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ABSTRACT 
Time domain simulation of a two-dimensional (2-D) fully nonlinear 
potential flow model is employed here to predict the nonlinear 
responses of an experimental submerged moored structural system 
subjected to monochromatic waves.  Main sources of nonlinearity of 
the experimental system include free surface boundary, fluid-structure 
interaction and large geometry in the structural restoring force. 
Complex nonlinear responses observed in the experiment include co-
existence, harmonics, sub-harmonics and super-harmonics.  A 2-D 
numerical model and simulation code using an acceleration-potential 
and solving implicit boundary conditions, taking into account the 
interaction between the structure and surrounding fluid is used to model 
the experimental system.  The structural system is approximated as a 2-
D cylinder.  A piston-type wavemaker is employed to generate surface 
waves and an artificial damping zone deployed at each end of the tank.  
A mixed Eulerian-Lagrangian method is employed to trace fluid 
particles for estimating the free surface and a 4th Runge-Kutta scheme 
is used for time integration.  A preliminary investigation shows good 
agreements between simulation and experimental results for selected 
responses near primary and secondary (sub- and super-harmonic) 
resonances. 
 
 
KEY WORDS:  Experiment; numerical; fully nonlinear potential 
flow; harmonic; sub-harmonic; super-harmonic.  
 
INTRODUCTION 
 
The study of dynamic response of floating and submerged moored 
structures to wave excitations in the ocean (deep water) and coastal 
(intermediate to shallow water) environments has long been of interest 
to industrial and military researchers and practicing engineers.  These 
structures include remotely operated vehicles, unmanned underwater 
vehicles, rapid deployment platforms, moored or towed barges, etc.  
For the safe operation of these structures in the deep ocean as well as 
the surf zone, an understanding of their potentially highly nonlinear 
fluid-structure interaction behavior is essential.  In recent years, the 
behavior of these nonlinear systems has been examined analytically and 

numerically using models of various complexities.  The applicability 
and predictive capability of these models are verified and with results 
of experiments conducted in laboratories (e.g., Lin et al, 1998).   
 
In support of analytical studies on dynamic fluid-structure interaction 
effects of submerged moored systems conducted by researches at 
Oregon State University, a medium-scale experiment of a multi-point-
moored, submerged sphere subjected to monochromatic waves was 
conducted at the O.H. Hinsdale Wave Research Laboratory (Yim et al, 
1993).  Among several system configurations, a single-degree-of-
freedom (SDOF) model in surge was constructed and tested.  
Characteristic nonlinear responses identified using simple dynamic 
models include co-existence, harmonics, sub-harmonics, and super-
harmonics.  An underlying bifurcation patterns near resonances is also 
indicated (Lin et al, 1998).  A particular analytical model, assuming 
nonlinear-structure-and-nonlinear-damping (NSND), has been derived 
based on small body theory to predict the experimental responses 
(Narayanan and Yim, 2000).  The NSND model consists of an 
alternative form of Morison hydrodynamic damping (independent-
flow-field), a three-term polynomial approximation of the nonlinear 
restoring, and hydrodynamic excitation of inertia and drag components.  
The waves are assumed linear harmonic, approximated by simple 
sinusoidal functions.  In spite of the simplified wave excitation, the 
NSND model response predictions in general agree reasonably well 
with experimental results (Narayanan and Yim, 2000).  However, 
observing that the measured waves are mostly nonlinear, it is deemed 
that more advanced analytical/numerical models may further improve 
the simulated wave profile as well as structural responses.  A numerical 
model incorporating fully nonlinear potential flow is employed here to 
further the investigation of the experimental responses. 
 
Tanizawa (1997b) has developed a two-dimensional (2-D) fully 
nonlinear potential flow (FNPF) model and a corresponding numerical 
time domain simulation code incorporating fluid-structure interaction.  
In the model, both acceleration and velocity potentials are formulated 
and solved for fluid-structure interactions.  Linear and nonlinear waves 
can be generated by a piston-type of wavemaker.  An artificial damping 
zone is applied at each end of the tank to approximate the radiation 
boundary condition.  A mixed Eulerian-Lagrangian (MEL) method is 
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employed to trace fluid particles for estimating the free surface.  A 
boundary element method (BEM) is used to numerically solve the 
corresponding boundary integral equations and a 4th order Runge-Kutta 
scheme is used for time integration. 
 
