillations which are characterized by a random-like, unpredict-
able response and yet include underlying order and structure. The
unpredictability stems from the sensitivity to initial conditions.
That is, two nearly identical initial conditions give rise to vastly
different outcomes, they become macroscopically separated after
a finite amount of time �9�. However, this alone is not enough to
define sensitive �chaotic� response. A sensitive system must also
possess an element of regularity as well as it must be indecom-
posable. The regularity usually stems from the so-called unstable
periodic orbits. That is, two infinitesimally close points will come
arbitrarily close to one another after a predefined period of time
�4�. However, because they are unstable, the periodicity is lost
under integration. The third element is the notion of indecompos-
ability. Most easily thought of as the fact that a point within the
chaotic system will enter within an arbitrarily small neighborhood
of any other point at some time under the integration �9�. Putting
these three conditions together, one can see that chaos posses an
element of unpredictability �sensitivity to initial conditions�, regu-
larity �unstable periodic points�, and the fact that it is the smallest
set which contains these necessary conditions �indecomposability�
�9�. Notice that these chaotic attractors are stable in the sense that
as t→, all trajectories of the system tend towards them.

Figure 2 plots one of the many possible highly nonlinear �cha-
otic� responses of the mooring system. This example is given for
the system parameter values �=0.335, 	=0.01, �=4.0, �=0.0,
f0=0.0, and f1=2.0. Figures 2�a�–2�d� plot the: �a� Poincaré sec-
tion; �b� phase space portrait; �c� frequency spectrum; and �d� a
typical time series, respectively, of the chaotic response. Notice
that through only small changes in the system parameters, funda-
mentally different response characteristics are obtained, whether it
leads from periodic to chaotic dynamics or from one strange at-
tractor to another. The presence of an abundance of these complex
harmonic responses predicted by associated analytical techniques
and verified by numerical results indicate that their influence on
extreme and fatigue designs of the fluid–structure interaction sys-

tems may need to be considered in the future.
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eedback Control of Chaotic Systems
This section introduces the notion of feedback control as ap-

lied to sensitive nonlinear systems. Control of chaos has been a
opic of wide research since Ott et al.�10� introduced a method,
ow called OGY control, in 1990. This method utilizes periodic
ulses to direct a trajectory towards the stable eigenvector of a
inearized model of the chaotic system.

Figure 3 is a schematic of a general feedback controller. The
nput is the system excitation, variables or parameters which de-
ne the system and set it into oscillation. The output is the result
f the plant dynamics and any external adjustments that can be
ade. These external adjustments can be via control or through

ome random component. For now, we will consider only the
urely deterministic case. The plant is a set of relations, usually
ifferential equations, which relate the output to the input. The
eedback box is a set of relations which tell how the system
hould be adjusted in order to maintain a certain operational state
f the plant based upon known measurements.

The goal of the feedback control is to render the system dynam-
cs into a known, stable operating mode. This can be accom-
lished by any of a number of methods and control theory is a rich
eld of study. Here, the pole placement algorithm is considered in
rder to place the unstable eigenvalues �poles� of the uncontrolled
ystem within the unit circle on the complex plane, ensuring that

Fig. 2 Chaotic response of the mooring
„b… the phase space portrait; „c… the frequ

ig. 3 Schematic of feedback control of a general plant repre-

ented as a set of differential equations

ournal of Offshore Mechanics and Arctic Engineering
the eigenvalues of the controlled system are stable and hence the
dynamics are well behaved. This technique was devised for linear
systems, however. But, because of the nature of the sensitive sys-
tems considered, there are instances under which this methodol-
ogy is useful. Recall that there is a set of unstable periodic orbits
embedded within any given strange attractor. These unstable pe-
riodic orbits can, in fact, be modeled by a linear set of equations
and hence the linear pole placement method is applicable under
these conditions.

