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ABSTRACT 
  

This paper addresses the practical application of a multiple-
input/single-output nonlinear system identification technique on 
ocean structural systems.  An ocean structure exhibiting nonlinear 
behavior due to geometric nonlinearity of mooring line angles and the 
complexity of hydrodynamic excitations is chosen for this analytical 
study.  Given the input wave characteristics, wave force and the 
system response, the method identifies the hydrodynamic drag and 
inertia coefficients from the wave force model formulated by relative-
motion Morison equation.  The reverse multiple-input/single-output 
technique correctly identified the parameters of the nonlinear system. 
 The applicability of the method is demonstrated through a numerical 
example with noisy periodic wave excitation. 
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INTRODUCTION 
 

Complex nonlinear responses have been observed in various 
compliant ocean systems characterized by nonlinear mooring (restoring) 
force and coupled fluid-structure interaction (exciting) force (e.g. 
Thompson, 1983;  Bishop and Virgin, 1988).   Gottlieb (1991) studied 
the nonlinear behavior of a multi-point symmetric moored structural 
system under periodic excitation.  Lin (1994) extended this analysis by 
incorporating random noise perturbations.  Small body mooring systems 
are generally solved by a relative-motion Morison formulation (Patel, 
1989).  It has been observed from the literature that the hydrodynamic 
drag (Cd) and inertia (Cm) coefficients for sphere are not constants and 
reasonable estimate could be 0.1 ≤ Cd ≤ 1.0 and 1.0 ≤ Cm ≤ 1.5 
respectively (Grace and Casino, 1969;  Grace and Zee, 1978).  

It is important to identify the hydrodynamic coefficients and system 
parameters to quantitatively examine the nonlinear behavior.  Bendat 
(1990; 1998) has used parallel multiple-input/single-input (MI/SO) 
procedures for identifying parameters of nonlinear systems.  A method 
for nonlinear system identification to determine amplitude and frequency 
dependent properties on different types of nonlinear systems such as 
Duffing, Van der Pol, etc. has been developed by Bendat et al (1992).  
With the input and output data known, based on multiple input/single 
output linear analysis of reverse dynamic system, Reverse MI/SO 
technique identifies the linear and nonlinear system properties. 

This paper presents the application of the parallel and reverse 
MI/SO technique on a nonlinear spherical mooring system subjected to 

periodic with white noise excitation.  The description of the system, the 
derivation of analytical model, implementation of the technique and 
validation through a numerical example based on experimental 
observations (Yim et al, 1993) are presented. 
 
SYSTEM CONSIDERED 
 
 A general single-degree-of-freedom (SDOF), two-point moored 
structural system restricted to move only in the surge direction is chosen 
for the study.  The model is represented by a submerged rigid body, 
hydrodynamically damped and an excited nonlinear oscillator (Fig.1).  
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Fig.1:  Definition sketch of the mooring system a) Plan b) Profile. 
 

Although the mooring lines are linearly elastic, with large geometric 
nonlinearity (mooring angles at 90o in this case), the restoring force may 
become highly nonlinear.  Gottlieb (1992) discussed various types of 
nonlinearities in the restoring force.  The elastic mooring cables are 



assumed to be taut and the restoring force continuous. 
The exciting force, considered to be acting at the instantaneous 

center of the sphere, is represented by relative motion Morison equation 
(Sarpkaya and Isaacson, 1983).  Through an appropriate transformation, 
the randomness in the wave field is incorporated into the hydrodynamic 
forcing terms (Shinozuka, 1977). 
 