This paper presents a preliminary study employing the FNPF model 
and simulation code developed by Tanizawa (1997b) to simulate and 
compare with the wave profiles and structural responses of the 
experiment of a SDOF moored submerged sphere subjected to 
monochromatic waves.  The sphere is converted to an equivalent 
cylinder for 2-D computations.  A numerical model is constructed for 
each test based on the corresponding wavelength.  Simulations and 
experimental results with wave frequencies near the primary (0.25 Hz) 
and secondary (0.125 Hz for super- and 0.50 Hz for sub-harmonic) 
resonances of the sphere system are chosen for comparison and 
demonstration purpose. 
 
EXPERIMENTAL CONFIGURATION 
 
The experimental models considered in this study are geometrically 
nonlinear two-point moored, single-degree-of-freedom (SDOF) 
systems in the surge (Fig.1 with b=0).  The model consists of a sphere 
on a rod supported by guyed masts six feet above the bottom of a 
closed wave channel.  A sphere made of PVC with diameter 0.457m 
was used.  The sphere was filled with water when submerged.  Springs 
with various stiffness values (146 or 292 N/m) were attached to the 
sphere at a 90° angle to provide a nonlinear restoring force (Yim et al, 
1993).  The restoring force, which contains geometric nonlinearity, can 
be derived by a Lagrangian formulation (Gottlieb et al, 1997).  The 
damping mechanism includes a linear system (structural) component 
(associated with the system connections and contact points of 
instrumentation), and a time-dependent coulomb friction component 
(due to the set-up of restricted surge motion).  The coulomb friction 
originates from the lift force (in heave) and combined drag/lift moment 
(in pitch).  The initial tension in the mooring cables varied from 219 to 
438 N depending on test case.  A majority of the tests were performed 
with relatively low initial tension (365 N) to ensure nonlinear motion 
response. 
 
The experiment was conducted at the O. H. Hinsdale Wave Laboratory 
at Oregon State University in a wave channel, which is 104.3 m long, 
3.66 m wide and 4.57 m deep with a hydraulically driven, hinged flap 
wave board (Fig. 2).  Data recorded during each test included wave 
profiles, water particle velocities, sphere displacements, and restoring 
force on the springs. 
 
FULLY NONLINEAR POTENTIAL FLOW MODEL 
 
Theoretical Bases 
 
A summary description of the theoretical bases of the fully nonlinear 
potential flow model is provided here.  For a detailed exposition, see 
Tanizawa (2000). 
 
Fluid Domain Description 
 
The potential fluid is assumed homogenous, incompressible, inviscid 
and its motion irrotational.   A representative model of a sample test is 
shown in Fig. 3.  The interior of the tank is the fluid domain (Ω), the 
fluid boundaries (∂Ω) are the wavemaker surface (Sw), the absorbing 
 
 
 

surface (SA), the free surface (Sf), the bottom boundary (SB), and the 
body surface (Sb).  The two dimensional fluid motion v(x,z,t) can be 
computed from the positive gradient of the fluid velocity potential, and 
the pressure P(x,z,t) from the unsteady Bernoulli equation.  In the 
interior of the domain, the velocity potential φ(x,z,t) and its time 
derivative φt(x,z,t) satisfy the Laplace’s equation.   

( ) 0,,2 =∇ tzxφ      (1a) 

( ) 0,,2 =∇ tzxtφ      (1b) 
 
The model has a space fixed x –z axis Cartesian coordinate 
system with x positive to the right and z negative down and the 
origin located at the intersection of the at-rest wave-making 
boundary and the still water level. 
 
Boundary Integral Equations 
 
Boundary integral equations are developed by applying Green’s second 
identity to φ and φt on Sf ∪Sb and are given by 
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where P, Q are points on the boundary, n the outward normal of the 
boundary, r(P,Q) the distance between P and Q, i.e. ||P-Q|| and c(Q) 
the angle subtended at Q by boundaries. 
 
Surface Boundary Conditions 
 
The free surface Sf, boundary condition is given by  

φφη
φ

∇•∇+−=
2
1

Dt
D     (3) 

where η is free surface elevation. 
 