In order to describe the nonlinear dynamics by a linear set of
equations, a useful tool called Poincaré sections must be intro-
duced. Poincaré sections are obtained by stroboscopically sam-
pling the time series at regular intervals and then plotting one
point against the previous. This has the effect of decreasing the
dimension of the problem by one dimension. Moreover, it has the
effect of rendering the continuous time dynamical system into a
discrete time one, a feature that becomes useful for the application
of control. Yet, all of the nonlinear dynamics are maintained in the
reduced system. From this, the unstable periodic orbits of all or-
ders can be identified. A linear map of a given unstable periodic
orbit is constructed and this map used as the basis for the control
algorithm. Because the map is unstable, it will have at least one
eigenvalue greater than unity.

Once a suitable set of linear equations have been obtained, the
pole placement technique can then be employed in order to render
the unstable system stable �11�. Equation �10� is the feedback
control law on a Poincaré section where Z* is the centroid of the
points under consideration on the Poincaré section, A is the linear
map created about Z*, and KT is the feedback law obtained
through pole placement

T * *

stem showing: „a… the Poincaré section;
cy spectrum; and „d… a time series plot
sy
en
Zi+1 = �A − bK ��Zi − Z � + Z �10�

FEBRUARY 2007, Vol. 129 / 31
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pplications of Feedback Control
The algorithm to control the chaotic dynamics of the systems is

o first obtain enough Poincaré points to be able to characterize an
nstable periodic orbit, typically a minimum of 20 points. Once
he unstable orbit is identified, a linear map is obtained by a least-
quares minimization of the matrix equation involving the points
ear the UPO and their iterates. Given this map, a feedback law is
ostulated that places the control poles in a stable operating re-
ime. Finally, the system is allowed to oscillate until the trajectory
nters within ��0 of the UPO. At this time, control is applied to
roduce the desired periodic orbit.

This algorithm is successful in maintaining stable, harmonic
scillations of the mooring system under deterministic situations.
he next section presents the results of the application of this
ontrol algorithm to the mooring system for primary resonance as
ell as a number of subharmonic resonance cases. The following

ection calculates a bound on the amount of energy required to
chieve and maintain this control.

In the physical environment, there will be noise added to the
ystem. Whether this noise is a random component to the excita-
ion or strictly through measurement error, the state of the system

ay not be well characterized. The addition of noise is expected
o present problems for the deterministic controller. The problems
ssociated with additive noise in the mooring system are then
utlined. These problems are addressed and a means to increase
he controllability under the influence of a random component in
he excitation is presented. Finally, the effects of the noise on the

ooring system and the application of the new control methodol-
gy are presented. Estimates on the magnitude of noise under
hich the deterministic OGY controller is still able to function

ppropriately are given as well.

he Deterministic Mooring System
In this section, the controller outlined above is applied to the
ooring system. Several cases are presented to indicate the wide

ariety of oscillatory states that are obtainable with this method.
n each case, consider the chaotic oscillations of Eqs. �5�–�7� for
he parameter values given as before ��=0.335, 	=0.01, �=4.0,
=0.0, f0=0.0, and f1=2.0�. In order to investigate the structure
f the chaotic attractor, the Poincaré section �Fig. 2�a��, the prob-
bility density of the attractor is computed to identify regions of
igh probability that an UPO will be found. The probability den-
ity gives a starting point for the search for UPOs and also yields
measure of the stability of the chaotic attractor under the influ-

nce of noise �11�.

Primary Resonance Control. A search was done on the
oincaré data to obtain all points that were near a Period-1 orbit.
his is done by comparing all points Zi that are close and whose
ext iterate Zi+1 are also close �where the Zis are taken by strobo-
copically sampling the position, x�. Then, a UPO of Period-1 is
stimated as the mean of the set of points found to correspond to
his set. Utilizing this method on the system structural response
ata, a UPO of Period-1 was found at the values Z*= �x ẋ�T where
=−0.2623 and ẋ=−0.0677. A linear map is constructed which
aps the points near the UPO Z* toward Z* along the direction of

he stable eigenvector. In this case the linear map is given by

A = 1.4746 − 0.3997

1.4692 − 0.4450
� �11�

hich has a practically neutrally stable eigenvalue �u=0.9970 and
stable eigenvalue �s=−0.1906. If the feedback control is applied
nly to the position x, this gives

bT = �1 0� �12�

Choosing the gain vector KT= ��u ,−�u�s� yields the control
oles at p1,2= �−0.2951,0.1044�. Thus, each time the system tra-