GOVERNING EQUATION 
 

Assuming that structural damping can be lumped into an equivalent 
linear structural damping coefficient Cs and the nonlinear restoring force 
represented by R(x), the governing equation of motion for the mooring 
system can be written as 
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where  m = mass of the sphere, ma = added mass, Cs = structural 
damping coefficient, R(x) = restoring force, f(t) = excitation force, 
x(t), x& (t), x&& (t) = surge displacement, velocity and acceleration 
responses, respectively.  Using a least square approach, the nonlinear 
anti-symmetric restoring force can be approximated by a polynomial 
consisting of odd order terms only.  Good agreement between the actual 
and a two-term polynomial approximation has been demonstrated 
(Gottlieb, 1992).  This polynomial can be written as 
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where k1 and k3 are the linear stiffness coeficient and the nonlinear 
stiffness coeficient, respectively. 
 
EXCITING FORCES 
 
 Ocean environment including wind waves and current often contain 
significant component of noise.  To examine the nonlinear response of 
the mooring system from stochastic perspective, randomness in the 
exciting hydrodynamic force induced by random perturbations in a 
regular wave profile is included in this study.  The wave profile modeled 
as periodic with white noise is given by 
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where ad, ωd and kd are the amplitude, frequency and wave number 
respectively. The disturbance described by ξ(t), represents white noise 
with zero mean and delta correlation  
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where q is the noise intensity.  The white noise, that can be alternatively 
idealized as a sum of harmonics of deterministic amplitudes, random 
frequencies and phase shifts (Shinozuka, 1977), is given by 
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where ns = noise-signal ratio, as = amplitude of the white noise, and ωj, 
φj’s are the wave frequency and random phase shifts uniformly 
distributed in [0,2π]. 
Applying linear wave theory (Chakkrabarti, 1987), the water particle 

velocity, u, and acceleration, u& , at the instantaneous center of the sphere 
can be obtained by using the equations given below:  
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where h = water depth, s = distance of the center of the sphere from 
the bottom, and kj = wave number for the white noise signal 
distributed uniformly between [0,2π]. 
 The exciting force consisting of drag and inertial components 
acting at the center of the sphere is modeled by one-dimensional 
Morison equation (Sarpkaya and Isaacson, 1983) given by 
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where ρ = mass density, D = sphere diameter, Ca = added mass 
coefficient, Cm = inertia coefficient = Ca+1, and Cd = hydrodynamic 
drag coefficient. 
 
NONLINEAR SYSTEM IDENTIFICATION 
 
 The generalized schematic model for the nonlinear system under 
consideration is given in Fig.2.  The input wave characteristics, such 
as η, u, u& , passes through two different systems giving the force output, 
f(t), which in turn serves as the input to two other systems that yield the 
displacement output x(t).  This is a system identification problem where 
frequency response functions, such as A1(f), A2(f), etc., can be evaluated 
by using an equivalent multi-input/single-output linear system 
identification technique developed by Bendat (1990, 1998).  This 
procedure is applicable to random data irrespective of Gaussian or non-
Gaussian. Application of this technique is extended to two different areas 
of parameter identification for the above mooring system, consisting of 
evaluation of hydrodynamic coefficients and system properties explained 
in the following paragraphs.  
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Fig. 2: Schematic model for the mooring system 
 
Nonlinear Wave Force Model 
 
 With the knowledge of wave velocity, acceleration, wave force and 
system response, the hydrodynamic force coefficients (added mass, 
added inertia and drag in Eq.(12)) can be evaluated.  The methodology 
used to analyze arbitrary linear systems in parallel for arbitrary nonlinear 
systems (Bendat, 1990) is extended to the Morison model constructed 
from the original model (Fig.2).  This involves one linear system A1(f) in 
parallel with a finite-memory nonlinear system g(x, u, t) followed by 
A2(f) shown in Fig.3 where 
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Fig.3:  Nonlinear wave force model 
 
The two correlated output records are represented by y1(t) and y2(t). 
Fourier transforms of both sides of Eq. (18) yield the nonlinear frequency 
domain formula 
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Practical procedures that replace the correlated inputs u1(t) and 
u2(t) with a new set of uncorrelated inputs and evaluate the frequency 
response functions are then applied (Bendat, 1998).  The frequency 
response functions A1(f) and A2(f) give the force coefficients Cd and 
Cm, respectively, as functions of frequency.  
 