The bottom boundary is assumed fixed and described as  

0=nφ       (4) 
 
The body surface (Sb) is assumed to be rigid and impermeable, with 
surface boundary conditions for the velocity potential and acceleration 
potential respectively, given by (Tanizawa, 2000): 
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where Φ is acceleration potential defined by Φ = φt +1/2∇φ⋅∇φ.  The 
first term on the right hand side of the equation is from the body 
acceleration, the second from the centripetal acceleration of flow on the 
curved body surface, the third from the centripetal acceleration due to 
angular velocity of the body, and the last from the Coriolis acceleration.  
kn is the normal curvature of the body surface. 
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Floating and Submerged Body Motions 
 
Euler’s equation of the rigid body motion can be written in vector form 
as  

gf FFM +=+ βα      (6) 

where M is the inertia tensor, β the gyro moment, Fg the sum of the 
external mooring forces and Ff the generalized hydrodynamic force. 
 
An implicit boundary condition upholding the dynamic equilibrium 
between fluid and body is given by   
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where N = (n, n×r), the generalized normal vector of the body surface, 
and q is evaluated from the solution of the velocity field (Tanizawa, 
2000). 
 
Wave Generation 
 
In this study, the FNPF model simulates fluid and sphere interactions 
and behaviors in the middle portion of the wave tank.  Dimensions of 
the numerical model depend on the wavelength of each test.  The waves 
for the FNPF model are generated by an oscillating boundary with 
specified amplitude and frequency (piston-type of wave maker).  The 
stroke of the oscillating boundary S is first estimated by the linear 
wave, and then fine-tuned by comparing with the experimental result. 
 
Damping Zones 
 
Artificial damping is applied to the ends of the tank to cancel-out 
reflected waves.  Fluxes into the boundary are set equal to zero.  In the 
specified zones, damping mechanism is applied to the kinematic and 
dynamic free surface boundary conditions as (Gointe et al, 1990) 
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where ν(xe) is the damping coefficient of two governing parameters, 
i.e., damping strength α and the length of damping zone β.  Numerical 
results indicate that one wavelength of damping zone with α=1 is 
sufficient to absorb 99% of incident wave energy, and the amplitude of 
reflected wave is less 3% of that of incident wave. 
 
Free Surface Motion 
 
The free surface is updated by a mixed Eulerian-Lagrangian (MEL) 
method, which traces the motions of specified fluid particles with 
velocities computed from the Eulerian formulation (Longuet-Higgins 
and Cokelet, 1976). 
 
Numerical Implementation 
 
A boundary element method (BEM) with collocation point scheme is 
employed to solve the boundary integral equations (Eq. 2) employing 
linear elements and Gaussian integration scheme.  The BEM is also 
directly applied to compute the implicit boundary condition between 
the fluid and structure (Eq. 7).  A surface fitting technique, e.g. cubic-B 
spline is employed for calculations of tangential and normal 
derivatives.  A mesh function is used for arrangement of collocation  
 
 

points for numerical stability.  A standard 4th order Runge-Kutta 
method time integration is employed.  Constant integration time steps 
are chosen small enough so that the CFL condition is satisfied for 
numerical stability (Tanizawa, 2000). 
 
NUMERICAL MODEL OF EXPERIMENTAL SYSTEM 
 
Dimensions of Numerical Model 
 
Figure 3 shows a sample of the numerical model.  The depth of the 
wave tank is kept at 2.75 meters for all simulations to maintain 
experimental wave conditions as well as the dimension of the 
experiment.  The length of the numerical model is chosen > 4λ (λ: 
wavelength) preserve computational accuracy and efficiency.  The 
number of collocation points is 10 on the sides, 40 on the bottom, 120 
on the free surface and 36 on the submerged body.  The integration 
time step is set to 1/20, 1/40 or 1/80 of the incident wave period, 
depending on the wave conditions.  Damping zones of 1λ are located at 
both ends of the tank to absorb transmitted and reflected waves.  
Preliminary studies show that the artificial damping zones seem to 
work well for the experimental results examined.  No significant 
reflections in wave simulations are observed.  The circle is suspended 
0.97835 meters below the still water level. 
 