*
ectory crosses the Poincaré section near Z the controller affects

2 / Vol. 129, FEBRUARY 2007
this point by applying the control law, Eq. �10�, ensuring that the
trajectory returns near the point Z* on the next return to the
Poincaré section. The results of this application are shown in Fig.
4. Figure 4�a� is a plot of the Poincaré points versus time exhib-
iting the controlled periodic oscillation after an arbitrary duration
of chaotic oscillations while Fig. 4�b� is the corresponding oscil-
latory state in phase space. The location on the phase space por-
trait where the control is applied is denoted by a circle.

The average transient length expected before being able to ap-
ply the controller is computed to be ����48 iterates �returns to the
Poincaré map� for the case outlined �11�. Observe that, despite the
complexity of the dynamics between points in time where control
is applied, the method produces a desired periodic motion through
small adjustments.

1
2 Subharmonic Control. Again, a search was done on the

Poincaré data to obtain all points that were near a Period-2 orbit.
A UPO of Period-2 was found at the values Z*= �x ẋ�T where x
=0.3301 and ẋ=−0.1884. A linear map is constructed as outlined
and, in this case is given by

A = 0.8793 0.2766

0.4553 − 0.0729
� �13�

which has an unstable eigenvalue �u=1.0927 and a stable eigen-
value �s=−0.0631. If the feedback control is applied to the posi-
tion as in the previous case, and choosing the gain vector KT

= ��u ,−�u�s� yields the regulator poles at p1,2= �−0.0316
+0.7194i ,−0.0316−0.7194i�, which have magnitude 0.5186.
Each time the system trajectory crosses the Poincaré section near
Z* the controller, Eq. �10� is applied ensuring that the trajectory
returns near the point Z* on the next return to the Poincaré section.
The results of this simulation are shown in Fig. 4 as well. Figure
4�c� is a plot of the Poincaré points versus time and Fig. 4�d� the
corresponding phase space portrait of the controlled system.
Again, the location on the phase space where the control is ap-
plied is highlighted.

1
3 Subharmonic Control. To further demonstrate the effective-

ness of this strategy, a higher order periodicity is identified and the
controller is again applied, in this case a Period-3 orbit. A
Period-3 orbit was identified at the point Z*= �x ẋ�T where x=
−0.3609 and ẋ=−0.0359. The linear map obtained for this case is
given by

A =  0.9904 − 0.113

− 0.097 − 0.145
� �14�

which has a neutrally stable and a stable eigenvalues �u=1.000
and �s=−0.1544, respectively. The controller poles are placed at
p1,2= �−0.6177,0.2068� and the controller is again applied to ini-
tiate control each time the system trajectory intersects the
Poincaré section near the UPO at Z* with Period-3. Figures 4�e�
and 4�f� plot the results of the Period-3 control.

Relative Energy to Maintain Control
The magnitude of the instantaneous displacement a trajectory

undergoes under the action of the controller is small by construc-
tion of the algorithm, as it is for the instantaneous change in the
velocity as well. Therefore, the relative energy exerted in order to
maintain control with this methodology is small in comparison to
the excitation force. Recall that on a given control plane, the con-
troller is only required to be operational when a trajectory inter-
sects a Poincaré plane and only within the ball of radius ��0.
The maximum distance that a trajectory can be moved on that ball
is given by � /2, where � is the chosen error tolerance for the
given problem �for all examples above, it was chosen as �=0.05�.
Meanwhile, the interval of time for which control can be insti-
gated is determined by the sampling period of the system, the

control action must be completed within this interval.