Nonlinear System Model 
 

With the simulated force f(t) and the sphere response x(t) as 
observed data, identification of system parameters for the SDOF 
nonlinear mooring system model can be obtained by applying the 
reverse MI/SO technique.  Considering the model to be of Duffing 
type, system diagram formed from the original model (Fig. 2) is 
given in Fig.4.  The general equation for the system model can be 
written as 
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Fig.4:  Nonlinear system model 
 
Fourier transforming both sides of Eq.(20) gives the frequency 
domain relation 
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In the absence of nonlinear term x3(t), A4(f) represents the frequency 
response function of an ideal constant parameter system that relates 
the displacement output x(t) to the force input f1(t) given by 
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where the natural frequency fn and damping ratio ζs are defined by  
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When the nonlinear term is present, A4(f) relates the displacement 
output x(t) to an effective force fe(t) given by 
 

)t(xk)t(f)t(f 3
3e −=  (34) 

 

f1(t)

g3(x,t)

x(t)
  Σ

A4
’(f)

A5
’(f)

Fig.5:  Reverse dynamic system model 
 
 Identification of this system requires an iterative approach 
because of the presence of the feed back term (k3x3).  To apply the 
reverse MI/SO technique, the input/output roles are interchanged. 
This reverse dynamic system can be viewed as a two-input/single-
output problem without feedback term as shown in Fig.5.  Reverse 
dynamic inputs x(t) and g3(x,t) = x3(t) may be correlated.  The 
procedures to replace the correlated inputs x(t) and x3(t) with a new 
set of uncorrelated inputs (Bendat, 1998) are applied to evaluate the 
frequency response functions.  A4

’(f), the reciprocal of A4(f) (Eq.31), 
is defined as the linear impedance function which can also be written 
as 
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The system gain and phase factors of Eq.(34) are given by 
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The minimum gain factor occurs at the resonance frequency fr of the 
system.  By maximizing Eq.(35), it can be shown that for practical 
structures having damping ratio 5.02

s ≤ζ , (Clough and Penzien, 
1993), and resonance frequency is given by 
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and the minimum value of gain factor that occurs at resonance is 
given by 
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For lightly damped systems (assumed here), the resonance frequency 
fr and the minimum value of gain factor can be approximated (Bendat 
and Piersol, 1993) by 
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The physical parameters of the mooring system can therefore be 
estimated as follows 
 

)f(A   0f  lim  k '
41 →=  (40) 

2
n

'
4

a
)f2(
)f(A   0 f  lim  M)mm(

π
→≈=+  

(41) 

( )
n

n
'

4

a1ss f2

)f(A
)mm(k2C

π
≈+ζ=  

(42) 

 
The nonlinear impedance function A’

5(f) is given by 
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The linear and nonlinear impedance functions thus give all the system 
properties. 
 
NUMERICAL SIMULATION 
 

Parallel and reverse nonlinear system identification methods 
have been applied to the ocean mooring system described in this 
document.  To demonstrate the applicability of the method, 
parameters of an existing experimental model (Yim et al, 1993) are 
chosen that are given in Table 1.  The time series and spectrum for 
numerically simulated periodic with white noise wave and force, 
Eq.(3) and Eq.(12), with variance same as the experimental inputs is 
given in Fig.6 and Fig.7.  The total time history excitation and 
response for each simulation is 131,072 samples (8192 seconds), with 
sub-record lengths of 8192 for the Fourier transforms (512 seconds).  
Using system parameters in Table 1, the response is obtained by 
solving the ordinary differential equation using a 4th-order Runge-
Kutta method, Eq.(1), time series and spectrum of which is shown in 
Fig.8.  It can be observed from the figure that response of the sphere 
is sub-harmonic.  The simulated wave, force and response are then 
used to validate the methodology of system identification. 
 

