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Stochastic Analysis of Nonlinear
Responses of a Moored Structure
Under Narrow Band Excitations
A semianalytical method is developed for the stochastic analysis of a nonlinear moored
ocean structure subjected to narrow band random waves. The method is then used to
investigate the probability distribution of extreme values of the responses. To verify the
accuracy and capability of the method in handling complex nonlinear behavior of the
nonlinear moored ocean structure, experimental results are employed to calibrate nu-
merical simulations and the resulting probability distributions obtained from the semi-
analytical method. A nonlinear-structure nonlinearly damped model is employed to model
the moored structure considered and the system coefficients are identified through the
reverse multiple-input/single-output technique. An examination of the comparisons indi-
cates that the structural response extreme value probability distributions obtained from
the semianalytical predictions are quite accurate. �DOI: 10.1115/1.2827878�
ntroduction
Nonlinear dynamic behaviors of ocean structures have been

tudied for decades �1–6�. It is well known that nonlinear system
esponses can exhibit very complex behaviors such as coexisting
ttraction domains, instability, jump phenomena, and chaos
3,4,7�. Such typical nonlinear response behaviors have been ob-
erved for moored ocean structures subjected to random ocean
aves �8,9�. To analyze the nonlinear response behaviors of
oored ocean structures, a semianalytical method is developed in

his study, in which the moored ocean structure is modeled by the
uffing equation containing cubic nonlinear restoring force terms

7�. In the equation, the structural dynamic damping is approxi-
ated by a linearized damping term. In a recent study �10,11�, it is

hown that the moored system under narrow band excitation can
e most accurately described by a nonlinear-structure nonlinearly
amped �NSND� model �among several different models consid-
red�. In the NSND model, the hydrodynamic drag and inertia
orces are considered in addition to the hydrodynamic damping
orce.

ystem Description
An experiment was performed at the O. H. Hinsdale Wave Re-

earch Laboratory at Oregon State University on a multipoint
oored submerged sphere under wave excitation �12�. The experi-
ental model consists of a spherical rigid body of 0.46 m diam-

ter with a 0.0254 m2 rectangular shaped rod through the center
upported by guyed masts 1.83 m above the bottom of a wave
hannel. The system behaves as a single-degree-of-freedom with
he motion of the sphere constrained to the surge direction only.
he sphere, made of PVC, is filled with water when submerged.
prings are attached to the sphere to provide a nonlinear restoring
orce �see Fig. 1�.
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Steady-state system responses under deterministic wave excita-
tions over a wide range of wave frequencies are examined first.
Periodic wave excitations with sufficiently long duration are ap-
plied to the moored structure to achieve steady-state responses.
Superharmonic, primary, and subharmonic resonance responses
are observed around regions with wave frequency centralized at
0.14 Hz, 0.27 Hz, and 0.50 Hz, respectively �Fig. 2, �8,9��. Notice
that while the primary resonance is clearly demonstrated, the su-
perharmonic and subharmonic resonance regions are indicated by
the smaller maxima. In the subharmonic resonance region, the
sphere oscillates at a frequency near one-half that of the excita-
tion, indicating the responses are 1 /2 subharmonics. Dashed lines
in the figure show the estimated stability boundaries of the corre-
sponding superharmonic, primary, and subharmonic resonance re-
gions.

In this study, we are interested in examining the transition be-
haviors between 1 /2 subharmonic and harmonic system re-
sponses. For this purpose, narrow band random excitations with
dominant frequencies centered at 0.5 Hz �the subharmonic reso-
nance region� will be employed. Corresponding experimental tests
of the moored ocean system will also be examined and used to
calibrate analytical predictions and simulation results.