Transactions of the ASME
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The energy imparted to the system by the controller during a
oincaré “interval” in moving the trajectory towards the stable
igenvector from its current position is obtained through an inves-
igation of the equilibrium equations of motion during the change
n position and velocity. The �work� energy imparted to the system
o change the system position is given by u�x, where u is the
ontrol input and �x is the change in position. Recall that the
quilibrium equations can be written as

ẍ + 	ẋ + R�x� − F�
� = ��t − Ts�u�t� �15�

here ��t−Ts� indicates that u�t� is applied only on the Poincaré
lane. Then, substituting the instantaneous change �x, into Eq.
15� and rearranging and collecting terms the following term is
btained

u�Ts� =
�x

�t
�1 + 	�t� + �R�x� − �F�
� �16�

here the approximation �ẋ=�x /�t is used. Here, �x, �ẋ, and

Fig. 4 Control of the ocean mooring s
subharmonic; and „e…–„f… 1/3 subharmon
t are all known values, as well as the rest of the system param-

ournal of Offshore Mechanics and Arctic Engineering
eters. So, the power required to instigate a movement of �x is
obtained by

Pwr = ��w

�t
� = �u�Ts��x

�t
� �17�

Similarly, the energy imparted to adjust the momentum is given
by M�ẋ2 where M =m+� for m the system mass and � the added
mass �the mass of the displaced volume of fluid�. In this case, the
normalized equations of motion indicate that M =1 and we have
the total power required to instigate a motion in position and
velocity to obtain control on a Poincaré plane as

Pwr = �u�Ts��x

�t
� + ��ẋ2

�t
� �18�

For the Period-1 case, the power required to maintain instanta-
neous control of the system on the Poincaré plane is Pwrperiod-1
=0.0025 per cycle in dimensionless units. The mean power input
to the system in order to instigate the nonlinear motions in the first

em „a…,„b… primary resonance; „c…-„d… 1
2
yst

ic
place is give by
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Pwrsys =
1

T�0

T

F�
�
dẋ

dt
dt �19�

nd is calculated to be Pwrsys=1.0739 per cycle. This argument
ndicates that the power input required by the controller is several
rders of magnitude less then the power required to drive the
ystem, indicating that control can be achieved with little over-
ead to the overall design of the system.

ffects of Additive Noise
The benefit of using small perturbations to control a determin-

stic nonlinear dynamical system within the chaotic operating re-
ime has been presented above. However, for a typical, real physi-
al system such as a moored fluid–structure system, there will be

ig. 5 Multi-plane control is achieved by constructing r sepa-
ate control planes distributed evenly throughout phase space
s exhibited here for r=8 for the mooring system

Fig. 6 Effects of noise on the chaotic mo
Poincaré section of the mooring system

„d… 1.48

4 / Vol. 129, FEBRUARY 2007
noise added to the system through measurement errors as well as
a random component in the excitation. Additive noise has the
effect of destabilizing the chaotic attractor.

Here, the noise energy content is characterized by the signal-to-
noise ratio �SNR� defined as log10�Ps / Pn� where Ps is the power
of the noise free signal and Pn is the power of the noise and where
the power is defined by

P =
1

T�0

T

x�t�2dt �20�

A simple modification to the control scheme can dramatically
increase the controllability of the system. A series of Poincaré
sections about the chaotic attractor can be constructed by strobo-
scopically sampling every 2� /r�, where r is the number of sec-
tions desired. This yields r separate controllers evenly distributed
throughout the cycle as exhibited by Fig. 5, thus decreasing the
long term effects of the noise with respect to an individual con-
troller �12�. By applying the above control scheme on each
Poincaré section, the UPO can be targeted from one section to the
next. If these sections are selected appropriately, then the effects
of the noise can be minimized.