Cd 0.1 
Cm 1.5 
fn 0.252 Hz 
ζs 0.018 
k1 6 N/m 
k3 4.3 N/m3 
M 3.29 kg 
Cs 0.135 kg/s 

 
Table 1:  Simulated parameters 
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Fig.6:  Numerically simulated wave a) Time series b) Spectrum 
 
a) 

-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

10.00
12.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Time (second)

Fo
rc

e 
(N

ew
to

n)

 
b) 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0.00 0.50 1.00 1.50 2.00

Frequency (Hz)

Sp
ec

tru
m

 (N
ew

to
n2 )

 
Fig.7: Numerically simulated wave force a) time series b) Spectrum 
 
a) 

-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Time (second)

R
es

po
ns

e 
(m

)

 
b) 

1 .0 0 E -0 4

1 .0 0 E -0 3

1 .0 0 E -0 2

1 .0 0 E -0 1

1 .0 0 E + 0 0

1 .0 0 E + 0 1

0 .0 0 0 .5 0 1 .00 1 .50 2 .0 0

Freq u en cy (H z)

Sp
ec

tru
m

 (m
2 )

 
Fig.8:  Numerically simulated response a) Time series b) Spectrum 
 
 
RESULTS AND DISCUSSIONS 
 
 Results are presented for the SDOF nonlinear mooring system. 
The magnitude of the force coefficients is plotted as a function of 
normalized frequency in Fig.9a and b.  Note that the constant values 
of drag (Cd) and inertia (Cm) indicate that these coefficients are 
indeed independent of excitation frequency as assumed.  In fact, they 
match exactly the parameters employed in the simulations, as listed in 
Table 1.   This high degree of accuracy in the parameter estimation is 
due to the long simulated record available.  All randomness was 
successfully removed by averaging. The corresponding phase values 
of these coefficients (not shown here) were identically equal to zero 
as expected, indicating that the constant values of the hydrodynamic 
coefficients are real and positive.  
 Results of the system model with nonlinear cubic stiffness are 
presented next.  Estimates of the linear impedance function A4

’(f), 
magnitude and phase are given in Fig.10. The magnitude of A4

’(f) 
plotted against frequency normalized with simulated natural 
frequency, gives all the linear system parameters such as linear 
stiffness (k1), damping coefficient (Cs), total mass (M) and natural 
frequency (fn) by using Eq.(40-42).  The results match exactly with 
the simulated parameters given in Table 1.  It can be observed from 
Fig.10a that the minimum of A4

’(f ) points at normalized frequency of 
unity.  The phase information given in Fig.10b shows that the phase 
factor varies from 0o for frequencies less than fn to 180o for 
frequencies greater than fn and show rapid phase shift at fn.  This is 
common for lightly damped mechanical structures, ζs = 0.018 in this 
case (Clough and Penzien, 1993).   

The real part for the nonlinear impedance function, which 
gives the cubic nonlinear stiffness coefficient used in the simulation, 
shown in Fig.11.  The imaginary part (not shown here) is again 
observed to be essentially zero.  The randomness of the nonlinear 
stiffness coefficient can be attributed to the fact that magnitude used 



for the simulation is small.  The trend line shown in Fig.11 matches 
the simulated magnitude given in Table 1.                         
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Fig.9:  Force coefficient a) drag b) inertia 
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Fig.10:  Linear impedance function a) Magnitude b) Phase 
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CONCLUSIONS 
 
 This paper addresses the practical application of a nonlinear 
system identification technique from the simulated input/output 
stochastic data in the field of ocean engineering.  The identification 
of hydrodynamic coefficients and structural properties upon knowing 
the input wave characteristics, wave force and the output system 
response are the two areas where the methodology of system 
identification is applied.  Different MI/SO linear procedures are 
applied to a hydrodynamically damped and excited SDOF moored 
ocean system the equation of motion of which has been defined. 