Equation of Motion
The general form of the equation of motion can be written as

mẍ�t� + CSẋ�t� + R�x�t�� = f�t� �1�

where m=mass, Cs=damping coefficient, R�x�t��=restoring force,
and f�t�=forcing. For the modeling of the moored sphere, hydro-
dynamic inertia and drag force are considered. The nonlinear
equation of motion for the NSND model is given by �10�

�m + ma�ẍ�t� + CSẋ�t� + a1x�t� + a2x2�t� + a3x3�t�

+ �Cd�
�

4
D2ẋ�t��ẋ�t�� = f�t� �2�
where
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f�t� = �
�

6
D3Cmu̇�t� + �Cd

�

4
D2u�t��u�t��

u�t� = a�
cosh�ks�
sinh�kh�

cos�kx�t� − �t�

a=added mass, Cd=hydrodynamic drag coefficient, Cm
hydrodynamic inertia coefficient, CS=linear damping coeffi-
ient, Cd�=nonlinear structural damping coefficient, �=water den-
ity, and D=diameter of the sphere. Linear wave theory is used to
haracterize the horizontal water particle velocity, u�t�. For the
igid body free to move in waves, an independent flow-field
odel is used as an alternating form for the Morison equation

10,13�. In this study, the linear superposition of two independent
ow fields separating the wave motion and the motion of the
tructure is used. For accurate modeling of the structural system
onsidered by NSND model, the coefficients of the governing
quation of motion should be determined accurately. A system
dentification technique developed in a previous study by Naray-
nan and Yim �10� is used to determine the coefficients. It is
hown that the system response with the coefficients determined
y the system identification technique matches the experimental
esults accurately.

mplitude Jump Phenomena
A typical nonlinear response behavior, the amplitude jump �7�,

hich is observed in both analytical predictions and experiments,
an be characterized by the response amplitude curve. The ampli-
ude jumps occur when the excitation amplitude gradually drifts
ut of attraction domain boundaries. This jump phenomenon is
efined as an interdomain transition. For the specific set of system
arameters, m=3.428, Ca=0.25, �=0.06, Cd�=0.02, Cm=1.25, Cd

Fig. 1 Experimental model of a subme
cited structural system

ig. 2 Frequency response diagram „experimental results…;

---… estimated stability boundaries
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=0.1, a1=9.3, a2=4.0, a3=4.0, three different attraction domains
are found over the region of excitation amplitudes and frequencies
considered. The nonlinear system response dependency on initial
conditions is shown in Fig. 3. For trajectories with initial displace-
ments and velocities highlighted in Fig. 3�a�, the steady-state re-
sponses result in a 1 /2 subharmonic. On the other hand, when the
initial conditions belong to the regions highlighted in Fig. 3�b�,
the resulting steady-state responses are large amplitude harmon-
ics. The time series shown in Fig. 4 demonstrates the amplitude
jump phenomenon from the small amplitude harmonic attraction
domain to the large amplitude harmonic domain when excitation
amplitudes increased from 0.750 to 0.753. The system initially is
subjected to deterministic excitation with amplitude A=0.750 un-
til the peak-to-trough system response stabilizes at 0.76. The
“steady-state” response shows the small amplitude harmonic re-
sponse having the same frequency as the excitation. Then, the
excitation amplitude is increased from A=0.750 to A=0.753 at
time=600 s. For such a small increase in amplitude, it is observed
that the steady-state peak-to-trough response is increased to 1.72,
a more than twice increase in magnitude.

The response amplitude curves shown in Fig. 5 are the steady-
state response amplitudes under deterministic excitation obtained
by numerical integration of the equation of motion. As shown in
the figure, transitions among different domains depend on the at-
traction domains that the system response belongs to at the mo-
ment of excitation variation and the direction of excitation ampli-
tude change �i.e., increase or decrease�. For example, as the
excitation amplitude slowly decreases from A2U�A�A1U to
A2L�A�A2U, the occurrence of jump phenomenon depends on
the current attraction domain the response belongs to. If the sys-
tem response belongs to the large amplitude domain �D3�, ampli-
tude jump will not occur. However, when the small amplitude
domain �D1� is the current attraction domain, transition from D1