The Stochastic Mooring System
Figure 6 shows the Poincaré map of the noisy chaotic response

obtained by adding �band limited� white noise of finite variance to
the excitation term in the deterministic case as the noise intensity
increases �hence the SNR decreases� from a SNR of 2.42 �Fig.
6�a�� to 1.48 �Fig. 6�d��. An examination of the corresponding
probability density for this case indicates that destabilization of
the sensitive dynamics manifests itself as an overall increase in
the number of orbits which appear to be UPOs, but in fact are not
�11�.

ing system attractor as seen through the
a SNR of: „a… 2.42; „b… 2.07; „c… 1.81; and
or
for
Transactions of the ASME
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Figure 7 plots results of the addition of the noise to the Period-1
ontrolled system �Figs. 4�a� and 4�b��. As the noise intensity is
ncreased and the corresponding SNR decreases from 2.42 to 1.48
here is a corresponding destabilization of the system dynamics as
ell as the controller and a loss of control is realized. Observe

hat, as the noise level is increased, the system goes from being
ompletely controlled, to a mode where the controller appears to
e effective only for limited durations finally to the point where
he effects of noise overpower the influence of the controller.

If the controller is modified to operate on multiple planes per
ycle, it is expected that control will be maintained for an increas-
ng intensity of noise. Figure 8 shows the results of the Period-1
xample with noise and operating under control on eight sections,
here each section has an associated linear reconstruction and

ontroller created as outlined.
The number of control sections verses the amount of noise that

he system controller is able to handle for this case is shown in
ig. 9. Here, two levels of control influence, i.e. two different
alues of � �0.05 and 0.1�, are reported. It is assumed that the
ystem is fully controlled if it can be controlled for 100 Poincaré
oints �or about 85,000 time series data points�. This analysis
ndicates an approximately linear relationship between the con-
rollable level of the energy of the noise versus the number of
ections required for complete control for this system.

stimation and Stochastic Filtering
The previous sections introduced the idea of controlling a non-

inear, chaotic system and applied this technique to the mooring
ystem. The control system was then tested and consequently
odified in the case where additive noise is present. The exten-

ion of the control algorithm was based on the rate at which re-
onstructed Poincaré planes were constructed and then a linear
ontroller was built on each of these planes. In this way, moderate
mounts of noise can be handled. In order to increase the effec-
iveness of the control system in the presence of other then mod-

Fig. 7 Effects of additive noise on moori
the SNR of: „a… 2.42; „b… 2.07; „c… 1.81; an
rate levels of noise, the Kalman–Bucy filter is considered. This

ournal of Offshore Mechanics and Arctic Engineering
section gives a brief introduction to the Kalman-bucy filter and
several variants as they apply to nonlinear systems.

The Kalman–Bucy Filter
The Kalman filter addresses the general problem of estimating

the state of a first order, discrete time system that can be repre-
sented as a system of linear difference equations. �For the pur-
poses here, it suffices to consider only the discrete time Kalman
filter.� Consider the system of equations

xk+1 = Axk + Buk + wk �21�
with the measurement equation

zk = Hxk + �k �22�

where xk�Rn is the state variable; and A is an n�n matrix of
state coefficients relating the state at time k to the state at time
k+1 in the absence of either a driving force or process noise. The
symbol uk�Rn is the vector of control inputs while B is an n
� l matrix that relates the control inputs to the state, and wk rep-
resents the process noise. Similarly, zk�Rm is the measurement;
H is an m�n measurement matrix which relates the state to the
measurement; and �k is the measurement noise.

The process and measurement noise are assumed to be white
noise with normal probability distributions given by

p�w� = N�0,Q� �23�

p��� = N�0,R� �24�
and are assumed to be independent of one another. In practice, the
noise covariance Q is either determined on some basis of intu-
ition, or it guessed. Similarly, the measurement covariance, R, is
provided by a signal processing algorithm or is again guessed.
And, in general, the noise levels are determined independently,
hence there are no correlations between the two noise processes.
The details of the development of the Kalman filter and the iter-

ystem control for the Period-1 cycle and
d… 1.48
ng s
ated Kalman filter as used here can be found in King �11�.
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tochastic Control of Chaotic Systems
The Kalman filter data processing algorithm and it’s variants

or nonlinear systems, the extended Kalman filter, and the iterated
alman filter, have been successfully applied to an assortment of
onlinear and chaotic systems, both for filtering as well as control
urposes �13�. The Kalman filter has also been applied in order to
btain a reference trajectory for control purposes, in this case, the
xtended Kalman filter was exploited �14�.