Restoring Force and Structural Damping 
 
The nonlinear restoring force caused by multi-point springs on the 
submerged circle is (Yim et al, 1993) 
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where F0 = initial spring tension; ls = initial spring length; ∆x1= circle 
displacement in surge direction; and K= linear spring constant. 
 
Possible energy dissipation mechanisms, including frictions caused by 
the contacts between the sphere and instruments, coulomb damping due 
to the presence of the displacement refraining rod, and hydrodynamic 
drag effects are accounted for by a linear structural (viscous) damping 
term.  The structural damping coefficient, estimated based on small 
body analysis (NSND model) of the submerged sphere system, is 3 
percent of the critical damping coefficient 

( )ωξξ mCC cr 2==     (11) 
where m = mass of the circle and ω = natural frequency of the system. 
 
Target Circle Radius 
 
Although the fluid-structure interaction effects of the submerged 
moored system are three-dimensional (3-D) in nature, because of 
symmetry of the configuration of the set of tests considered, it is 
deemed fruitful to first examine the system behavior using a 2-D 
approximation to gain a sense of the numerical modeling capability of 
the FNPF model.  Three-dimensional models will be employed in later 
studies.  Thus the sphere is analytically converted to an equivalent 
cylinder for 2-D computations.  The target radius of the cylinder is 
formulated by equating the hydrodynamic forces exerting on the sphere 
and cylinder as given by 

RdRb
4

cos
2 0

2 πθθπ =∫=     (12) 

 

Paper No. 2002-KT-02 Lin Page number 



EXPERIMENTAL RESULTS 
 
Experimental results can be categorized as continuous search tests and 
data-acquisition tests.  The continuous search tests are intended and 
designed to search for possible nonlinear responses and phenomena in 
the wave frequency range of interest.  In the continuous search mode, 
the wave frequency is gradually varied within the range of [0.1 0.7] Hz.  
Wavelengths of the frequency range tested vary from around 3 to 50m.  
At every 2-3 minutes, the wave frequency is increased/decreased by 
0.01 Hz.  Wave height and period and response amplitude and period 
are manually recorded for data acquisition tests to further examine 
interesting nonlinear phenomena observed.  Note that due to the 
limitations of wave tank capacities, the wave height cannot be held 
constant, varying from 0.12 to 0.92m.  Moreover, because of the wide 
ranges of wave frequency and heights tested, the experimental wave 
conditions range from nonlinear deep water (Stokes V) to shallow 
water (Cnodal I) waves (Dean and Dalrymple, 1984). 
 
Based on the results of the continuous search tests, a normalized 
frequency response diagram (response height/wave height vs. wave 
frequency) is shown in Fig. 4 (‘×’) to reveal the overall experimental 
response behavior, including resonances and coexistence.  These 
resonances are noted in the diagram, i.e. the primary resonance near 
0.25 Hz, and super- and sub-harmonic secondary resonances near 0.125 
and 0.50 Hz, respectively.  Note that multiple nonlinear responses are 
indicated to coexist near the sub-harmonic region (~0.5Hz).  Also, 
because of the nature of continuous search, all possible initial 
conditions for each set of wave amplitude and frequency are not 
experimentally exhausted.  Therefore the experimental frequency 
response diagram may reveal partial information of the overall picture.  
In other words, other coexisting responses might not be observed in the 
experimental result. 
 
Comparisons of experimental results and preliminary FNPF simulation 
investigation by frequency response diagram and sample data 
acquisition tests are shown and discussed in the following section. 
 
SIMULATIONS AND COMPARISON 
 
Frequency Diagram 
 
The frequency response diagram as shown in Fig.4 reflects the overall 
nonlinear characteristics of the experimental results (‘×’).    Using 
selective experimental wave parameters with quiescent initial 
conditions as inputs for FNPF numerical model, simulated results are 
shown in Fig. 4 (‘ο’).  The sample simulations follow the overall 
behavior of the experimental results.  Detailed numerical investigations 
with various initial conditions are needed to further identify all possible 
coexisting responses, which may also provide explanation of the under-
estimated response amplitude at 0.35 Hz.  Numerical result at each 
experimental wave frequency is also being simulated for further 
comparisons. 
 