to 1 /2 subharmonic domain �D2� will occur. With infinitesimal
variations in excitation amplitude, jumps from D3 to D1, and from
D3 to D1 cannot occur. For the gradual excitation amplitude varia-
tion within an attraction domain, response amplitude varies along
the response amplitude curve. When the excitation amplitudes are
increased from 0 to beyond the small amplitude harmonic domain
upper boundary A1U, transitions occur from D1 to D2 and D2 to D1
and D1 to D3. On the other hand, for the excitation amplitude
decreasing from A�A1U to 0, responses undergo the transitions
from D3 to D2 and D2 to D1. All possible transitions and varia-
tions of system response amplitudes with increasing and decreas-
ing �deterministic� harmonic excitation amplitudes in the given
range are shown in the figure.

For stochastic excitation model with the finite variation in ex-
citation amplitude, response amplitude curves become response
amplitude map where groups of data points indicating existence of
corresponding attraction domains �9�. Notice that transitions from

d, hydrodynamically damped, and ex-
rge
D3 to D1 and D2 to D3 are assumed to occur even though the
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ccurrences of those transitions are highly unlikely. The dashed
ines in Fig. 5 indicate the transitions considered to occur with
nite excitation amplitude variations.

tochastic Excitation Parameters
Assuming that the excitation is a Gaussian random process with
narrow band spectrum, the excitation force, f�t�, can be written

s �14�

f�t� = A�t�cos�� ft + ��t�� �3�
The four dimensional joint probability density function of the

andom variables representing the excitation amplitudes and phase
ngles corresponding to consecutive excitation cycles, i.e., A�1�,
�2�, ��1�, and ��2�, is given by �14�

Fig. 3 Coexisting attraction domain „a… 1/2 sub
traction domain ˆA=1.0‰

ig. 4 Time series of the system response under deterministic

xcitation ˆA=0.75 for tÏ600 s, A=0.85 for t>600 s‰

ournal of Offshore Mechanics and Arctic Engineering
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p�A�1�,��1�,A�2�,��2�� =
A�1�A�2�

4�2��	�
exp	 − 1

2��	�
�
 f

2��A�1��2 + �A�2��2�

− 2A�1�A�2��� cos���2� − ��1�� + � sin���2�

− ��1����
 �4�

where

0 � A�1�,A�2� � 
; 0 � ��1�,��2� � 2�

and

� =�
0




Sf f���cos��� − � f�T�d�

monic attraction domain; „b… large harmonic at-

Fig. 5 Response amplitude curve ˆm=3.428, Ca=0.25, �=0.06,
Cd� =0.02, Cm=1.25, Cd=0.1, a1=9.3, a2=4.0, a3=4.0‰; transitions
and variations of system response amplitude along the re-
har
sponse amplitude curves are also shown
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Sf f���sin��� − � f�T�d�

��	� = 
 f
4 − �2 − �2 �5�

nd superscripts1,2 indicate that the quantities are in the current
nd the next excitation cycles, respectively; Sf f��� is the one-
ided spectral density function of f�t�, and T is the excitation
eriod equal to 2� /� f. The spectral density function of a time
eries is usually obtained numerically using a standard data analy-
is procedure. A typical example of the excitation time series and
ts spectral density are shown in Figs. 6�a� and 6�b�, respectively.
ll stochastic parameters of the excitation random process can be
btained from the spectral density of the time series. If a random
ariable � is introduced to represent the phase angle difference
�2�−��1�, the joint PDF of A�1� ,A�2�, and � can be obtained from
q. �4� by a transformation of the random variables �14�

p�A�1�,A�2�,�� =
A�1�A�2�

2���	�
exp	 − 1

2��	�
�
 f

2��A�1��2 + �A�2��2�

− 2A�1�A�2��� cos��� + � sin�����

− 2� � � � 2� �6�

n addition, the joint PDF of A�1� and A�2� can be obtained by
ntegrating Eq. �6� with respect to � to obtain

p�A�1�,A�2�� =
A�1�A�2�

��	�
exp	 − 1

2��	�

 f

2��A�1��2 + �A�2��2�

�I0�A�1�A�2�

��	�
��2 + �2
 �7�

here I0�x� denotes the modified Bessel function of order zero.