For the purposes here, we apply the Kalman filter for noise
eduction and then utilize the previous control method previously
efined in order to bring the response of the system to a stable,
eriodic orbit. Of interest is the extent to which the Kalman filter
an be applied under the presence of increasing noise levels while
till being able to maintain system dynamics and control. That is,
t is expected that the Kalman filter will successfully reduce noise
evels in the systems as exhibited by the previous work, however,
s the noise intensity increases, how well does the Kalman filter

Fig. 8 Application of the multi-plane con
case and for a SNR of: „a… 2.42; „b… 2.07;

ig. 9 Effects of the number of control planes used versus the

oise level for the mooring system

6 / Vol. 129, FEBRUARY 2007
perform? The iterated Kalman filter �IKF� is utilized since it is
generally believed that the standard Kalman filter cannot success-
fully filter the data except under special circumstances �11�. Be-
cause of its increased potential for convergence and robustness,
the IKF becomes the ideal method of ensuring stable filtering to
the fiduciary trajectory, which is then used for control purposes.

Figure 10 is a diagram of the filtering and control process. The
nonlinear system output at each time step is put through the Kal-
man filter. The estimate of the state is then used in the control
algorithm to maintain stability. Recall that the system is allowed
to oscillate until the trajectory enters within the 	 ball at which
time the control is applied. Also recall that this is performed on a
Poincaré plane and hence, the time step indicated is that discrete
time between planes. However, this can be relaxed so that the
Kalman filter is applied at each numerical integration time step
and the control applied only on a Poincaré plane.

Recall the nonlinear ordinary differential equations governing
the evolution of the system response of the mooring system, Eqs.
�5�–�7�, where w1�t� and w2�t� are noise components added to the
position and velocity, respectively. It is assumed that the fre-
quency of excitation is known and that the noise is additive to the
position and velocity alone. By “discrete mooring system,” it is

l on the mooring system for the Period-1
1.81; and „d… 1.48

Fig. 10 Kalman filter approach to control of the discrete time,
tro
„c…
nonlinear system
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eant that all control actions are taken on the Poincaré plane.
owever, as previously indicated, the IKF is applied at each nu-
erical integration step. Thus, the linearization procedure inherent

n the IKF is applied locally at each step and the system trajectory
moothed, bringing the state back to the intended fiducial trajec-
ory.

ig. 11 Application of the IKF to the nonlinear mooring system

Fig. 12 Unstable periodic orbit and iterat

the Period-1 cycles found within the moorin

ournal of Offshore Mechanics and Arctic Engineering
Using the same parameters as before, the chaotic �noise free�
system response for these parameter values is seen in Figs.
2�a�–2�d�. Meanwhile, the noisy chaotic response is exhibited in
Fig. 8, where the Poincaré section becomes “cloudy” under the
addition of noise. As is evident in Fig. 9, the addition of increased
noise renders the system uncontrollable with only small amounts
of noise, even as the number of control planes is increased. For
this reason, the Kalman filter is applied in order to investigate the
ability for the filter to reduce the effects of the noise, stochasti-
cally, for increased prediction of the current state and conse-
quently to produce a stable, robust controller.

The implementation of the IKF introduces several parameters
for which there is some control over. First, the number of Gauss–
Newton iterations is predetermined. The implementation here ap-
plies a set number of iterations for the IKF update scheme as
opposed to monitoring the difference between succeeding filtered
points. Let M be the number of Gauss–Newton iterations. It
should be apparent that if M =0, then the IKF reduces to the
extended Kalman filter. The number, N, of measurement points
used in the calculations can be set as well. This is the number of
time measurements that will be used in the smoothing operation.