Primary Resonance 
 
Experimental responses observed near the primary resonance are 
predominantly harmonic.  Sample experimental and FNPF simulated 
responses near the primary resonance (~ 0.25 Hz) are shown in Fig. 5.  
Experimental wave height and period are 0.0793m and 3.7s, 
respectively, and wavelength is estimated about 14.1m.  The wave  
 
 

condition can be closely described by the linear wave theory (Dean and 
Dalrymple, 1984).  For the FNPF model, the tank length is chosen 90m, 
and Stroke of oscillating boundary is estimated as 0.039m.  Good 
agreement is shown between the experimental and simulated responses 
in both amplitude and characteristics. 
 
Sub-harmonic Resonance 
 
Sub-harmonic experimental responses are frequently observed and 
identified near a secondary resonance at around 0.5 Hz.  Sample 
experimental sub-harmonic and FNPF simulated responses are 
compared in Fig. 6.  Experimental wave height and period are 0.634m 
and 2.0s, respectively, and wavelength is estimated about 6.1m.  
Although still in the linear wave range, the wave condition is near the 
nonlinear Stoke wave domain (Dean and Dalrymple, 1984).  For the 
FNPF model, the tank length is chosen 40m, and Stroke of oscillating 
boundary is estimated as 0.2m.  The simulation captures the sub-
harmonic nature of the response, but the contribution of the primary 
resonance (secondary crests) is not as profound as that of the 
experimental result, which may also be the cause of slightly over-
estimated amplitude in the primary crests. 
 
Super-harmonic Resonance 
 
Super-harmonic experimental responses are often observed and 
identified near another secondary resonance at around 0.125 Hz.  
Sample experimental super-harmonic and the FNPF simulated 
responses are shown in Fig. 7.  Experimental wave height and period 
are 0.60m and 6.5s, respectively, and wavelength is estimated about 
29m.  The wave condition is classified as shallow water (Cnoidal) wave 
category (Dean and Dalrymple, 1984).  For the FNPF model, the tank 
length is chosen 132m, and Stroke of oscillating boundary is estimated 
as 0.56m.  The simulated result is in good agreement with the 
experimental response in both characteristics and amplitude.  However, 
a more pronounced phase difference between simulated and 
experimental results is noted. 
 
DISCUSSIONS AND CONCLUSIONS 
 
Based on the large body theory with fully nonlinear potential flow, a 
numerical model has been employed to simulate the results of an 
experimental system of a moored, surged sphere subjected to 
monochromatic waves.  The FNPF simulated wave profile represents a 
significant improvement and in better agreement with experimental 
results comparing to those of an existing numerical NSND model based 
on small body theory.  The FNPF structural response simulations are 
also in good agreement with sample experimental responses near the 
primary and secondary resonances.  It is, however, noted that complex 
energy dissipation mechanism in the experiment, including frictions, 
time-dependent coulomb damping and drag effect is approximated by a 
linear viscous structural damping term.  The simplified, linear damping 
mechanism might be cause for the overestimated sub-harmonic 
response amplitude as shown in Fig. 7 and phase lag in super-harmonic 
response as shown in Fig. 8. 
 
Based on the promising results of the preliminary investigation, the 
FNPF model is anticipated to provide better predictions to both the 
waves and structural responses of the experimental system.  Further 
studies on the capability of the FNPF model predicting the 
experimental results including co-existing responses, random waves 
and extension to multi-degree-of-freedom model will be conducted. 
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Fig.1 Experimental model of a submerged, hydrodynamically damped and excited nonlinear structural system 
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Fig.2 Profile view of the experimental model in a 2-D wave flume 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     1λ 
  DZ 

     1λ 
  DZ 

0.97835 m 
Oscillating  
Boundary 2.75 m 

12 m 
 
 
 
 
 
 

Fig.3 Two dimensional numerical wave tank model of a moored, submerged sphere subjected to monochromatic waves 
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Fig. 4 Normalized frequency response diagram (response height/wave height vs. wave frequency);  experimental results (‘×’) 
and FNPF simulations (‘ ο’) 
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Fig. 5 Harmonic response near primary resonance (Test D14): experimental (solid) and NWT (dotted) 
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Fig. 6 Sub-harmonic response near secondary resonance (Test D2): experimental (solid) and NWT (dotted) 
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Fig. 7 Super-harmonic response near secondary resonance (Test D3): experimental (solid) and NWT (dotted) 
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