nterdomain Transition
When the stochastic excitation is applied to the system, excita-

Fig. 6 Experimental excitation:
ion amplitude, frequency, and phase keep varying from cycle to

11004-4 / Vol. 130, FEBRUARY 2008
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cycle. Due to the variation of the excitation parameters, the sys-
tem response undergoes transition from one attraction domain to
another attraction domain. To describe the transition between dif-
ferent attraction domains, a transition probability formulation is
employed. The governing equation for interdomain transition is
given by

p̂�D�2�� = Kp̂�D�1�� �8�

where K is the transition matrix whose dimension is n�n �n
=the number of coexisting attraction domains=3�, and super-
scripts �1� and �2� denote the current and next cycles, respectively.
The element of the transition matrix K in ith row and jth column
is a conditional probability, p�i � j�, where i is the attraction domain
of the next cycle and j is the attraction domain of the current
cycle. The conditional probabilities can be evaluated by consider-
ing the stochastic behavior of the excitation amplitude and system
response interdomain transition behavior. For the system response
to stay in the same attraction domain, Dd, in both current and next
cycle, the excitation amplitude must remain within same domain,
Dd

A, as in the current cycle. The probability of the excitation am-
plitude given that it is in the domain, Dd

A, can be written as

p�A�Dd
A� =

p�A�

�
Dd

A
p�A�dA

A � Dd
A �9�

where p�A� is Rayleigh distribution. Then, the probability distri-
bution of the excitation amplitude in the next cycle given that the
excitation amplitude is in Dd

A in the current cycle can be expressed
as

p�A�2��A�1� � Dd
A� =�

Dd
A

p�A�2��A�1��p�A�1��Dd
A�dA�1� �10�

Thus, the probability of the system response amplitude remaining

wave profile; „b… wave spectra
in the same attraction domain, Dd, in the next cycle is

Transactions of the ASME
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P�R�2� � Dd
R�R�1� � Dd

R� =�
Dd

A
p�A�2��A�1� � Dd

A�dA�2� �11�

he conditional probability given by Eq. �11� is equal to the di-
gonal elements of the interdomain transition matrix, p�i � i�. The
ff-diagonal elements of K can be determined by considering the
ransient-state system mean energy, or equivalently, the transient-
tate response amplitude.

ntradomain Transition
The system response undergoes successive transient-state tran-

itions within the attraction domain as the excitation parameter
aries within an excitation amplitude domain. These transitions
ithin attraction domains are defined as intradomain transitions.
he governing equation of the response amplitude probability in-

radomain transition can be written as

p�R�2��Dd
R�

=� 	� �� p�R�2��R�1�,A�1�,A�2�,Dd
R�p�R�1���Dd

R�A
�1��dR�1��

�p�A�1��Dd
A�dA�1�
p�A�2��Dd

A�dA�2� �12�

here

p�R�2���Dd
R�A

�2�� =�
Dd

A
p�R�2��A�1�,A�2�,Dd

R�p�A�1��Dd
A�dA�1�

�13�
nd

p�R�2��A�1�,A�2�,Dd
R� =�

Dd
A

p�R�2��A�1�,A�2�,Dd
R�p�R�1���Dd

R�A
�1��dR�1�

�14�

Table 2 Interdomain transition probab

Test 
 f
2 Transiti

D15 0.0675

�0.954 0

0.046 0

1.601 0

D16 0.1434

�0.790 0

0.210 0

0.000 0

D17 0.2178

�0.701 0

0.299 0

0.000 0

D18 0.2210

�0.698 0

0.302 0

0.000 0

D19 0.4050

�0.665 0

0.333 0

0.002 0
ournal of Offshore Mechanics and Arctic Engineering
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To evaluate the intradomain transition probability, the response
amplitude domains ��Dd