For the mooring system, the following equations define the fil-
ter inputs

f1�x1,x2,x3� = x2

f2�x1,x2,x3� = − �x1�1 −
1

�1 + x1
2� − 	x2 − f1 sin�x3�

f3�x1,x2,x3� = � �25�

where the Jacobian is given by �where i , j=1,2 ,3�

�f i

�xj
= �

0 1 0

− ��1 −
1

�1 + x1
2�3/2� − 	 − f1 cos�x3�

0 0 1
� �26�

The measurement function, h, is given by

under the influence of the IKF for three of
es

g system
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h�x� = Hx = 1 0 0

0 1 0
�x

y
� �27�

here, again, v1�t� and v2�t� are white, Gaussian, uncorrelated
easurement noise variables. For the application here, it is suffi-

ient to define the measurement functions as linear functions of
he state variables. That is, we allow

h1�x,y,t� = x �28�
nd

h2�x,y,t� = y �29�
o that the “linearized” measurement equations are, simply

z1

z2
� = h1�x,y,t�

h2�x,y,t� � + �1�t�
�2�t� � �30�

Given this representation of the state and measurement equa-
ions for the mooring system, and given the parameter values cited
reviously, the iterated Kalman filter can now be applied. Figure
1 is a plot of the Poincaré section for the noisy mooring system
nd the subsequent application of the iterated Kalman filter. Here,
he noise magnitudes for the separate measurement and state noise
ariables are 
w1
=0.05, 
w2
=0.05, 
v1
=0.01, 
v2
=0.01, and the
oise magnitude for the initial conditions are 0.01, respectively.
our Gauss–Newton iterations are used while only two measure-
ent points are utilized in the filter process. Figure 11�a� is the

oiseless system response as seen on the Poincaré section while
ig. 11�b� is the noisy response. Figure 11�c� is the result of ap-
lying the iterated Kalman filter to the noisy system. Figure 12
lots three of the Period-1 orbits of the system and their iterates
or the original dynamical system and the associated orbits when
oise is applied and then filtered with the IKF. Here, the solid
ircles are the points associated with the unstable periodic orbit of
he noise free system while the lightly colored circles are the
terates. The solid triangles represent the unstable periodic orbits
fter the filtering process and the lightly filled triangles are the
terates in this case.

Notice that the magnitude of the difference between the filtered
nd original dynamical system is minimized to such an extent that
t is enough to achieve the desired control objective with only a
ingle control plane, in which case, the unstable periodic orbit �the
ssociated dynamic invariant of interest� is maintained as previ-
usly shown.

As exhibited, the iterated Kalman filter was successful in sepa-
ating the noise from the chaotic signal for moderate levels of
oise and consequently the control scheme previously defined is
pplicable. The IKF becomes a suboptimal estimator, in the least
quares sense, for the nonlinear signal. This is accomplished by
terating the time update and the covariance matrix in order to
btain a more accurate estimate of the actual system trajectory
hadowed. Notice, however, that the iterated Kalman filter can be
sed as a predictor as well.

oncluding Remarks
This study examines control of the chaotic oscillations of a

uid–structure interaction system. The system under consider-
tion, although of fluid origin, is modeled as a low degree of
reedom system by considering cases for which the small body
heory applies. The method uses a chaotic time series to categorize
nstable periodic orbits. This is done by mapping the time series

o a Poincaré section and then obtaining the unstable periodic

8 / Vol. 129, FEBRUARY 2007
orbits through an exhaustive search of the Poincaré points. A lin-
ear map is produced for which the pole placement method of
feedback control can be applied. The method was first applied to
the nonlinear system to verify control. Then, the method was ap-
plied to the model in the case that band-limited white noise of
finite variation was added to the excitation term, indicating that
�stochastic� control of moored systems is possible. An extension
of this methodology was investigated by obtaining a series of
Poincaré sections, stroboscopically sampling every 2� /r�, where
r is the number of sections desired, and building a corresponding
controller on each section. This yields r separate controllers
evenly distributed, thus decreasing the long term effects of the
noise with respect to an individual controller. Finally, under in-
creasing levels of noise, an iterated Kalman filter was successfully
applied in order to filter this noise.

Finally, should the responses of the prototypes corresponding to
the model tests mentioned in the beginning of this study confirm
the existence of chaotic motions in the �noisy� field environments,
the analysis and control method presented in this study can be
applied to suppress these motions if desired. Extensions of this
study to the multi-degree-of-freedom physical models and subse-
quent design of practical controllers for experimental tests are
being examined.
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