A two-input/single-output procedure is directly applied to 
the nonlinear wave force model and the force coefficients such as 
drag, Cd, and inertia, Cm, are successfully determined.  The 
identification of hydrodynamic coefficients of the empirically 
formulated Morison equation from the simulated input/output 
stochastic data by using this methodology is a valuable contribution 
towards dynamic wave force analysis.  

For the nonlinear system model, the reverse MI/SO technique is 
applied to identify the linear and nonlinear system properties. This 
method mathematically transforms the single-input/single-output 
problem to two-input/single-output problem by reversing the roles of 
input excitation force and response output.  The resulting linear and 



nonlinear impedance functions correctly identify the properties of the 
system chosen for the study.  The relative contributions from each 
individual as well as the total terms are quantitatively assessed 
through coherence functions. 
 
ACKNOWLEDGEMENT 
 
 The financial support from the United State of Naval Research 
Grant No. N00014-92-J-1221 is gratefully acknowledged. 
 
REFERENCES 
 
Bendat, J.S., Nonlinear System Analysis and Identification from 
Random Data, John Wiley, New York. 1990. 
Bendat, J.S., Nonlinear Systems – Techniques and Applcations, John 
Wiley, New York. 1998. 
Bendat, J.S., Palo, P.A., and Coppolino, R.N., “A general 
identification technique for nonlinear differential equations of 
motion”,  Probabilistic Engineering Mechanics, Vol.7, 1992, pp. 43-
61. 
Bishop, S.R., and Virgin, L.N., “The Onset of Chaotic Motions of a 
Moored Semi-Submersible”, Journal of Offshore Mechanics and 
Arctic Engineering, Vol.110, 1988, pp 205-209. 
Chakrabarti, S.K., Hydrodynamics of Offshore Structures, 
Computational Mechanics Publications, London, 1987. 
Clough, R.W., and Penzien, J., Dynamics of Structures, McGraw-
Hill, 1993. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gottlieb, O., Nonlinear Oscillations, Bifurcation and Chaos in Ocean 
Mooring Systems, Ph.D. Dissertation. Oregon State University, 1991. 
Gottlieb, O., and Yim, S.C.S., “Nonlinear oscillations, bifurcations 
and chaos in a multi-point mooring system with a geometric 
nonlinearity”, Applied Ocean Research, Vol.14, 1992, pp.241-257. 
Grace, R.A., and Casiano, F.M., “Ocean wave forces on a sub surface 
sphere”, Journal of Waterways and Harbour Division, Vol.95, 1969, 
pp. 291-312. 
Grace, R.A., and  Zee, G.T.Y., “Further tests on ocean wave forces 
on sphere”, Journal of Waterway Port Coastal and Ocean Division, 
Vol.104, 1978, pp.83-88.               
Lin, H., Stochastic Analysis of a Nonlinear Ocean Structural System, 
Ph.D. dissertation, Oregon state University, 1994. 
Patel, M.H., Dynamics of Offshore Structures, Butterworths, London, 
1989. 
Shinozuka, M., “Simulation of Multivariate and Multidimensional 
Random Processes”, Journal of the Accoustical Society of America, 
Vol.49, 1977, pp.357-367. 
Sarpkaya, T., and Isaacson, M., Mechanics of Wave Forces on 
Offshore Structures, Van Nostrand Reinhold, 1983.                         
Thompson, J.M.T., “Complex Dynamics of Compliant Offshore 
Structures”, Proceedings of Royal Society London A, Vol.387, 1983, 
pp.407-427. 
Yim, S.C.S., Myrum, M.A., Gottileb, O., Lin, H., and Shih,I-M., 
“Summary and Preliminary Analysis of Nonlinear Oscillations in a 
Submerged Mooring System Experiment”, Ocean Engineering 
Report No. OE-93-03, 1993, Oregon State University. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