R�A
�z� ,z=1,2�, the system initial condition

Xo domain, the excitation phase angle difference � domain, and
the excitation amplitude domain Dd

A are discretized. The initial
condition is assumed to be uniformly distributed over the domain
�which is the phase trajectory of the current excitation cycle�.
Then, the first term on the right-hand side of Eq. �14� can be
evaluated by the following equation:

p�Rk
�2��Rl

�1�,Aj
�1�,Ai

�2�,Dd
R� = p��p,Xp

o�Rl
�1�,Aj

�1�,Ai
�2�,Dd

R�

=
1

mX
�

�p−��/2

�p+��/2
p�Aj

�1�,Ai
�2�,��

p�Aj
�1�,Ai

�2��
d�

�15�

where mx is the total number of intervals of initial condition Xo
and the subscripts indicate sample points of the corresponding
discretized random variables. The probability vector of the re-
sponse amplitude p�R�2� �Rl

�1� ,Aj
�1� ,Ai

�2� ,Dd
R� can be obtained by

varying �p and Xp
o over the entire respective domains and lump-

ing all p�RR
�2� �Rl

�1� ,Aj
�1� ,Ai

�2� ,Dd
R�. Then, the discrete form of Eqs.

�12�–�14� can be used to determine the intradomain transition
probability vectors as follows:

Table 1 Parameters of narrowband excitation on SDOF, 90 deg
configuration

Test D15 D16 D17 D18 D19
System parameters Cs=0.76 a1=9.3 a2=4.0 a3=4.0

Excitation Parameters in Eq. �5�
� f �


 f
2 0.0675 0.1434 0.2178 0.2210 0.4050

� 0.0206 0.0344 0.0632 0.0634 0.1236

��	� 0.0041 0.0194 0.0434 0.0448 0.1488

in the subharmonic resonance region

atrix, K Normalized eigenvector

1 0.889

9 0.074

0 0.038
� �p1�D1�

p2�D2�
p3�D3�

� = �0.952

0.048

0.000
�

8 0.720

2 0.123

0 0.158
� �p1�D1�

p2�D2�
p3�D3�

� = �0.785

0.215

0.000
�

9 0.567

1 0.136

0 0.297
� �p1�D1�

p2�D2�
p3�D3�

� = �0.697

0.303

0.000
�

8 0.563

2 0.136

0 0.300
� �p1�D1�

p2�D2�
p3�D3�

� = �0.695

0.305

0.000
�

4 0.375

4 0.119

2 0.506
� �p1�D1�

p2�D2�
p3�D3�

� = �0.664

0.332

0.004
�

ility

on m

.91

.08

.00

.76

.23

.00

.68

.31

.00

.68

.31

.00

.66

.33

.00
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p�R�2��Aj
�1�,Ai

�2�,Dd
R� = �

l=1

mR

p�R�2��Rl
�1�,Aj

�1�,Ai
�2�,Dd

R�p�Rl
�1���Dd

R�A
�1��

�16�

p�R�2���Dd
R�A

�2�� = �
j=1

mA

p�R�2��Aj
�1�,Ai

�2�,Dd
R�p�Aj

�1��Dd
A� �17�

p�R�2��Dd
R� = �

i=1

mR

p�R�2���Dd
R�A

�2��p�Ai
�2��Dd

A� �18�

here mR and mA are the numbers of intervals in the discretized
Dd

R�A
�1� domain and excitation amplitude domain, respectively.

he probability of the excitation amplitude of the next cycle being
n domain Dd

R can be computed by

p�An
�z��Dd

R� =�
An−�A/2

An+�A/2

p�A�Dd
A�dA n = 1,2, . . . ,mA z = 1,2

�19�
hus, the overall stationary response amplitude probability distri-
ution can be approximated as

p�R�1�� = p�R�2�� = �
j=1

mA

p�R�1���Dd
R�A

�1��p�Aj
�1��Dd

A� �20�

redictions, Experimental Results, and Simulations
To validate the prediction capability of the semianalytical
ethod, predicted response amplitude PDFs are presented and

ompared to those obtained from experimental and numerical
imulation results. The durations of experiments were sufficiently
ong to achieve stationarity. However, data were recorded only for
hort periods of time due to limited storage capacity at the time
hen the experiment was conducted and the large number of

ases examined. Since long duration of simulations are relatively
asy to obtain, and may provide better “data sets” for calibrating
f the semianalytical method, simulation results were performed
or 25,000 excitation cycles to complement experimental results.
he experimental tests were conducted with several distinct con-
gurations for the single-degree-of-freedom �SDOF� structural
ystem. In this study, experimental results from Tests D16, D17,
nd D18 �all subharmonic responses� are selected for comparison
ith predictions. In these tests, narrow band excitations are used

s input to the SDOF system with a 90 deg mooring lines con-
guration, which exhibit highly nonlinear behavior among several
ifferent mooring configurations. Simulated “Tests” D15 and D19
re generated numerically using the Shinozuka �15� formulation in
he numerical simulation of narrow band random waves with tar-
et variances of Tests D15 and D19 about one-half times that of
est D16 and twice that of Test D18, respectively. These two
ifferent target variances are selected to examine the influence of
he variance on the accuracy in predicting response amplitude
robability. The excitation and system parameter sets are shown in
able 1. Note that � is the autocorrelation of the cosine compo-
ents of the excitation envelop process with time lag equal to the
eak excitation period �14�.

The probability of the system response being in one attraction
omain through interdomain transitions and corresponding transi-
ion probability matrix K are listed in Table 2. Subscripts 1, 2, and

represent small harmonic domain, 1 /2 subharmonic domain,
nd large harmonic domain, respectively. Observe that when the
xcitation intensity, i.e., variance, increases, the excitation ampli-
udes become large and the excitation amplitude probability dis-
ribution is shifted to the right. As the excitation amplitude in-

reases from Tests D15 to D19, the probability that the system

11004-6 / Vol. 130, FEBRUARY 2008

aded 19 Feb 2008 to 128.193.15.52. Redistribution subject to ASME
response staying in the small amplitude domain decreases. Thus,
the value of p�1 �1� in the transition matrix K decreases while both
p�2 �2� and p�3 �3� increases.

The overall response amplitude PDFs obtained by Eq. �20�,

Fig. 7 Overall response amplitude distribution: „a… Test D15;
„b… Test D16; „c… Test D17; „d… Test D18; „e… Test D19
numerical simulation results, and experimental results are pre-
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ented in Fig. 7 for the five cases examined. It can be observed
hat, in each case, the prediction obtained from the analytical pro-
edure accurately matches both the experimental and simulation
esults.

oncluding Remarks
Three co-existing attraction domains, i.e., small amplitude har-
onic, 1/2 subharmonic, and large amplitude harmonic attraction

omains, are identified for the NSND model with system coeffi-
ients obtained by applying reverse multiple-input/single-output
echnique. However, according to the interdomain transition prob-
bilities, it is observed that the steady-state probability of response
mplitude being in the large harmonic attraction domain is suffi-
iently small to be neglected for the excitations of Tests D16,
17, and D18. Thus, the contribution to the overall response am-
litude distribution from the intradomain transition probability of
arge harmonic attraction domain is also neglected.

The predicted response amplitude distributions are compared
ith both experimental result and numerical simulation in Fig. 7.

t is observed that the semianalytical method predicted the re-
ponse amplitude distribution accurately. The shape of distribu-
ion, the location of peak, and maximum probability of response
mplitude are in good agreement with experimental results. These
esults validate the ability of semianalytical method in predicting
onlinear system response under narrow band excitation.

The response amplitude probability distribution can be obtained
rom the analytical procedure when the stochastic property of ex-
itation amplitude is specified. The predicted results for the wide
ange of excitation parameters can be readily used in structural
esign, control, and other applications without simulations.
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